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Abstract 

The rational design of RNA is becoming important for rapidly developing technologies in 
medicine and biochemistry. Recent work has led to the development of several RNA secondary 
structure design algorithms and corresponding benchmarks to evaluate their performance. 
However, the performance of these algorithms is linked to the nature of the underlying 
algorithms for predicting secondary structure from sequences. Here, we show that an online 
community of RNA design experts is capable of modifying an existing RNA secondary structure 
design benchmark (Eterna100) with minimal alterations to address changes in the folding engine 
used (Vienna 1.8 updated to Vienna 2.4). We tested this new Eterna100-V2 benchmark with five 
RNA design algorithms, and found that neural network-based methods exhibited reduced 
performance in the folding engine they were evaluated on in their respective papers. We 
investigated this discrepancy, and determined that structural features, previously classified as 
difficult, may be dependent on parameters inherent to the RNA energy function itself. These 
findings suggest that for optimal performance, future algorithms should focus on finding 
strategies capable of solving RNA secondary structure design benchmarks independently of the 
free energy benchmark used. Eterna100-V1 and Eterna100-V2 benchmarks and example 
solutions are freely available at https://github.com/eternagame/eterna100-benchmarking. 

Keywords: RNA design, secondary structure, benchmark, inverse folding, citizen science 

Introduction 
Ribonucleic acid (RNA) has significantly expanded past its original proposed role as an 

intermediate in the genetic code and as a catalytic scaffold for protein synthesis. RNA has been 
observed to act as a genetic expression regulator [1], perform catalysis [2], be a scaffold for 
complex formation [3,4], and be used as a guide by several ribonucleoprotein complexes [5–7]. 
This increased appreciation for the versatile activity of RNA has led to the recent development of 
several RNA therapies that include the control of pre-mRNA splicing [8], gene editing and 
expression [6], and aptamers for binding and sequestering target molecules [9]. Furthermore, 
given the modular nature of RNA motifs [10] and the simplistic pairing rules of nucleic acids, 
RNA has been used to design novel nanostructures [11–13] and drive the development of 
methodologies for the design of novel RNA tertiary structures [14,15]. By combining these 
approaches, it is possible to design RNA molecules with varied function and topology. However, 
as RNA length and complexity increases, the number of asymmetric and symmetric elements 
increases, thereby increasing the difficulty of sequence design for these molecules [16]. 

The RNA secondary structure design problem, also known as the inverse folding 
problem, involves designing an RNA sequence that folds into a target secondary structure given 
an energy function [17]. Classic RNA inverse folding algorithms used cost function 
minimization through adaptive random walk [18], structure decomposition [19], minimization of 
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the ensemble defect [20], or a genetic algorithm [21]. Performance of these older algorithms was 
not well characterized as benchmarking occurred internally and was performed on well 
characterized biological RNA or computationally predicted secondary structures from RNA 
sequences [19,22,23]. 

To address the need for a community-wide standard benchmark for RNA design, J 
Anderson-Lee et al. developed a set of 100 secondary structures published on the Eterna website 
using Vienna 1.8.5 (We henceforth refer to this original benchmark as “Eterna100-V1”). This 
Eterna100 benchmark was chosen to showcase secondary structure motifs that were identified as 
being difficult to design, and the best performing algorithm [21] solved 54/100. Since the 
benchmark was published, several algorithms have surpassed this mark using convolutional 
neural networks [24], reinforcement learning [25,26], or a Monte Carlo search optimized for 
game theory [27]. However, algorithms have been inconsistent in which folding engine (i.e., 
secondary structure prediction algorithm) they use both in training and in predicting. For 
instance, EternaBrain [24] used Vienna 1.8, but Meta-LEARNA [26] used the Turner 2004 
thermodynamic parameters in Vienna 2.1.8. Despite the fundamental link between the folding 
engine used to run and evaluate inverse folding algorithms, there has been no systematic 
evaluation of the effect of folding engines in the training and performance of inverse folding 
algorithms. This work describes our investigation into the extent of folding engine dependency in 
the Eterna100. We challenged Eterna participants to determine if all the puzzles in the original 
Eterna100 could still be solved using an updated set of Vienna parameters (Vienna 2.4, 
henceforth referred to as “Vienna 2”). Indeed, participants identified 19 of the 100 structures that 
were deemed to be unsolvable in Vienna 2 (list of puzzles and the structures in Vienna 1 and 
Vienna 2 are provided in Supplemental File S1). We then challenged the community to adapt 
these secondary structures to a different parameter set using a minimal number of insertions and 
deletions, resulting in the Eterna100-V2 benchmark. We discuss key structural motifs that are 
intractable in one set of thermodynamic parameters, but solvable in the other. We evaluated 
several state-of-the-art inverse folding algorithms and determined that while their relative 
performance is unchanged, neural network based methods would benefit from re-training with 
Vienna 2 parameters. Taken together, this work indicates that consideration of which folding 
engine is used in operating inverse folding algorithms is critical in their evaluation, even in 
determining the scope of what structures are fundamentally solvable. 

Results 
Players’ structure modifications 

Eterna participants identified 19 secondary structures of the original 100 ‘unsolvable’ in 
Vienna 2. We computationally verified that the stochastic algorithm NEMO [27], which is 
currently state-of-the-art in the Eterna100 with the original Vienna 1 folding engine, was also 
unable to find solutions within 24 hour timeframes for these 19 problems with the Vienna 2 
folding engine. 
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These 19 puzzles vary in both length and relative complexity, but share several structural 
features that gave rise to this discrepancy (Fig 1a). The change in the relative free energies of 
internal and stem loops as well as the differences in free energy bonuses lead to several 
structures with isolated base pairs no longer being solvable in the Vienna 2 parameters (Fig 1a). 
Furthermore, multi-helix junctions have different free energies of initiation in the default settings 
of Vienna 2, leading to distinct differences in secondary structure predictions between the two 
models (Fig 1a). In addition, we found motifs that Vienna 1 penalized more than Vienna 2: 
internal junctions with 3 branches (Fig 1b). 

 These results motivated us to develop a new set of puzzles for these 19 problems that 
would comprise a new Eterna100-V2 benchmark to be used with the Vienna 2 folding engine, 
which has largely displaced the Vienna 1 folding engine for wide use. We solicited these new 
problems from Eterna participants.Figure 2 illustrates why we needed redesigns from human 
participants for the 19 puzzles deemed unsolvable in Vienna 2. We originally considered a 
different, simpler redesign method, based on taking a set of known puzzle solutions in Vienna 1 
and calculating their minimum free energy structures in Vienna 2. However, we noted that these 
structures did not exhibit similar shapes and difficult features as the original structures posed in 
the Eterna100 benchmark. To quantify this difference, we used RNAdistance [18], a metric 
based on string edit distance for measuring differences in RNA secondary structures built into 
the ViennaRNA suite, to measure the “difference” between the folded sequence in Vienna 1 and 
the folded sequence in Vienna 2 (Fig 1). In all 19 puzzles, this calculated difference was much 
larger than the difference in secondary structures in V1 and V2 that players created in parallel. 

 
 
 

Figure 1. (A) Free energy differences (ΔΔG, kcal/mol) between identical structures in Vienna 
1.8 and Vienna 2.4. Topmost: an internal triloop; middle: U-G-U-G superboost with G-C end 
pairs; bottom: tetraloop hairpin with G-boost and G-C end pairs. (B) Puzzle-specific differences 
in free energies of structures. The internal tri-junction in Kyurem 5 has a more stable free energy 
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in Vienna 2. Similar repeated tri-junctions are highlighted in Multilooping 6, with similar 
changes in free energy from Vienna 1 to 2. 
 

Figure 2. Number of nucleotide modifications for each of the 19 puzzles that were changed to be 
made solvable in Vienna 2. Blue denotes the RNAdistance calculated distance metric between 
the simple design algorithm between Vienna 1 and Vienna 2. Orange denotes differences in 
player designs between Vienna 1 and Vienna 2. 
 
Eterna100-V1 and Eterna100-V2 discrepancies give insight into most difficult motifs 

Given that the original Eterna100-V1 benchmark was designed by players, we postulated 
that players may be able to design modified structures for these puzzles using a minimum 
number of structure modifications, while maintaining the constraints of the Eterna software 
platform. Remarkably, many of the secondary structures required minimal modifications to be 
solvable with the Vienna 2 parameter set. Of particular interest are the puzzles “Teslagon” and 
“Shooting Star” given they were the most difficult of the original benchmark. “Teslagon” 
consists of a series of loops around a core 7-way junction and was made solvable through the 
deletion of a single internal loop base. “Shooting Star” consists of several multi-helix junctions 
and long helices that contain 29 isolated base pairs and was made solvable through only 3 base 
pair additions (Fig 3).  

In contrast to these two puzzles, the puzzles “Gladius” and “Cesspool” both required a 
greater number of secondary structure modifications. The number of submissions for the 
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“Gladius” puzzle was limited. Eterna single-state puzzles enforce a 400 base pair length limit, 
and many of the submitted structures that minimized the number of modifications were shown to 
be greater than the 400 bp constraint. “Cesspool” exhibited a structure comprising 38 isolated 
base pairs and 4 symmetric 6-way junctions; as discussed previously [16], isolated base pairs, 
repeated motifs, and symmetric junctions make RNA design more difficult. The presence of 
these previously identified problem features are likely the explanation for why this structure 
required additional modifications. The total number of base pair changes from Vienna 1 to 2 can 
be seen in Fig 2. 

Kyurem 5 and Multilooping 6 both had junctions without any unpaired bases, which are 
tougher to solve in Vienna 1 as opposed to Vienna 2. These loops have no unpaired bases, so the 
chance of a misfold is much higher. In addition, the orientation of the nucleotides in the junction 
matters and can vary the free energy, as Vienna 1 will penalize these structures more than 
Vienna 2 (Fig 2b). In both Kyurem 5 and Multilooping 6, the junctions have free energy 4.6 
kcal/mol when surrounded by GC pairs in Vienna 1. In Vienna 2, these junctions have energy 3.5 
kcal/mol, which allows all 5 algorithms to solve these 2 puzzles in Vienna 2, but only a handful 
solve these puzzles in Vienna 1. 

In addition, large internal loops with several unpaired base pairs were also more difficult 
in the Vienna 2 folding engine than Vienna 1 folding engine. For example, [RNA] Repetitious 
Sequences 8/10 (Fig 4a) has 2 such motifs. This puzzle’s structure in Vienna 1 was deemed 
unsolvable due to the large internal loops being too unstable. This “unsolvability” can be 
attributed to the increased free energy calculations for these structures. For example, 
EternaBrain’s solution to [RNA] Repetitious Sequences 8/10’s Eterna100-V1 structure creates 
two large internal loops both with free energies of -1.0 kcal/mol. However, if the same structure 
and solution are used in Vienna 2 (Fig 4b), the free energies of both internal loops increases to 
2.0 kcal/mol (Fig 2a). The strong G-C bonds in the 2 base pairs (free energy -3.3 kcal/mol total, 
in both Vienna 1 and Vienna 2) cannot keep the two loops separate, and the structure misfolds. 
No human or algorithm was able to solve the same Vienna 1 structure in Vienna 2. As a result, in 
the changed Vienna 2 structure for this puzzle, Eterna players deleted a single base, decreasing 
the free energy of the open loop enough to stabilize the secondary structure. 
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Figure 3. Base pair changes in Shooting Star from Vienna 1 to Vienna 2. The neon green 
nucleotides indicate the bases that were added to make the structure stable in Vienna 2. 
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Figure 4. Selected Eterna100-V1 and -V2 puzzles that demonstrate differences in algorithms’ 
puzzle-solving ability. Open squares indicate that a given algorithm was unable to solve that 
puzzle; filled squares indicate that the algorithm did solve the puzzle. Red: RNAinverse; Orange: 
EternaBrain; Teal: LEARNA; Blue: SentRNA; Purple: NEMO. (A) Eterna100-V1 puzzles. (B) 
Eterna100-V2 puzzles. 

 
Inverse folding algorithm performance consistent  

After players modified the secondary structures for the 19 Eterna100 puzzles, we 
assessed the performance of 5 RNA inverse folding algorithms on this updated benchmark (Fig 
5) based on performance on the original Eterna100-V1. We chose to include RNAinverse based 
on historical significance, and we selected EternaBrain, SentRNA, and LEARNA as they are the 
best-performing neural network-based models. We selected NEMO because it has the highest 
performance of any algorithm on the Eterna100-V1. The algorithm NEMO had comparable 
performance against both benchmarks, solving 95 and 94 puzzles in Eterna100-V1 and 
Eterna100-V2, respectively. We found that the three algorithms based on neural network 
methods exhibited decreased performance in the parameters they were not trained against. 
EternaBrain was able to solve 66/100 puzzles on Eterna100-V1, but fewer (59/100) on 
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Eterna100-V2. SentRNA solved 78/100 on Eterna100-V1 and 69/100 on Eterna100-V2, while 
LEARNA scored 57/100 on Eterna100-V1 and 68/100 on Eterna100-V2. RNAinverse, a method 
that does not rely on neural networks, has two versions, Vienna 1 and Vienna 2, which 
performed similarly on both benchmarks, solving 47 and 49 out of 100 on Eterna100-V1 and 
Eterna100-V2, respectively. 

The 19 structures that appeared unsolvable in Vienna 1 were of particular interest in our 
benchmark. These structures, in their Vienna 1 form, were some of the hardest secondary 
structures on the Eterna100-V1. For example, EternaBrain and SentRNA, both trained on Vienna 
1 parameters, solved 5 (26%) and 8 (42%) out of 19, respectively, lower than their average 
across all Eterna100-V1 puzzles (66% and 78%, respectively). The only algorithm to perform 
well on these structures in the original Eterna100-V1 benchmark was NEMO, which directly 
uses player strategies within a nested Monte Carlo algorithm, solving 15/19. On the Vienna 2-
modified secondary structures of Eterna100-V2, EternaBrain and SentRNA both solved fewer 
puzzles: EternaBrain solving 1 and SentRNA solving 3. This was expected, as both inferred 
Vienna 1 solving strategies, either learned via neural networks or via explicitly encoded 
strategies in the algorithms [24]. Similarly, LEARNA solved four puzzles, two more than its 
Vienna 1 performance. NEMO was able to solve the same number of these puzzles in Eterna100-
V2 as Eterna100-V1, and RNAinverse solved 0 of the 19, the same performance as in the Vienna 
1 benchmark. 
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Figure 5. Performance of the 5 algorithms mentioned on the Eterna100-V1 and Eterna100-V2. 
Green: Solved; Orange: Unsolved. 

Discussion 
In this work, we demonstrated that 19 of the 100 structures in the widely-used Eterna100 

benchmark for evaluating RNA inverse design were unsolvable when the thermodynamic 
parameters of Vienna 1 were substituted with those of Vienna 2. This potentially presents a 
problem for evaluating inverse folding algorithms, if algorithmic potential is intrinsically limited 
by the thermodynamic model. To amend this problem, we asked Eterna participants to redesign 
the 19 puzzles. Participants found strategies to do so that preserved the original challenges of the 
puzzles in ways that would not have been achievable by simply updating the folding engine. 
These structure modifications highlight how different energy parameters alter the solvability of 
RNA secondary structures, with the minimal modifications to the benchmark’s secondary 
structures generating a number of motifs that require more stringent sequence features compared 
to the original. 

 
We next evaluated state-of-the-art algorithms on this updated benchmark. We found that 

algorithms based on neural networks (LEARNA, SentRNA, EternaBrain) exhibited worse 
performance on the benchmark using the folding algorithm they were not trained on. Algorithms 
with specific Eterna player strategies or strategies that used stochastic iterative folding (NEMO, 
RNAinverse) exhibited more consistent performance across the two benchmarks. While the 
neural network models were modified to use Vienna 2 parameters, some of the hard-coded 
strategies were not modified. This result suggests that for optimal performance, neural network 
based algorithms will need to be retrained with other parameter sets for use in RNA secondary 
structure design, or find folding-engine-agnostic methods, such as the stochastic methods used 
by NEMO and RNAinverse. 

Given the number of secondary structures that were unsolvable in the original Eterna100 
benchmark with the Vienna2 parameters, it seems likely this benchmark will need to be 
continuously updated as RNA structure prediction becomes more accurate. Folding engines like 
Contrafold [28] and Eternafold [29] appear to be more accurate than the Vienna folding engines. 
However, the newer folding engines do not rely on the same body of experimental results as the 
Vienna folding engines and are anticipated to deviate even farther from those established in 
ViennaRNA, leading to even more of these benchmark secondary structures needing to be 
modified. 

Taken together, this work indicates that future RNA inverse folding algorithms should 
strive to be folding engine independent and we hope that easy availability of Eterna100-V1 and 
Eterna100-V2 will enable the testing of such algorithms. As folding engines evolve and advance, 
it will be necessary that inverse folding algorithms keep up with these advancements. Therefore, 
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it will be necessary in the future for RNA design algorithms to be able to predict designs for 
multiple folding engines or be easily retrained on different folding engine thermodynamic 
parameters. 

Methods 
Design challenges on Eterna platform 

Through iterative manual design, we identified 19 secondary structures in the original 
Eterna100 (Eterna100-V1) benchmark that we hypothesized were not solvable using Vienna 
1.8.5. We asked the Eterna community to redesign these 19 puzzles to be compliant with the 
thermodynamic parameters of the ViennaRNA 2.1.8 software package as implemented in Eterna. 
Players achieved this through the Eterna “Puzzlemaker” interface, whereby individual base pairs 
and bases may be deleted or added to a structure (Fig 6). Players submitted 52 total puzzles as 
modifications of the unsolvable 19. Nineteen of those submissions were chosen by the authors to 
both maintain the constraints of the Eterna platform and the identity of unique structural 
elements that existed in the original puzzles. 
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Figure 6. A screenshot of Eterna’s “Puzzlemaker” interface. Players can see the free energy and 
folding engine in the top left corner (yellow rectangles). In the bottom, players can add bases, 
add base pairs, and interact with the dot-bracket representation of the structure directly (green 
rectangles). 
 
Automated tests of RNA secondary structure design algorithms 

We evaluated the performance of five algorithms (EternaBrain, SentRNA, RNAinverse, 
LEARNA, and NEMO) on the Eterna100-V1 and on the Eterna100-V2 with the 19 modified 
puzzles, using Vienna 2.1.8 as the folding engine. EternaBrain, SentRNA, RNAinverse, and 
LEARNA were run on a Google Cloud instance with 4 CPUs and 10 GB of RAM. Puzzles were 
benchmarked with a timeout of 2 hours. 

EternaBrain uses a combination of a convolutional neural network trained on Eterna 
player moves and a Single Action Playout (SAP) [24], a depth-1 Monte Carlo Search using 
Eterna player strategies. To adapt EternaBrain to Vienna 2, the folding engine in the SAP was 
changed to Vienna 2. EternaBrain’s Convolutional Neural Network (CNN) was not retrained, as 
the player moves used to train the CNN were all using Vienna 1 originally, and insufficient data 
exist to train a neural network with Vienna 2 player moves. 

SentRNA, unlike EternaBrain, does not rely on player moves to train its deep neural 
networks; instead, the authors define their own set of features in the Methods section of the paper 
[25]. We retrained SentRNA using the Vienna 2.4.9 energy model, to benchmark on the 
Eterna100-V2. On both V1 and V2, we trained an ensemble of 20 networks with 300 “solution 
trajectories” [25]. For LEARNA, no changes were needed to benchmark it against the 
Eterna100-V2, as the algorithm was already using Vienna 2 as its internal folding engine (via the 
Anaconda bindings for Vienna 2). To benchmark it on Eterna100-V1, we changed the internal 
folding engine to Vienna 1 and retrained the reinforcement learning models, keeping the same 
hyperparameter values. 

RNAinverse and NEMO, which are both stochastic methods, were able to be run without 
modification using either Vienna 1 or Vienna 2 as the internal folding engine. 

RNAinverse was benchmarked using standard settings, allowing either Vienna 1.8.5 or 
Vienna 2.4.8 to be used as the folding algorithm. For each puzzle and Vienna folding engine 
version (1.8.5 or 2.4.10), NEMO was run for a maximum of 24 hours or 1000 independent trials, 
using one node per puzzle on the Stanford University Sherlock cluster (16 cores, 64 GB RAM, 
100 GB local SSD). Each trial was allowed a maximum of 104 Monte Carlo iterations. For the 
“unsolvable” puzzles, i.e. the 19 original puzzles run in Vienna 2, NEMO was given 10 
independent 24-hour periods to attempt to solve. No solutions were found. 
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Figure Legends 
 
Figure 1. (A) Free energy differences (ΔΔG, kcal/mol) between identical structures in Vienna 
1.8 and Vienna 2.4. Topmost: an internal triloop; middle: U-G-U-G superboost with G-C end 
pairs; bottom: tetraloop hairpin with G-boost and G-C end pairs. (B) Puzzle-specific differences 
in free energies of structures. The internal tri-junction in Kyurem 5 has a more stable free energy 
in Vienna 2. Similar repeated tri-junctions are highlighted in Multilooping 6, with similar 
changes in free energy from Vienna 1 to 2. 
Figure 2. Number of nucleotide modifications for each of the 19 puzzles that were changed to be 
made solvable in Vienna 2. Blue denotes RNAdistance calculated distance metric between the 
simple design algorithm involving calculating structure differences between Vienna 1 and 
Vienna 2. Orange denotes differences in player designs between Vienna 1 and Vienna 2. 
Figure 3. Base pair changes in Shooting Star from Vienna 1 to Vienna 2. The neon yellow 
nucleotides indicate the bases that were added to make the structure stable in Vienna 2. 
Figure 4. Selected Eterna100-V1 and -V2 puzzles that demonstrate differences in algorithms’ 
puzzle-solving ability. Open squares indicate that a given algorithm was unable to solve that 
puzzle; filled squares indicate that the algorithm did solve the puzzle.  Red: RNAinverse; 
Orange: EternaBrain; Teal: LEARNA; Blue: SentRNA; Purple: NEMO. (A) Eterna100-V1 
puzzles. 
Figure 5. Performance of the 5 algorithms mentioned in the paper on the Eterna100-V1 and 
Eterna100-V2. Green: Solved; Orange: Unsolved. 
Figure 6. A screenshot of Eterna’s “Puzzlemaker” interface. Players can see the free energy and 
folding engine in the top left corner (yellow rectangles). In the bottom, players can add bases, 
base pairs and interact with the dot-bracket representation of the structure directly (green 
rectangles). 
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