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Geometric deep learning of RNA structure
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RNA molecules adopt three-dimensional structures that are critical to their function and of interest in
drug discovery. Few RNA structures are known, however, and predicting them computationally has
proven challenging. We introduce a machine learning approach that enables identification of accurate
structural models without assumptions about their defining characteristics, despite being trained with
only 18 known RNA structures. The resulting scoring function, the Atomic Rotationally Equivariant Scorer
(ARES), substantially outperforms previous methods and consistently produces the best results in
community-wide blind RNA structure prediction challenges. By learning effectively even from a small
amount of data, our approach overcomes a major limitation of standard deep neural networks. Because
it uses only atomic coordinates as inputs and incorporates no RNA-specific information, this approach is
applicable to diverse problems in structural biology, chemistry, materials science, and beyond.

R
NA molecules, like proteins, fold into
well-defined three-dimensional (3D) struc-
tures to perform a wide range of cellular
functions, such as catalyzing reactions,
regulating gene expression, modulating

innate immunity, and sensing small molecules
(1). Knowledge of these structures is extremely
important for understanding the mechanisms
of RNA function, designing synthetic RNAs,
and discovering RNA-targeted drugs (2, 3). Our
knowledge of RNA structure lags far behind
that of protein structure: The fraction of the
human genome transcribed to RNA is ~30 times
as large as that coding for proteins (4), but the
number of available RNA structures is <1% of
that for proteins (5). Computational predic-
tion of RNA 3D structure is thus of substan-
tial interest (6).
Despite decades of intense effort, predict-

ing the 3D structure of RNAs remains a grand
challenge, having proven more difficult than
prediction of protein structure. For proteins,
state-of-the-art prediction methods leverage se-
quences or structures of related proteins (7–9).
Such methods succeed much less frequently
for RNA, both because template structures
of closely related RNAs are available far less
often and because sequence coevolution infor-
mation provides less information about tertiary
contacts in RNAs (10). Moreover, designing a
scoring function that reliably distinguishes
accurate structural models of RNA from less

accurate ones has proven difficult, because the
characteristics of energetically favorable RNA
structures are not sufficiently well understood.
This problem raises the question of whether

an algorithm could learn from known RNA
structures to assess the accuracy of structural
models of unrelated RNAs. Such a machine
learning task poses two major challenges:
(i) avoiding assumptions about which struc-
tural characteristics might distinguish accu-
rate models from less accurate ones, and (ii)
learning from the limited number of RNA
structures that have been determined exper-
imentally. Deep learningmethods that do not
require predefined features have led to notable
recent advances in many fields, but their suc-
cess has largely been restricted to domains
where data are plentiful (11).
We designed a neural network, the Atomic

Rotationally Equivariant Scorer (ARES), to
address these challenges (Fig. 1). Given a struc-
tural model, specified by the 3D coordinates
and chemical element type of each atom, ARES
predicts the model’s root mean square devia-
tion (RMSD) from the unknown true structure.
ARES is a deep neural network: It consists of
many processing layers, with each layer’s out-
puts serving as the next layer’s inputs (11). This
network has a distinctive architecture that
enables it to learn directly from 3D structures
and to learn effectively given a very small
amount of experimental data.
ARES does not incorporate any assumptions

about which features of a structural model are
relevant to assessing its accuracy. For example,
ARES has no preconceived notion of double
helices, base pairs, nucleotides, or hydrogen
bonds. The approach behind ARES is not at all
specific to RNA and is thus applicable to any
type of molecular system.
The initial layers of the ARES network are

designed to recognize structural motifs, the
identities of which are learned during the
training process rather than specified in ad-
vance. Each of these layers computes several

features for each atom based on the geomet-
ric arrangement of surrounding atoms and
the features computed by the previous layer.
The first layer’s only inputs are the 3D coordi-
nates and chemical element type of each atom.
The architecture of these initial network

layers recognizes that instances of a given
structural motif are typically oriented and
positioned differently from one another and
that coarser-scale motifs (e.g., helices) often
comprise particular arrangements of finer-
scale motifs (e.g., base pairs). Each layer is
rotationally and translationally equivariant—
that is, rotation or translation of its input
leads to a corresponding transformation of its
output (12). This property captures the in-
variance of physics to rotation or translation
of the frame of reference but ensures that
orientation and position of an identified motif
are passed on to the network’s next layer,
which can use this information to recognize
coarser-scale motifs. The design of these layers
builds on recently developed machine learning
techniques that capture rotational as well as
translational symmetries (13–15)—particularly
tensor field networks (16) and the PAUL
method (17).
Whereas the initial layers of ARES gather

information locally, the remaining layers ag-
gregate information across all atoms. This
combination allows ARES to predict a global
property (in this case, the accuracy of the struc-
tural model) while capturing local structural
motifs and interatomic interactions in detail.
To train ARES, we used 18 RNA molecules

for which experimentally determined structures
were published between 1994 and 2006 (18).We
generated 1000 structural models of each RNA
with the Rosetta FARFAR2 sampling method
(19), without making any use of the known
structure. We then optimized the parameters
of the ARES neural network such that its out-
put matches as closely as possible the RMSD of
each model from the corresponding structure.
To assess ARES’s ability to identify accurate

structural models of previously unseen RNAs,
we used a benchmark consisting of all RNAs
that were included in the RNA-Puzzles struc-
ture prediction challenge and for which experi-
mentally determined structures were published
between 2010 and 2017 (20). For each of these
RNAs, we generated at least 1500 structural
models using FARFAR2 (12). To ensure that
some models were near native (i.e., within a
2-Å RMSD of the experimentally determined
native structure), we included energetic re-
straints to the native structure’s coordinates
when generating 1% of the models for each
RNA (12). We used the trained ARES network
to produce a score for each model (i.e., the
predicted RMSD of each model from the na-
tive structure). We also scored each model
using three state-of-the-art scoring functions:
the most recent (2020) version of Rosetta
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(19), Ribonucleic Acids Statistical Potential
(RASP) (21), and 3dRNAscore (22).
ARES substantially outperforms the other

three scoring functions on this first benchmark
(Fig. 2, A to C, and figs. S3 and S4). The single
best-scoring structural model is near native
(<2 Å RMSD) for 62% of the benchmark RNAs
when using ARES, compared with 43, 33, and
5% for Rosetta, RASP, and 3dRNAscore, respec-
tively. The 10 best-scoring models include at
least one near-native model for 81% of the
benchmark RNAs when using ARES, compared
with 48, 48, and 33% for Rosetta, RASP, and
3dRNAscore, respectively. Each of the best-
scoring near-nativemodels was generated with
energetic restraints to the native structure.
Current methods for sampling candidate

structural models often fail to generate near-
native models in a reasonable amount of
computation time. We therefore compiled a
second benchmark that includes no near-native
models. When predicting RNA structure, ex-
perts can often find some known structures
that can be used as local templates, or other

published experimental data that provide in-
formation on local tertiary structure—but we
ignored all such prior information when
generating candidate models, to simulate
a difficult modeling scenario. We selected
16 structurally diverse RNAs, all substantially
different from any of those used to train ARES
or those in our previous benchmark, and each
including one or more of the following hall-
marks of structural complexity: ligand binding
sites, multiway junctions, and tertiary contacts.
We scored all models using ARES as well as six
other scoring functions that have been used
widely over the past 14 years.
On this second benchmark, ARES again out-

performs all the other scoring functions (Fig.
2D and fig. S5). The median RMSD across
RNAs of the best-scoring structural model is
significantly lower for ARES than for any other
scoring function. The same is true when con-
sidering themost accurate of the 10 best-scoring
structural models for each RNA.
Next, we turned to blind prediction of 3D

RNA structure, participating in four rounds

of RNA-Puzzles, a long-running community-
wide challenge in which newly determined
experimental structures are held in confidence
until all participants have submitted their struc-
tural predictions (20). For each RNA molecule,
we generated candidate structuralmodels using
the FARFAR2 sampling protocol and then
selected among these models using the ARES
scoring function. We describe the exact inputs
toFARFAR2 in tableS1.No template information
wasavailable for oneof these structureprediction
challenges, an intricate adenoviral RNA. Limited
template information was available for the other
three, which are distinct T-box–tRNA complexes
(fig. S6 and table S1).
In every case, this procedure yielded themost

accurate model submitted by any participant,
as measured by both RMSD and deformation
index (Fig. 3, fig. S8, and table S2). For each
RNA, competing submissions were produced
by at least nine other methods, including
methods that used the same sets of candidate
FARFAR2 structuralmodels but selected among
them using the judgment of human experts in
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B  RNA structure prediction with ARES C  Training set: 18 older, smaller RNA structures

D  Benchmark sets: newer, larger RNA structures

A  ARES predicts the accuracy of a structural model, given only atomic coordinates and element types

Structural model of an RNA
Average of each 
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from true structure6.0 3.8 ...5.6 2.6 ...

0.5 2.2 ...

3.2 4.8 ...

5.6 3.3 ... 5.0 4.5 ...

4.3 4.5 ...

1.5 9.2 ...

5.5 8.1 ...

Learned features describe 
each atom’s environment

4.2 Å

2.9 Å

6.4 Å

Candidate 
structural models

Predicted RMSD 
from true structure

ARES

ARES

ARES

3.8 9.3 ... 2.3
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Fig. 1. The ARES network. (A) ARES takes as input a structural model,
specified by each atom’s element type and 3D coordinates. Atom features are
repeatedly updated based on the features of nearby atoms. This process
results in a set of features encoding each atom’s environment. Each feature is
then averaged across all atoms, and the resulting averages are fed into
additional neural network layers, which output the predicted RMSD of the
structural model from the true structure of the RNA molecule. Figure S1
illustrates the ARES architecture in more detail. (B) To perform structure

prediction, we use ARES to score candidate structural models (e.g., those
generated by the FARFAR2 sampling software), selecting the models that
ARES predicts to be most accurate (i.e., lowest RMSD). (C) ARES is trained
using 18 RNA structures solved before 2007. (D) We benchmark ARES
using more recently solved RNA structures, most of which are much larger
than any of those used for training. Representative examples of structures
used for training and benchmarking are shown in this figure, with the
remainder in fig. S2.
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the Das lab or the Rosetta (2020) scoring func-
tion. We also found that the ARES scoring
function outperforms a variety of other scoring
functions applied to the same sets of candidate
models, including a recent machine learning
approach based on a convolutional neural
network (23) (table S3).
Analysis of the trained ARES network in-

dicates that it has spontaneously discovered
certain fundamental characteristics of RNA
structure. For example, ARES correctly predicts

the optimal distance between the two strands
in a double helix—i.e., the distance that allows
for ideal base pairing (Fig. 4A). In addition, the
high-level features ARES extracts from a set of
RNA structures reflect the extent of hydrogen
bonding and Watson-Crick base pairing in
each structure (Fig. 4B), even though we never
informed ARES that hydrogen bonding and
base pairing are key drivers of RNA structure
formation. We also observe that ARES is able
to accurately identify complex tertiary structure

elements, including ones that are not repre-
sented in the training dataset (figs. S7 and S9).
Several deep learning techniques have re-

cently been applied to problems in structural
biology as well as quantum chemistry, leading
to substantial advances in protein structure
prediction and other areas (8, 24–30). ARES,
however, tackles a particularly challenging geo-
metric learning problem, in that it (i) learns
entirely from atomic structure, using no other
information (e.g., sequences of related RNAs or
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Fig. 2. ARES substantially outperforms
previous scoring functions at identifying
accurate structural models. (A) Given
a large set of candidate structural models for
each RNA in benchmark 1—which includes
some models restrained to be close to
the experimentally determined (native)
structure—we rank the models using ARES
and three leading scoring functions. The
model scored as best by ARES is usually
more accurate (as assessed by RMSD from
the native structure) than the model scored
as best by the other scoring functions.
Each cross corresponds to one RNA. “Rosetta”
indicates the most recent (2020) version
of the Rosetta scoring function. (B) When
using ARES, the 10 best-scoring structural
models for each RNA in benchmark 1 include
an accurate model more frequently than
when using the other scoring functions.
(C) For each RNA in benchmark 1, we determine
the rank of the best-scoring near-native
structural model—that is, how far down the
ranked list we need to go to include one
near-native structural model (RMSD < 2 Å).
This rank is usually lower (better) for ARES
than for the other scoring functions. Across the
RNAs, the mean rank of the best-scoring
near-native model is 3.6 for ARES, compared
with 73.0, 26.4, and 127.7 for Rosetta, RASP,
and 3dRNAscore, respectively (geometric
means). (D) For each of the 16 RNAs in
benchmark 2—for which all structural models
were generated without using any template
structures or other experimental data
that could provide information on local
tertiary structure—we determine the RMSD
of the model scored as best by each of
seven scoring functions. For each scoring
function, we plot the median across
RNAs, with a 95% confidence interval
determined by bootstrapping (12). ARES
significantly outperforms each of the other
scoring functions [P values 0.001 to
0.016 (12)]. Of the other scoring functions,
none significantly outperforms any other
[P values 0.24 to 0.66].
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proteins), and (ii) makes no assumptions about
what structural features might be important,
taking inputs specified simply as atomic co-
ordinates and without even being provided
basic information such as the fact that RNAs
comprise chains of nucleotides.
ARES’s performance is particularly notable

given that all of the RNAs used for blind
structure prediction (Fig. 3), and most of those
used for systematic benchmarking (Fig. 2), are
larger and more complex than those used to
train ARES (Fig. 1). RNAs in the training set
comprise 17 to 47 nucleotides (median: 26),
whereasRNAs in the blind structure prediction
challenges comprise 112 to 230 nucleotides
(median: 152.5), and RNAs in the benchmark
sets comprise 27 to 188 nucleotides (median: 75,

with 31 of 37 RNAs comprising more nu-
cleotides than any RNA in the training set).
A limitation of the current study is its re-

liance on a previously developed sampling
method to generate candidate structural models.
Future workmight use ARES to guide sampling,
so as to increase the accuracy of the best can-
didate models. ARES might be improved further
by incorporating other types of experimental
data, including low-resolution cryogenic electron
microscopy and chemical mapping data (31).
ARES’s ability to outperform the previous

state of the art despite using only a small
number of structures for training suggests
that similar neural networks could lead to
substantial advances in other areas involving
3D molecular structure, where data are often

limited and expensive to collect. In addition to
structure prediction, examples might include
molecular design (both for macromolecules
such as proteins or nucleic acids and for small-
molecule drugs), estimation of electromag-
netic properties of nanoparticle semiconduc-
tors, and prediction of mechanical properties
of alloys and other materials.
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RNA molecules fold into complex three-dimensional shapes that are difficult to determine experimentally or predict
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