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Abstract. The fimte-element approach to lattice field theory is both highly accurate (relative errors ~ 1/N 2, 
where N is the number of lattice points) and exactly unitary (in the sense that canonical commutation 
relations are exactly preserved at the lattice sites). In this Letter, we construct matrix elements for the time 
evolution operator for the anharmonic oscillator, for which the continuum Hamiltoman is H = p2/2 + 
,~q2k/2k. Construction of such matrix elements does not require solwng the imphcit equations of motion. 
Low-order approximations turn out to be quite accurate. For example, the matrix element of the time 
evolution operator in the harmonic oscillator groundstate gives a result for the k = 2 anharmonic oscillator 
groundstate energy accurate to better than 1%, while a two-state approximation reduces the error to less 
than 0.1%. Accurate wavefunctions are also extracted. Analogous results may be obtained in the continuum, 
but there the computation is more difficult, and not generahzable to field theories in more dimensions. 
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1. In troduc t ion  

For  over a decade now, the finite-element method has been developed for appl icat ion 

to q u a n t u m  systems. (For  a review of the program see [1].) The essence of the 

approach is to put  the Heisenberg equat ions  of mot ion  for the q u a n t u m  system on a 

Minkowski  spacetime lattice in such a way as to preserve exactly the canonical  

c o m m u t a t i o n  relations at each lattice site. Doing  so corresponds precisely to the 

classical finite-element prescript ion of requir ing cont inui ty  at the lattice sites while 

imposing the equat ions  of mot ion  at the Gauss ian  knots,  a prescription chosen to 

minimize numerical  error. We have applied this technique to examples in q u a n t u m  

mechanics and  to q u a n t u m  field theories in two and  four spacetime dimensions.  In  

particular,  recent work has concentra ted on Abelian and non-Abel ian  guage theories 

[2 6], especially on issues of chiral symmetry breaking. 

Because it is the equat ions  of mot ion  that  are discretized, a lattice Lagrangian  does 

not  exist in Minkowski  space. This is because the equat ions  of mot ion  are in general 
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nonlocal, involving fields at all previous (but not later) times. Similarly, a lattice 
Hamiltonian does not exist, in the sense of an operator from which the equations of 
motion can be derived. 

However, because the formulation is unitary, a unitary time-evolution operator 
must exist which carries fields from one lattice time to the next. For linear finite 
elements this operator in quantum mechanics has been explicitly constructed [7]. 
Construction of this operator requires solving the equations of motion, which are 
implicit. Therefore, it is most useful, and perhaps surprising, that when matrix 
elements of the time evolution operator are constructed in a harmonic oscillator 
basis, they do not require the solution of the equations of motion [8]. Although these 
general formulas were derived some years ago, it seems they have not been exploited. 
Our purpose here is to study, in a simple context, the matrix elements of the 
evolution operator, and see how accurately spectral information and wavefunctions 
may be extracted. (A preliminary version of this work appears in [9].) Our goal, of 
course, is to apply similar techniques in gauge theories, for example, to study chiral 
symmetry breaking in QCD. 

2. Review of the Finite-Element Method 

Let us consider a quantum mechanical system with one degree of freedom governed 
by the continuum Hamiltonian 

p2 
H = - f  + V(q), (2.1) 

from which following the Heisenberg equations 

p = - V'(q), (1 = P. (2.2) 

These equations are to be solved subject to the initial condition 

[q(0), p(0)] = i. (2.3) 

It immediately follows from (2.2) that the same relation holds at any later time 

[q(t), p(t)] = i. (2.4) 

Now suppose we introduce a time lattice by subdividing the interval (0, T) into N 
subintervals each of length h. On each subinterval ('finite element') we express the 
dynamical variables as rth degree polynomials 

p(t) = ~ ak(t/h) k, q(t) = ~, bk(t/h) k, (2.5) 
k=O k = O  

where t is a local variable ranging from 0 to h. We determine the 2(r + 1) operator 
coefficients ak, bk, as follows: 

(1) On the first finite element let 

ao = Po = p(0), bo = qo = q(0). (2.6) 
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(2) I m p o s e  the equat ions  of mo t ion  (2.2) at  r points  within the finite element, at 

~ik, i = 1, 2 . . . .  , r, where 0 < ~l < ~2 < "" < ~r < 1. This then gives 

p(h),~pi = ~ ak, q(k),~ql = ~ bk. (2.7) 
k = O  k = O  

(3) Proceed to the next finite element by requiring continuity (but not  cont inui ty 
of derivatives) at the lattice sites, that  is, on the second finite element, set 

ao = Pl, bo = ql, (2.8) 

and again impose  the equat ions  of mo t ion  at cqh, and so on. 

H o w  are the ~ ' s  determined? By requiring preservat ion of the canonical  com- 
mu ta t i on  relat ions at each lattice site, 

[ql ,  Pl-1 = [qo, Po] = i, (2.9) 

one finds 

r = 1 (linear finite elements): ~ = �89 (2.10a) 

1 
r = 2 (quadrat ic  finite elements): ~_+ = ~ + 2x/~ ,  (2.10b) 

= 2@5 i. r 3 (cubic finite elements): ~1.3 = �89 T , ~2 - (2.10c) 

These points  are exactly the Gauss ian  knots,  that  is, the roots  of the r th  Legendre 

po lynomia l  

Pr(2c~ - 1) = 0. (2.11) 

Amazingly,  these are precisely the points  at which the numerical  error  is minimized. 

It  is known  for classical equat ions  that  if one uses N r th  degree finite elments, the 

relative error  goes like N - 2 , ,  while imposing  the equat ions at any other  points  would 

give errors  like N - ' .  

Let  us consider a simple example.  The quart ic  anha rmon ic  oscillator has the 
con t inuum Hami l ton i an  

H = �89 + �88 (2.12) 

for which the equat ions  of  mo t ion  are 

0 ----- P, t5 -- _ j, q3. (2.13) 

If we use the linear (r = 1) finite-element prescr ipt ion given above,  the corresponding 
discrete lattice equat ions  are 

q l - - q 0  Pl + P o  P i - - P o  2 
. . . . . .  h 2 ' h ~(ql + qo) 3. (2.14) 
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(Notice the easily remembered mnemonic for linear finite elements: Derivatives are 
replaced by forward differences, while undifferentiated operators are replaced by 
forward averages.) By commuting the first of these equations with Pl + Po and the 
second with ql + qo, the unitarity condition (2.9) follows immediately. These 
equations are implicit, in the sense that we must solve a nonlinear equation to find ql 
and Pl in terms of qo and Po. Although such a solution can be given, let us make a 
simple approximation, by expanding the dynamical operators at time 1 in powers of 
h, with operator coefficients at time 0. Those coefficients are determined by (2.14), 
and a very simple calculation yields 

) [ 2 3  q l = q o + h p o - ~ h  q o + ' " ,  

Pl = Po - 2hq 3 - ~22h2qoPoqo + "". (2.15) 

We can define Fock-space creation and annihilation operators in terms of the 
initial-time operators 

(a + a t) (a -- a t) 

q o = 7  V/~ , Po=  ix/~ 7 , (2.16) 

which satisfy 

[a, a t] = 1. (2.17) 

Here we have introduced an arbitrary variational parameter 7, which represents the 
width of the corresponding harmonic oscillator states. The Fock-space states 
(harmonic oscillator states) are created and destroyed by these operators 

In5 (a*)" = ~ . v  105, (2.18) 

which states are not energy eigenstates of the anharmonic oscillator. We can now 
take matrix elements in these states of the dynamical operators at lattice site 1, using 
(2,15): 

<llp~ 10> ~ <llpo 10>(1 + i~2h2y a - -  kh2)~y 2 -I- "") 

<1 [pol0>(1 + icoh - �89 + ".), (2.19) 

and 

h 
<llqxl0> ~ (llqol0>(1 + t72"--- ~h22~ 2 + ".) 

<11qol0>(1 + i c o h -  �89 + ...), (2.20) 

where we have assumed approximately exponential dependence on the energy 
difference co. Equating the coefficients of the terms through order h 2 constitutes four 
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equations in two unknowns. These equations are consistent and yield 

1 
co = -3227 4 = - -  (2.21) ) ,2 '  

so the energy difference between the ground state and the first excited state is 
approximately 

(D ~- (3~.)1/3 ~ 1.14521/3 (2.22) 

which is only 5% higher than the exact result Eol = 1.0884521/3. A similar calcula- 
tion using quadratic finite elements (r = 2) reduces the error to 0.5%. 

Numerical results for a large number of energy differences can also be obtained by 
taking the discrete Fourier transform of the time sequence {(0[ q, [1)}. For example, 
for 1000 finite elements, energy differences are computed at the 2-3% level [10]. 

3. The Time-Evolution Operator 

Because the canonical commutation relations are preserved at each lattice site, we 
know that there is a unitary time evolution operator that carries dynamical variables 
forward in time 

q,+ l = Uq ,  Ut,  P,+ I = UPn Ut,  (3.1) 

For the system described by the continuum Hamiltonian (2.1) in the linear finite- 
element scheme, we have found [7] the following formula for U: 

U ~- eihp2/4eihA(q")e ihp2/4, (3.2) 

where* 

A(x) = ~--~ Ix -- g -  l ( 4 x / h 2 ) ] 2  -+- V(g- 1 ( 4 x / h 2 ) ) ,  (3.3) 

4 
9(x) = ~ x  + V'(x).  (3.4) 

The implicit nature of the finite-element prescription is evident in the appearance of 
the inverse of the function g. 

Given the time evolution operator, a lattice Hamiltonian may be defined by 
U = exp(ih~Q. For linear finite elements Jg differs from the continuum Hamiltonian 
by terms of order h 2. For example, 

V = �89 ~ = ~ tan-  ~ �89 + �89 , (3.5a) 

* A  mispr in t  occurs  in (2.21bj of [1]. 
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V = ~ q  : ~ =  +�89 3 + h  2 (3.5b) 

v =  q4: ~ = �89 + �88 + h 2 _ ~ q 6  _ ~qp q + .... (3.5c) 

If one uses quadratic finite elements ~ differs from the continuum Hamiltonian by 
terms of order h ~, etc. 

4. Matrix Elements of Dynamical Variables 

Remarkably, it is not necessary to solve the equations of motion to compute matrix 
elements of the dynamical variable. Introduce creation and annihilation operators as 
in (2.16). Then, in terms of harmonic oscillator states (2.18), the following formula is 
easily derived [8] for a general matrix element of ql: 

(rn[ql ln)  

_ 7 

e - iO(m - n) f oo 

+ R~/rc2"+'n.m.V v J_~  dzz e-a~(z)/4R29'(z)H,(#(z)/2R)n,.(9(z)/2R), (4.1) 

where 9 is given by (3.4), H.(x) is the nth Hermite polynomial, and we have 
introduced the abbreviations 

R2 472 1 27 i 
= -~- + h ~  2' e-i~ = gh  2 + RhT" (4.2) 

For the example of the harmonic oscillator, this formula gives for the groundstate- 
first excited state energy difference co -- (2/h)tan-1(h/2), consistent with (3.5a), while 
for the anharmonic oscillator (2.12), if we expand in h we obtain precisely the 
expansion (2.20). 

5. Matrix Elements of the Time-Evolution Operator 

A similar formula can be derived for the harmonic oscillator matrix elements of the 
time evolution operator. (There is an error in the formula printed in I-8].) 

1 1 
(ml U In) = e -i('+m+ l)~ 

2R ~/n2,+mn!m! 

x dz 9'(z)H,(o(z)/2R)Hm(O(z)/2R) e tihv(z)+ih3v'(zJ2/8 -"2~176 

(5.1) 
which again is expressed in terms of 0 not 0-1. 
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For the harmonic oscillator, where V--q2/2, (5.1) gives 

energy 

1 h 
<OL U [0> = e ''~176 (Do = .  tan-  1 ~, 

tl Z 
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for the ground-state 

(5.2) 

which follows from (3.5a). For the general anharmonic oscillator, V = ).qZk/2k, again 
we expand in powers of h, with the result, for the harmonic oscillator groundstate, 

h 2 
(0[U 10) = 1 + ih)~ 1/(k + 1)f(~) _ 2 )~2/(k + 1)s(0~ ) 

.,~ 1 + i(Doh 1. 21.2 
- -  ~t~on -1- . . . ,  

where ~ = ).72k+2 and 

1 1 +  ~ (  \ 2c~ F(k_+ 1/2!'] 
f ( a )  - k F(1/2) / '  

(5.3) 

(5.4a) 

1 ( 2k - 1 F(k + 1/2) 4~ 2 r ( Z k +  1/2)'] 
s ( a ) - 1 6 ~ 2 / ~ k + 1 ) _ 3 - - 4 C ~  F(1/2) -t k2 F(1/2) /" (5.4b) 

This result also derivable from (3.5), using (2.16), but with considerably more labor. 
Equating powers of h in (5.3) gives us two equations, which are to be solved first for 
the dimensionless number ~. Once the number c~ is determined, the value of (Do is 
expressed as 

(D O = ,~ l / (k+ llf(~). (5.5) 

For a first estimate, we use only the O(h) Equation (5.5) and employ the 'principle 
of minimum sensitivity' (PMS) [11] that is, use the stationary value of ~, 

2 k-1 k + 1 [(2k - 1)!!] w(k+l) 
i f(cO = 0 ~ c~ (2k - 1)!! ~f(cQ 4k 2(k- 1)/(k+ 1) (5.6) 

Specific examples are 

f0.4293, k = 2, 

/(cQ =~ 0.4639, k = 3 ,  

1.0.5230, k = 4 ,  

(5.7) 

which are higher than the exact values [12] of 0.420805, 0.43493, and 0.46450 by 
about 2%, 7%, and 13%, respectively. In fact, when we solve (5.3) for c~, that is solve 
f (00  2 ---= S(00, we find complex values, for example, for k = 2 

i 
c~ = �89 + ~ ~ f ( a )  = 0.4178 T 0.0077i. (5.8) 

The imaginary part is small, and the real part is only 0.7% low. The corresponding 
result for k = 3 isf(~) = 0.4453 Yr 0.0352i, where the real part is now only 2% high. 
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However ,  for k = 4, f (~)  = 0.5171 -T- 0.0713i, and the real par t  is still 11% high. The 
failure of  (5.8) to be real does not  indicate any b r e a k d o w n  of unitarity,  but only that  
the one state app rox ima t ion  is not  exact. 

We do much  better  by mak ing  a two-state  approx imat ion ,  where we must  

diagonalize the 2 x 2 matr ix  

Uoo Uo2  
U2o U22J" (5.9) 

F o r  k = 2 we then find the following relat ion between coo,2 and ~ = 2~6: 

~i/3 
090, 2 = --i~-0~-i/3[12 + 21c~ T- 2x/~(8 + 16~ + 33~2)i/2], (5.10) 

which, for the - sign, is plot ted in Figure 1. This graph  shows that  the grounds ta te  

energy is very insensitive to the value of ct for a b road  range of values. The  principle 

of  m i n i m u m  sensitivity gives 

COo = 0.421242 i/3, (5.11) 

0.70 . . . .  

0.50 

0.60 

0"400.0 ' 012 014 016 018 ' 1 . 0  
O~ 

Fig. 1. Groundstate energy for the quartic anharmonic oscillator as a function of ct = 2), 6. in the second 
approximation. Here 090 = 21/3f(~t), f(~) given by (5.10). 
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Groundstate wavefunctlon m the two-state approximation. 

3.5 

in spectacular agreement with the exact result, being only 0.1% high, while it gives a 
value for the third state, o92 = 2.99221/3, accurate to 1%. (The exact value is 2.95921/3 

[13].) Solving for ~ from the eigenvalues of (5.9) gives even better results: 

o9o = 41/3(0.42054 • 2 • 10-6i), o92 = 21/3(2-9433 • 0.0220i), (5.12) 

where the groundstate energy is now low by 0.06%, the imaginary part being negligible. 
The real part of the energy of the third state is low by only 0.5%. These results for the 
groundstate are much better than those resulting from the WKB approximation [13]. 

The corresponding PMS values for the k = 3 and k = 4 oscillators are similarly 
impressive: COo = 0.4391341/4(+0.9%) and COo = 0.477182~/5(+2.7%), respectively. 
Using the O(h z) data to compute ~ gives truly outstanding agreement: 

k = 3: COo = (0.43284 • 0.00259i)21/4, (5.13a) 

O) 2 ~-- (3.4532 • 0.1271021/4, (5.13b) 

k = 4: COo = (0.4647 + 0.01463i)2 x/5, (5.13c) 

(D 2 = (4.0186 _ 0.3081021/5, (5.13d) 

where the real parts of the groundstate energies are now low by 0.5% and 0.2%, 
respectively. 
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Second-excited state wavefunction in the two-state approximation. 

6. Wavefunctions 

In the process of diagonalizing (5.9) we find the corresponding wavefunctions in the 
two-state approximation, that is, the wavefunctions are taken to be linear combina- 
tions of n = 0 and n = 2 harmonic oscillator states of width ~. The real parts of these 
wavefunctions are plotted in Figures 2 and 3. (The imaginary parts amount to only 
2% for the ground-state wavefunction and 5% for the excited-state wavefunction.) 
These are normalized to unity at the origin to facilitate comparison with [13]. 

When these are compared with the exact wavefunctions given in [13], we see that 
the approximate groundstate wavefunction is nearly indistinguishable from the 
exact one, and is much better than the WKB wavefunction given there. The 
excited-state wavefunction is quite good, but deviates slightly from the exact 
wavefunction, and in particular, the minimum at x ~ 1.1 should be about 10% 
deeper. This deviation is not surprising, since the exact excited-state wavefunction 
must contain a substantial mixing with the n = 4 harmonic oscillator state. The 
error in the excited-state wavefunction is also manifested in the fact that in this 
approximation the two wavefunctions are not quite orthogonal, the magnitude of 
the overlap being 5%. 
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7. Conclusions 

The simple calculations given here for quantum-mechanical anharmonic oscillators 
are the beginning of a program to develop use of lattice Hamtiltonian techniques to 
explore gauge theories in the finite-element context. The numerical results presented 
in Sections 5 and 6 also hold in the continuum, by virtue of (3.5), but the calculations 
are much more tedious without the use of the finite-element formula (5.1). It is in two 
or more spacetime dimensions that the essential nature of the lattice in such 
calculations comes into play [4,5, 14]. The high accuracy contrasted with the 
simplicity of the approach leads us to expect that we can extract spectral informa- 
tion, anomalies, and symmetry breaking from an examination of the time-evolution 
operator in gauge theories. 
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