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Abstract
Phylogenetic inference for molecular data by the maximum-likelihood approach has been
attacked from a theoretical point of view, because the likelihood functions take different
forms for different trees, so that optimised likelihood values for different trees do not
appear to be directly comparable (Nei, 1987). Here, a new "super-tree" perspective is
introduced to refute these criticisms. A super-tree likelihood expression is constructed
which is a function of all possible bipartition lengths; it reduces to the individual tree
likelihood functions when bipartitions not in a given tree are set to zero. From this
perspective, the problem of phylogeny inference is seen to be a classical statistical problem
involving selection between composite hypotheses. In particular, the usual ML procedure is
well-justified, and, moreover, the likelihood ratio between two trees does indeed indicate
the posterior odds of the trees. This "literal" interpretation of the likelihood values is
shown by simulation to provide a more intuitive indication of tree selection accuracy than
the "integrated" likelihood posterior probabilities of Rannala and Yang (1996) and
bootstrap supports. Thus, the likelihood framework for phylogenetic inference for
molecular phylogenetic inference has a good theoretical basis – provided that an
adequately realistic model of molecular mutation is used to fit the data. To test the
adequacy of such molecular mutation models, a set of straightforward "consistency checks",
based on likelihood ratio statistics, are also presented. Predicted distributions of these
statistics are shown to agree with simulation. These consistency checks, as well as a
likelihood-based tree selection procedure, have been applied to several data sets: mtDNA
from five primates, α and β globin genes from five mammals, mtDNA and wingless genes
from sixty Heliconiini butterflies, and mtDNA from forty mimicking races of
Heliconius melpomene and Heliconius erato butterflies. These consistency checks, as well
as the presence of internal contradictions, reject the commonly used HKY85+Γ model when
applied to many of these data sets. It is concluded that while maximum likelihood is
rigorous in principle (and preferable to theoretically unjustified methods like maximum
parsimony), it should be considered a heuristic procedure for phylogenetic inference until
the complex biological processes influencing molecular mutation are fully understood.
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Theoretical Basis of Likelihood Methods in
Molecular Phylogenetic Inference

Rhiju Das, Centre of Mathematics and Physical Sciences applied to Life science and
EXperimental biology (CoMPLEX), University College London.

1. Introduction
The inference of phylogenies based on DNA or amino acid sequences of living species has
been one of the most powerful techniques of modern genetics – and also one of the most
controversial. Molecular data has been used to find man's place among the primates
(Schwartz, 1984; Hasegawa, 1991), the relationship of mammals to birds and dinosaurs
(Hedges et al., 1990; Hedges, 1994), and the primordial branching pattern of the earliest
living organisms (Olsen et al., 1994b). Yet, for each problem, different researchers have
published conflicting trees – sometimes based on the same data set!

So far, there has been no rigorous statistical framework to guide phylogeny
inference. Instead, researchers depend mostly on heuristic methods, like maximum
parsimony analysis (Farris et al., 1970) or the minimum evolution distance method [and its
cousins, least-squares distance fitting, and neighbour-joining; see (Cavalli-Sforza and
Edwards, 1967), (Fitch and Margoliash, 1967), and (Rzhetsky and Nei, 1993)]. A more
rigorous technique to have gained wide popularity is the maximum likelihood (ML)
method, introduced in a computationally tractable form by Felsenstein (1973, 1981). For
each possible tree hypothesis, the likelihood of a molecular data set can be computed, using
a Markov process to model the changes among possible molecular states. The lengths of the
tree branches and the parameters of the evolutionary model (like the
transition/transversion bias for DNA) are then varied until this likelihood function is
maximised, producing a single likelihood value, Ltree = exp(ltree), for each tree. Finally, the

tree with the highest log-likelihood ltree is picked as the phylogeny hypothesis best
supported by the data. Often, the data is re-sampled with replacement, or “bootstrapped”
(Felsenstein, 1985), to mimic statistical variation; if the ML method finds the same tree for,
say, 95% of the bootstrap data replicates, the tree is considered well-supported.

With its likelihood/probability values and explicit description of the molecular
evolutionary model, the ML method appears statistically rigorous, at first glance.
However applications of the ML method to real data sets using simple evolutionary models
of molecular mutations have often led to bizarre results. One example (among many) is the
analysis by Zardoya et al. (1998) of the whole mitochondrial genome of the lungfish, the
coelecanth, and several tetrapods to determine the closest living ancestor to the tetrapods.
In their investigation, each mitochondrial gene yielded an ML tree topology (with, e.g.,
lungfish+tetrapods, or coelecanth+tetrapods, as sister groups) with a likelihood several
orders of magnitude (often 105 or more) greater than alternative trees – but different
proteins favoured contradicting tree topologies.

In addition to this inconsistency in practical applications, there appear to be some
theoretical problems with the ML procedure for molecular phylogenetic inference. As
pointed out by Nei (1987), the classical likelihood theory of parameter estimation does not
seem to directly apply to ML tree inference. In particular, the likelihood function has a
different form for different trees – and the tree is not a continuous parameter (Yang et al.,
1995). So it is not readily obvious that likelihoods for different trees can be properly
compared to pick out the “best” tree. Without the apparent backing of classical likelihood
theory, the ML method for phylogeny inference instead finds its support mostly from
computer simulation studies and from the theoretical demonstration of its consistency
(Yang, 1994b), i.e., its ability to pick out the correct tree in the limit of infinitely long
molecular sequences. Several theoretical questions remain open: How can one be sure that
the assumed evolutionary model is properly describing all relevant aspects of the data set,
including purifying/positive selection and recombination? Is the ratio of two tree
likelihoods L1/L2 = exp(∆l12) an appropriate measure of the ratio of posterior
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probabilities? Or should one take into account the variance σ(∆l12) in the log-likelihood

difference (Kishino and Hasegawa, 1989), looking at, say, exp[∆l12/σ(∆l12)] (Jermiin et al.,
1997)  –  or should one trust the ratio of the trees' bootstrap supports?

The main objective of this report is to address these uncertainties lying at the heart
of the ML method for molecular phylogenetic inference. In particular, it will be argued that
ML is indeed statistically sound for accurate models of molecular mutation. To support this
claim, a new “super-tree” likelihood function is introduced which is a function of all
possible bipartitions1 of the taxa. It is designed so that when all internal bipartitions
except for the subset found in a given tree are constrained to zero, the “super-tree”
likelihood reduces to the form of the usual likelihood function defined for that tree.2 From
the super-tree perspective, the problem of phylogeny inference is then seen to be a classical
statistical problem involving composite hypotheses, refuting the theoretical doubts
expressed in (Yang et al., 1995) and elsewhere. In particular, a likelihood ratio between
different tree topologies can indeed be interpreted literally as an estimate of the trees’
posterior odds, “the ratio of the frequencies with which, in the long run, the two
hypotheses will deliver the observed data” [section 3.4 of Edwards(1972)]  –  as long as an
adequately realistic model of the molecular mutation process is used.

This last disclaimer is very important, however. The secondary objective of this
report is to introduce some simple tests (“consistency checks”) which can check if the
evolutionary model assumed in the ML analysis is realistic enough to describe a given data
set. In fact, it will be found that these tests quite often reject the most general evolutionary
models implemented in the current generation of phylogeny inference programs. Therefore,
while the ML method is, in theory, statistically well-founded, at present it is best
considered a heuristic method in practice, since all the biological subtleties of molecular
mutation are not yet completely understood.

This report is divided into seven main sections, including this Introduction;
mathematical details are collected in the appendices. In the next section, a well-defined
super-tree likelihood function is introduced explicitly for the simplest model of binary
characters, illustrated with several four-taxon examples, and then extended to the
evolutionary models most commonly used in the literature. The third section builds on the
intuition obtained from the super-tree perspective to describe how ML can be used to choose
among tree hypotheses; in particular, likelihood ratios between trees are shown, by
simulation, to be a better indicator of the accuracy of phylogeny inference than bootstrap
supports. The fourth section develops some straightforward likelihood ratio tests to check
the adequacy of the evolutionary model in describing a data set; several novel predictions
regarding the distributions of these likelihood ratio statistics are checked against
simulations. The fifth section applies the ML procedure and consistency checks to several
real data sets: a segment of mitochondrial DNA (mtDNA) from five primates; the α and β
globin genes from five mammals; mtDNA and a nuclear gene for a sixty-taxon data set of
South American passion-vine (Heliconiini) butterflies; and mtDNA from forty mimicking
races of Heliconius melpomene and Heliconius erato butterflies. The properties of the ML
method, in the light of these theoretical results, simulations, and analyses of real data, are
discussed in terms of self-consistency and statistical evaluation, and compared with other
heuristic techniques of phylogeny estimation in the sixth section. The seventh section
concludes the report, comparing what has been achieved to what was proposed before
starting the project.

                     
1 In this report, the terms “bipartition” and tree “branch” are used interchangeably. The former term will be used
more often when discussing abstract extensions to usual tree structures.
2 Strimmer and Moulton (2000) have recently published another method for generalising the likelihood function for
a phylogeny to a more general “phylogenetic network”. However their approach introduces several new,
unspecified parameters and does not produce  a unique  likelihood function. Unlike the work presented here, the
method of Strimmer and Moulton does not provide a theoretical basis for the usual likelihood methods, as will be
discussed in Section 6.
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2. The super-tree likelihood function
This section introduces a perspective where different tree topologies are seen to be special
cases of a more general “super-tree” problem with a single likelihood function. The first
three subsections, describing likelihood basics and the trivial two-taxon and three-taxon
problems for the simplest binary model of molecular mutation, say nothing particularly new
and are intended mainly to establish notation. Subsection 2.4 introduces a super-tree
likelihood function for the non-trivial four-taxon case, and briefly discusses how this
provides a theoretical justification of the usual ML procedure of phylogeny inference. The
last two subsections sketch how the super-tree perspective can be extended to data sets with
more taxa and with more general evolutionary models.

2.1. Likelihood basics.
First, the basic formalism is described. Given a data set of m taxa aligned molecular
sequences with n sites each, a general likelihood function takes the binomial form:

      
L =

n!
n0 !n1!KnN !

p0
n0 p1

n1 KpN
n N , (1)

where N is the number of possible “site patterns”, the n0, n1, ... nN are the observed numbers
of the site patterns in the data, and p 0, p 1, ... pN, are the probabilities of each pattern under
the given evolutionary model and tree topology. Explicitly, a site pattern is defined as a set
of molecular characters that exist at a given site in the taxa. So, for example, n0 might be
the number of sites that are adenine for all the taxa in a DNA data set; n1 might be the
number of sites that have thymine in the first taxon, but adenine in the rest; etc. If there are
c possible character states, there are thus N = cm possible site patterns. Note that there is a
constraint on the observed and the predicted probabilities, that the frequencies sum to one:
∑ ni/n = ∑ p i = 1.

For a given data set, the ni are constants, and the p i are varied until the likelihood
is maximised to best fit the N – 1 degrees of freedom. If the evolutionary model has enough
independent parameters (at least N – 1 of them) one can hope to attain a “perfect” fit
p i = ni/n, which is a global maximum.3

Since L is often a very small number, it is convenient to deal with logarithm of the
likelihood

      
l = log L = ni log pi

i=1

N

∑ , (2)

with the constant term log n!  –   ∑log[ni!] suppressed. A perfect fit gives the value
lmax = ∑nilog[ni/n].
The remainder of this section describes the super-tree likelihood for the simplest
evolutionary model, for binary characters with equal frequencies (Neyman, 1971). This
model might be appropriate for, e.g., DNA sequences where only pyrimidines and purines
are distinguished. Extensions to more realistic models of DNA and amino acid evolution are
given in the last two sub-sections.

                     
3 To see this, it may help the reader (especially if he/she comes from a physics background like the author) to note

that

    
L ∝ (npi )

ni
e−np i

ni!i=1

N

∏ .

The expression is simply the product of probabilities for an integer ni to be picked in a Poisson distribution with
expectation npi, and clearly has its only local maximum with respect to independent variation of the predicted
frequencies pi at ni = npi. Z. Yang (priv. comm.) has pointed out, however, that some readers would consider it
obvious that a perfect fit is a global maximum of the original binomial form of L, and that this rearrangement into
Poisson form is a distraction. To each his own!
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2.2. The simplest binary model, two-taxon case.
Writing the probabilities of nucleotides to be in either of the two states, 0 or 1, as a column
vector P = [p 0, p 1]T, a simple binary evolutionary model is described by dP/dt = Q P, where
the instantaneous rate matrix is

Q = 
  

−1     1
 1    − 1

 
  

 
  . (3)

The solution at any time t is

{p ij} = exp(Qt) = 
    

psame pdiff 

pdiff psame

 
  

 
  , (4)

where the probability that two nucleotides are different after separation time t is

    
pdiff =

1
2

[1− e −2t ], (5)

and p same = 1 – pdiff. The equilibrium character frequencies are π0 = π1 = 1/2. Now a data set
of two taxa yields four site pattern numbers n00, n01, n10, and n11. Since the variables must sum
to n, there are three degrees of freedom. The log-likelihood function is

      

l = n00 log
psame

2
 
  

 
  + n01 log

pdiff

2
 
  

 
  + n10 log

pdiff

2
 
  

 
  + n11 log

p same

2
 
  

 
  

= nsame log psame + ndiff log pdiff − n log 2
(6)
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Figure 1. Maximum likelihood estimate of the divergence time between two taxa based on the simplest binary
 model – see equation (7).
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So the assumption of equal character frequencies allows one to “collapse” together site
patterns which are inverses of each other, ndiff = n01 + n10 and nsame = n00+n11. Since one has the
constraint nsame + ndiff = n, there is actually only one collapsed degree of freedom left. Thus,
with a single parameter, the separation time t, one can reach the global maximum where

      
t (maxl) = −

1
2

log 1 − 2 fdiff[ ] (7)

with fdiff = ndiff/n. See Figure 1 for a plot of this function. The equation above shows that, in
this simple model, the ML estimate of the divergence time between two taxa is only
dependent on fdiff, the number of character states that are different between the two taxa.

Note that while equation (7) gives a perfect fit of the collapsed site pattern
frequencies (one degree of freedom), it is not a perfect fit of the three original degrees of
freedom. To accomplish that, one might consider a more general evolutionary model, with,
say, fittable equilibrium frequency π0

eq ≠ 1/2 and fittable root frequency π0
root

 ≠ 1/2. Also,
note that expression (7) is not well-defined if fdiff > 1/2. If one finds such a data set, one must
set t (maxl) at the boundary t (maxl) →∞; or, more palatably perhaps, one might be able to obtain
a non-boundary fit by using a more general evolutionary model.

2.3. Three-taxon case.
The three-taxon case is almost as straight-forward to solve as the two-taxon case. Suppose
one has three taxa A, B, and C, for which there is the single possible connecting tree shown
in Figure 2.4 One needs to find the three optimum branch lengths tA, tB, and tC.
For the binary model, there are eight site patterns (or 7 degrees of freedom), and as before,
one can collapse them into nsame = n000 + n111; nA|BC  = n100+ n011; nB|AC  = n010 + n101; and
nC|AB  = n001 + n110.

The likelihood function is then:

      l = nsame log psame + nA|BC log pA|BC + nB|AC logpB|AC + nC|AB log pC|AB − n log 2 (8)

tA

A

tC

C

tB

B
Figure 2. The only unrooted three-taxon tree.

                     
4 In this and the following two subsections, one does not consider rooted trees since, with a reversible evolutionary
Markov model and without a hypothesis like the molecular clock, ML cannot in general find the root of a tree – the
pulley principle of Felsenstein (1981 ). See (Yang, 2000) for the solution of the tree-taxon rooted case under a
molecular clock assumption.
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with the pattern probabilities:

    

psame =
1
4

1 + e−2 tA +tB( ) + e −2 tA + tC( ) + e −2 tB + tC( )[ ]
pA|BC =

1
4

1− e−2 tA +tB( ) − e −2 tA+ tC( ) + e −2 tB + tC( )[ ]
pB|AC = 1

4
1 − e−2 tA +tB( ) + e −2 tA + tC( ) − e −2 tB + tC( )[ ]

pC|AB = 1
4

1 + e−2 tA +tB( ) − e −2 tA + tC( ) − e −2 tB + tC( )[ ]

(9)

The above expression can be derived using the standard sum over internal character states
[see, e.g., (Felsenstein, 1981)],

p same = 
i ={0,1}
∑  π i

j={0,1}
∑ p ij(tA)p ij(tB)p ij(tC), etc., (10)

or using a sum over “pathsets” as described in Appendix A. Note that the expressions in (9)
are sums over exponentials; this will be a repeating theme in following subsections.

There are three collapsed degrees of freedom, and three branch parameters, so one
can again obtain a perfect fit of the collapsed site frequencies. Explicitly,

    
      
tA

(maxl) =
1
4

− log 1− 2 fA|BC + fB|AC( )[ ] − log 1 − 2 fA|BC + fC|AB( )[ ] + log 1 − 2 fB|AC + fC|AB( )[ ]{ } , (11)

where fA|BC  = nA|BC/n, etc. Expressions for tB
(maxl) and tC

(maxl)  can be obtained from (11) by
symmetry.

As with the two-taxon case, some disclaimers apply. There may be a problem in
obtaining the global maximum if fA|BC+fB|AC , fA|BC+fC|AB , or fB|AC+fC|AB  is greater than 1/2, in
which case the above expression is not well-defined. To find a non-boundary solution – or to
obtain a perfect fit of all seven un-collapsed degrees of freedom – one might consider a more
general evolutionary model, say with a root frequency π0

root different from 1/2 at a chosen
root taxon, plus three different values of π0

eq(tA), π0
eq(tB), and π0

eq(tC), to describe evolution
to different equilibrium frequencies on each branch.

2.4. Four-taxon case.
Now, consider the four-taxon case. There are three possible trees (see Figure 3) and the non-
trivial phylogenetic inference problem is to choose between them. There are eight
(collapsed) site patterns that might show up in the data and they can be labelled nsame,
nA|BCD, nB|ACD, nC|ABD, nD|ABC, nAB|CD, nAC|BD, and nAD|BC. Explicitly, nA|BCD is the number of
sites where taxon A has a different character than the other three taxa; the other site
pattern numbers are similarly defined. Label site pattern frequencies as before:
fA|BCD = nA|BCD/n, etc. In a loose sense, one might consider the observed frequencies of site
patterns (nA|BCD, nB|ACD, nC|ABD, nD|ABC, nAB|CD, nAC|BD, nAD|BC) as raw approximations to the
branch lengths (tA,  tB,  tC,  tD,  t I,  t II,  t III).

In the usual ML procedure, the likelihood function is different depending on the
assumed tree topology. Suppose one could define a “super-tree” likelihood function, which
is dependent on all possible internal bipartition lengths, with the following property: if t II

and t III are constrained to zero, the super-tree likelihood function takes the form of the usual
likelihood function for tree I. Similarly, setting t I = t III = 0 or t I = t II = 0 yields the
likelihood functions for trees II or III, respectively. With such a super-tree likelihood
function, the three tree hypotheses in Figure 3 correspond to particular parameter
configurations (five-dimensional hyper-planes) within a seven-dimensional super-tree
space with a single likelihood function.
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B C

tIII

Tree I Tree II Tree III
Figure 3. The three unrooted four-taxon tree topologies.

Before presenting the explicit form of a super-tree likelihood function, it is worth
clarifying this perspective with a cartoon; see Figure 4. The contours of a putative super-
tree likelihood function are plotted for a hypothetical data set; to make the diagram two-
dimensional, t III is assumed to vanish (i.e., tree III is ignored as a possible topology), and at
each point in (t I,  t II) space, the likelihood has been optimised with respect to external
branch lengths (tA,  tB, tC,  tD). The problem is to decide between tree topologies I and II;
biologically realistic hypotheses correspond only to points on the positive t I and t II semi-
axes. The usual ML procedure maximises the likelihood along each of these semi-axes
separately, producing parameter estimates marked “tree I” and “tree II” on Figure 4. The
theoretical uncertainty of the usual ML procedure lies in the fact that the likelihood
functions maximised for tree topologies I and II appear to be different, being functions of
different sets of parameters. But having a picture like Figure 4 illustrates that the
likelihood functions for different trees are indeed related – they are special cases of a
single super-tree likelihood. Thus, likelihood ratios like LI/LII are indeed directly
interpretable as posterior odds of the two trees, given the data and the assumed
evolutionary model.

tI

tII

tree I

tree II

star tree

super-tree

Figure 4. “Cartoon” of likelihood contours in the super-tree perspective. Points on the positive tI semi-axis and
positive tII  semi-axis (dark lines) correspond to biologically realistic parameter sets with tree topologies I and II (see
Figure 3), respectively. The super-tree likelihood function at those points reduces to the usual ML functions for
those tree topologies.
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Further discussion of comparisons of LI and LII to choose the tree topology is given in
Section 3. Another insight from the super-tree picture is that when the likelihood is
maximised overall (t I,  t II), giving the parameters marked “super-tree” in the Figure 4, this
global super-tree likelihood maximum should not be too much better supported than a
biologically realistic parameter set (i.e., Lsuper-tree /LI or Lsuper-tree /LII should be small). This
observation is the basis of a set of “consistency checks” that test the adequacy of an assumed
evolutionary model in describing the data, which is further discussed in Section 4.

The super-tree likelihood function must take the same form as in the previous sub-
sections:

      
l = ni log pi − n log2

i={site patterns}
∑ (12)

So the challenge is to come up with a general form of the predicted site pattern
probabilities as a function of all possible bipartition lengths (tA, tB, tC, tD, t I, t II, t III). In fact,
this is fairly trivial. One starts by writing the site pattern probabilities for the individual
tree topologies, which turn out to be linear combinations of a few exponentials [like
equation (9)]; see Appendix A. The following form (given in matrix form, for brevity) for the
generalised site pattern probabilities, designed to reduce properly to the expressions for the
three separate tree topologies, is then more or less obvious:

    

p same   

pA|BCD

pB|ACD

pC|ABD

pD|ABC

pAB|CD

pAC|BD

pAD|BD

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

=
1
8

+1 +1 +1 +1 +1 +1 +1 +1
+1 −1 −1 −1 +1 +1 +1 −1
+1 −1 +1 +1 −1 −1 +1 −1
+1 +1 −1 +1 −1 −1 −1 −1
+1 +1 +1 −1 +1 −1 −1 −1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 +1 −1 −1 +1 −1 +1
+1 −1 −1 +1 +1 −1 −1 +1

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

 

1
e−2(tA +t II +t III +tB )

e−2(tA + t I + tIII + tC )

e−2(tA + t  I + tII +tD )

e−2(tB + t I + tII +tC )

e−2(tB +t I +t III +tD )

e−2(tC +t II + tIII +tD )

e−2(tA +tB +tC +tD )

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

    (13)

See Appendix A for a more detailed discussion of the derivation of the above
result.5

Note that there are seven degrees of freedom, and seven independent parameters in
(12) and (13). The global maximum likelihood lmax can thus be obtained when ni = npi

(barring parameters hitting a boundary; see previous sub-sections).
But do equations (12) and (13) define the unique extension of L into a function of t I, t II,

and t III to reduce to the usual tree likelihood functions when all bipartitions not in a given
tree are set to zero? Clearly not – one can see that special terms can be added to (13) that
disrupt the likelihood terrain everywhere except on the hyper-planes corresponding to the
three tree hypotheses. For the simplest binary model, however, the form (13) for the site
pattern probabilities is unique in having several desirable mathematical properties
[including those which make is amenable to analysis by Hadamard conjugation
(Steel et al., 1998)]. In particular, the parameters (tA, tB, tC, tD, t I, t II, t III) (maxl) display a nice
additivity property. Explicitly, if one estimates the divergence time tAB between two taxa
A and B based only on the fraction of sites which are different in A and B – see equation (7).

                     
5 Interestingly, after this above result (and generalisations discussed below) was formulated, the author discovered
that the mathematical expression had in fact been derived independently in the work on Hadamard conjugations of
Hendy, Penny, Steel, Waddell, and collaborators, using a different mathematical approach (Steel et al., 1998).
However, those authors have focused on heuristic (parsimony and tree-fitting) analyses of Hadamard conjugated
data patterns, outside the likelihood framework. They also have not been able to extend their Hadamard conjugation
formulas to the more general evolutionary models with unequal character frequencies used in ML analyses. The
disadvantages of these “spectral analysis” methods in comparison to the ML methods of this report, will be further
discussed in Section 6.4.
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Figure 5. Geometrical interpretation of the four-taxon super-tree structure.

it is easy to show that:

      tAB = tA
(max l) + tB

(max l) + tII
(max l) + t III

(max l) , (14)

that is, the distance between the two taxa is simply the sum of the maximum likelihood
lengths of all bipartitions which might separate the two taxa in a tree. Based on this
additivity, one might attempt to visualise a geometrical structure corresponding to the
general super-tree as in Figure 5, a parallelepiped of the internal bipartitions stuck with
four external branches.

The reader may protest that the super-tree likelihood of (12) and (13) is
essentially a mathematical artifice, since points with non-zero t I and t II do not have a clear
biological interpretation. However, the main objective here is not to find such artificial
solutions, but to show that the likelihoods of the biologically realistic hypotheses (the
positive t I and t II semi-axes in Figure 4) are directly comparable, in that they are special
cases of a single likelihood function; and (12) and (13) accomplish this generalisation.

Before discussing how to obtain super-tree likelihood functions for more taxa and for
more complicated evolutionary models, it is worth getting a better intuitive understanding
of the super-tree space for this simplest four-taxon problem. The super-tree likelihood for
six sample data sets has been investigated. Plotted in Figures 6A-F are the likelihood
contours in the t I–t II plane [to create these plots, t III is constrained to zero; external branch
lengths are varied by a simplex algorithm (Numerical Recipes, 1992) at each (t I, t II) to
optimise the likelihood, as in Figure 6].

The first four data sets correspond to 100 character sequences simulated using
evolver from the PAML package (Yang, 1997) based on the model trees of topology I. The
first is an “easy” tree (long internal branch, short external branches); the second is a “hard”
tree (vice versa); the third has two long branches separated by the internal branch; and the
fourth has the two long branches together. The fifth data set is a mixture, where half the
sites correspond to an easy tree with topology I, and half correspond to an easy tree with
topology II – mimicking the effects of a recombination event. The sixth data set has the
same simulation parameters as the hard tree (second data set), but three-quarters of the
sites are forced to be invariant, so that the effects of site-rate variation can be investigated.
See caption to Figure 6 for exact simulation parameters. In each figure the plotted log-
likelihood contours correspond to 2(l – lmax) = 1, 4, 9, … j2, and are therefore directly
comparable between figures.
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Figure 6. Contours of the super-tree likelihood function, for 100-binary-character data sets simulated with various
combinations of long (t=0.25) and short (t=0.02) branches, with the tree topology I. Here, for each point tI (the x-
axis) and tII  (the y-axis), the other bipartition length tIII  is constrained to zero, and the likelihood is optimised over
the four external branch lengths by a simplex algorithm. (A) The easy tree (short,short)-long-(short,short). (B) The
hard tree (long,long)-short-(long,long). (C) The tree (long,long)-short-(short,short). (D) The tree (long,short)-short-
(long,short). (E) The data is an equal mixture of tree topologies I and II with the easy branch lengths. (F) Same as (B),
but three quarters the sites are forced to be invariant. the plotted log-likelihood contours correspond to
2(l –  lmax) = 1, 4, 9, … j2; the outer-most likelihood contours are not plotted for some of the figures, due to
irregularities in Mathematica’s plotting algorithm.

(A)

Easy

(B)

Hard

(C)

long-together

(D)

long-sep
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(E)

mixture

(F)

3/4 invariant

Figure 6, continued from previous page.

To begin, note that the super-tree likelihood function in each plot is quite regular,
with only one local maximum, as expected. However, when constrained to the positive t I

and t II semi-axes, there can be more than one maximum – hence the observation by many
authors that the likelihood terrain for separate tree hypotheses under the usual ML
procedure is highly irregular (see, e.g., Yang et al., 1995).

Secondly, note that in Figures 6A–D, there are always points on the positive t I

semi-axis lying within the highest one or two likelihood contours, as would be
expected – the data sets were simulated with trees of topology I. In Figure 6E, the fifth
data set, neither the t I nor the t II axes cross the highest likelihood contours, betraying the
non-”tree-like” nature of the data, which is actually a mixture of data sets simulated with
two different trees. Figure 6F is also anomalous in that the t I and t II axes do not cross well
within the two highest likelihood contours. This sixth data set has been simulated with
three quarters of its sites being invariant; if one takes this site rate variation into account in
the super-tree likelihood function [see Sections 2.6 and 4(a)], the contour spacing increases to
look like Figure 6B.

Thirdly, compare the various tree-like data sets represented in Figures 6A-D. The
contours in Figure 5B (a hard tree) are much more widely spaced than in Figure 6A (an easy
tree), as expected for a “harder” tree. Figure 6C (long branches separate) represents a data
set where the raw site pattern frequency fAC|BD is more than twice fAB|CD, which, if naively
taken to indicate t II > t I, appears to favour tree topology II. This is a data set where
(uncorrected) maximum parsimony (MP) would fail and would choose the wrong tree II,
succumbing to MP’s infamous tendency to cluster long branches (Felsenstein, 1978). The
likelihood function of Figure 6C, however, appropriately favours the t I axis, corresponding
to the correct tree topology I. The large down-correction that the relation (13) implicitly
applies in going from observed nAC|BD to the parameter t II leaves its imprint in the large
likelihood variance in the t II direction – compare Figure 6C to Figure 6D, simulated with a
different tree (long branches together). In Figure 6D, the likelihood variance is largest in
the t I direction, corresponding to the large down-correction of nAB|CD.

Finally, note that the plots in Figures 6B–E (the “hard” trees) show a positive
correlation (especially strong for the tree in Figure 6B) between t I and t II.6 A similar result

                     
6 The normalized covariance, given by
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was found in (Waddell et al., 1994). In fact, this is expected to be true for all “hard” cases of
phylogeny inference, where the internal branch is relatively small. This can be intuitively
understood as follows. If the external branches are long, compared to the internal branch,
the observed site pattern frequency corresponding to the external branches
(fA|BCD, fB|ACD , fC|ABD, and fD|ABC) are larger than those corresponding to internal branches
(fAB|CD, fAC|BD, and fAD|BC). Thus, the allowed variance [proportional to ni by Poisson
statistics; see footnote to Section 2.1] of the predicted site pattern numbers is larger for those
corresponding to external bipartitions than those for internal bipartitions – that is, the
external bipartition lengths are more free to change than the internal ones. Suppose an
internal bipartition, say t I, is forced to decrease from its maximum super-tree likelihood
value. The most dramatic effect of such a change will be to reduce the predicted site pattern
frequency fAB|CD. Now, to optimise the likelihood, the external bipartition lengths (more
free to move than t II and t III) will increase to help restore the predicted fAB|CD; but in doing
so, they will also increase the predicted fAC|BD and fAD|BC. To counter-balance this, the t II

and t III parameters will decrease (but less dramatically than the external bipartition
lengths). As a result, there is a negative correlation of the internal bipartition length t I

with its surrounding branch lengths, and a positive correlation of t I with “alternative”
bipartition lengths t II and t III.

The intuition developed above, regarding regularity of the super-tree likelihood,
overlap of high likelihood contours with the true tree hypothesis, and correlation between
bipartition length parameters, will be used in Section 4 to produce statistical tests to apply
to real data sets. With the simplest super-tree likelihood function (13) explicitly
introduced, generalisations to more taxa and more complicated evolutionary models can now
be discussed.

2.5. Generalisation to more taxa.
For a general problem of phylogeny inference with m taxa, there are more parameters and
more degrees of freedom. There are (2m–5) × (2m–3) × ... ×3 possible (unrooted) tree
hypotheses [see, e.g., (Felsenstein, 1978)]. For the binary model which has been considered
so far, there are N = 2m possible site patterns to fit, collapsed to 2m–1 patterns if one collects
together inverses (e.g., nABF|CDEG = n0011101 +n1100010 in a seven-taxon case), and therefore there
are 2m–1–1 collapsed degrees of freedom, due to the constraint that the site pattern
frequencies must sum to one. Also, the number of bipartitions is:

    

1
2

m

2

 
 
 

 
 
 +

m

3
 
 
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 
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m − 1
 
 
 

 
 
 

 

 
 

 

 
 = 2m−1 − 1, (15)

which is just enough parameters to describe the collapsed degrees of freedom.
A well-defined diagrammatic process for writing the super-tree likelihood function

is given in Appendix A. The form is quite similar to (13), with l = ∑ nilog p i – nlog 2, and
with each predicted site pattern probability p i taking the form of the sum of several
exponentials,

p i = 

    

2−(m−1) Hij exp(−ρ j )
j= 1

2m

∑ . (16)

The exponents ρj correspond to “pathsets”, defined as pairs, quartets, hextets, etc. of taxa.
The element ρj for a given pathset is defined as the sum of bipartition lengths that would
separate a single taxon of the pathset from the others. For example, for a five-taxon data
set, a pathset corresponding to pair (AB) would correspond to

                                                            

    

∂ 2 L

∂tI∂tII

∂ 2 L

∂ 2tI

∂ 2 L

∂ 2 tII
,

has been numerically evaluated at the super-tree maximum to be –0.04, +0.4,+0.04,+0.04, 0.00, and +0.1 for the data
sets shown Figures 6A–F, respectively. A positive value corresponds to positive correlation between tI and tII .
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 ρ(AB)  =  tA|BCDE+tAC|BDE+tAD|BCE+tAE|BCD+tB|ACDE+tBC|ADE+tBD|ACE+tBE|ACD (17)

and a pathset corresponding to quartet (ABCD) would correspond to

ρ(ABCD)   =  tA|BCDE+tB|ACDE+tC|ABDE+tE|ABCD+tE|ABCD+tBE|ACD+tCE|ABD+tDE|ABC. (18)

Note that the total number of pathsets is

    

m

2

 
 
 

 
 
 +

m

4
 
 
 

 
 
 + ... = 2m−1 − 1, (19)

so the number of degrees of freedom are conserved. The components of the matrix H = {Hij}
are determined by assigning ±1 to each taxon depending on its character in a particular site
pattern i, and multiplying these factors for each pathset j; see the derivation in
Appendix A.

There is again a simple relation like (14) between sums of internal bipartition
lengths ρ at the maximum super-tree likelihood point, and pair-wise distances t between
taxa; indeed, ρ(AB)

(maxl) = tAB. The super-tree likelihood construction presented here is thus
well-defined, being unique if one desires this property.

Whether the general m-taxon super-tree has a simple geometrical interpretation as
in Figure 5 is not clear; if such a picture does exist, it would be a complicated multi-
dimensional box with m appendages sticking out. It might make an interesting problem for a
geometer/topologist to characterise this beast.

The general idea of the 4-taxon case carries through here. The super-tree
likelihood is quite regular, with a single local maximum, obtained by solving the perfect fit
ni = npi (see Section 2.1). Individual tree hypotheses correspond to particular (2m–3)-
dimensional hyper-planes cutting through the 2m–1–1 dimensional space. The length of a
small internal bipartition is expected to exhibit a negative correlation with surrounding
branches, and a positive correlation with alternative internal bipartitions.

In practice, fully characterising such a large-dimensional space for a given data set
is difficult. The best one might hope to do is to maximise the likelihood for several viable
tree hypotheses – the usual ML procedure – and to compare those values with each other
and with the super-tree likelihood {given directly by the value ∑nilog[ni/n] – nlog 2, where
the collapsed site pattern frequencies are perfectly fitted}. In fact, these appear to provide
sufficient information to select a given tree and to evaluate its statistical confidence; see
Section 3.

2.5 Generalisation to more complicated evolutionary models

(a) General mutation matrix
Current analyses of molecular sequences with c>2 characters are more sophisticated than
the simplest binary model discussed above:

• To model DNA changes, the 4×4 mutation matrix Q usually allows for the equilibrium
frequencies πA, πG, πC, and πT to be different from 1/4, and for there to be a bias
favouring transitions (A↔G, C↔T) over transversions (A↔C, G↔T, A↔T, C↔G),
parameterised by κ [HKY85; (Hasegawa et al., 1985)].

• To model amino acid changes, the 20×20 matrix Q is fitted to data tabulated from a
wide range of proteins [see, e.g., (Jones et al., 1992)].

• To model codon changes, a 61×61 matrix Q (there are 43–3 codons, ignoring stop codons)
can be approximately parameterised by unequal codon frequencies πAAA , πAAU , etc.; a
transition/transversion ratio κ; and a non-synonymous/synonymous substitution ratio
ω to mimic positive (ω > 1) or purifying (ω < 1) selection (Goldman and Yang, 1994).
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Some analyses even allow the matrix Q to change from branch to branch. Can a super-tree
likelihood function be found for these models? Indeed, it can be done, although it is not
necessarily unique. Appendix A demonstrates that formulas for site pattern probabilities p i

(and thus a likelihood function) as functions of all possible bipartition lengths can be
obtained; these functions reduce to the usual formulas for a given tree when bipartitions not
in that tree are set to zero, as desired. For the simplest binary model, as well as for the
Kimura 3-substitution-type (K-3ST) model for DNA with equal base frequencies (Kimura,
1980), diagrammatic procedures are given in Appendix A which produce unique super-tree
likelihood functions of particularly simple forms.

There are some differences between the super-tree likelihood for the general model
and the one for the simplest binary model. For the general model, the formula for each p i is
still a linear combination of exponentials of pathset sums ρj of bipartition lengths. Unlike
before, the coefficients of the exponentials are no longer ±1/2m–1. Also, unlike the binary
model, for general unequal character frequencies, categories of site patterns cannot be
collapsed together, as there is no longer the symmetry 0↔1. There are thus a full cm–1
degrees of freedom to be fitted, with only 2m–1–1 bipartition lengths (plus possibly a few
parameters of Q) to fit them. As such, one cannot expect a perfect fit, where ni = npi, and the
value of its likelihood at its overall maximum in super-tree space cannot be easily
estimated without direct optimisation.

Despite the complexity of the super-tree formalism for more general models, the
point is that it can be done in principle – therefore, likelihoods for different tree
topologies, as determined by the usual ML procedure, can be considered special cases of a
single likelihood function and can be directly compared.

(b) Rate variation among sites
Besides having a sophisticated rate matrix, ML analyses generally need to take into
account site rate variation to adequately describe real data sets. The super-tree likelihood
function can easily accommodate such extensions.

Consider the commonly used model where the evolutionary rates µ at different sites
are assumed to be taken from a Gamma distribution, i.e.,

    

dP
dµ

∝ µ α− 1−1e−µ/α (Gamma distribution) (20)

Then the formulas for predicted site pattern frequencies p i must be averaged over this
distribution. It is trivial to show that, in fact, the only necessary modification to the super-
tree predicted frequencies p i is to replace all the exponentials exp(–ρi) in the formulas with
(1 – α ρi)–1/α. Other rate distributions, including uniform and Inverse Gaussian distributions,
or discrete distributions with, e.g., a fraction of invariant sites (finvariant), can also easily be
implemented. See, e.g., (Waddell et al., 1997).

Inclusion of site-rate-variation, however, should be considered a rather different
procedure than changing the parameters of the rate matrix Q. For the binary model,
varying the shape α of a Gamma distribution shifts the super-tree maximum likelihood
parameters, but it does not affect the super-tree maximum likelihood value,
∑nilog[ni/n] – nlog 2, since, at maximum likelihood, there will always be a perfect fit of the
(collapsed) site pattern probabilities. This means that an ML value for α (or any other such
site-rate-variation parameter, like the fraction of invariant sites) cannot be solved in the
simplest binary model without invoking a particular tree hypothesis.

Note also that one must be careful about the number of parameters used to model the
site-rate distribution. Suppose, for example, one investigates a four-taxon binary data set
with the model discussed previously. If one models the site-rate-variation as a
Gamma distribution with shape parameter α plus a fraction finvariant of invariant sites, there
will be a problem. For each possible tree hypothesis, optimising the extra two parameters,
α and finvariant, counteracts the two constraints on internal bipartitions, e.g., t II = t III = 0, and
the maximum super-tree likelihood, with perfect fit of (collapsed) site pattern
probabilities, will be obtained for each tree topology. There will thus be no way to
distinguish the ML values for each tree!
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3. Comparison of tree likelihoods
How does the super-tree perspective clarify the problem of interest – inference of the
correct phylogeny for m molecular sequences? In the super-tree likelihood framework, there
is a continuous, well-defined likelihood function for any given set of 2m–1–1 bipartition
lengths, e.g., (tA, tB, tC, tD, t I, t II, and t III) in the four-taxon problem, and np evolutionary
parameters like character frequencies and distribution of site rates, such that the predicted
site pattern frequencies are greater than zero. The problem then is to choose between several
composite hypotheses, corresponding to the regions of the parameter space where
bipartition lengths not present in a given tree hypothesis are set to zero, e.g., (t I >  0;
t II = t III = 0) for tree topology I in the four-taxon case.

This section describes four main ways to carry out the statistical comparison of
trees: (a) a “Bayesian” approach based on likelihood, multiplied by some prior, integrated
over each tree hypothesis; (b) a more direct approach which compares likelihood values
maximised over each tree hypothesis (the usual ML procedure) and which interprets
likelihood ratios literally as posterior odds of trees; (c) a frequentist approach which
selects a tree based on a set of statistics like the ML values for each tree hypothesis and
then finds (by simulation) the probability of committing errors; and (d) bootstrapping,
which can be interpreted as providing an approximation to any of the first three
approaches, depending on one's prejudices. These approaches are described below in the
super-tree likelihood framework, and then compared against computer simulations. In the
end, it will be readily apparent that the second approach (b) is the most appropriate one
for phylogenetic inference, as long as the assumed molecular evolutionary model is
adequately realistic. The next section will describe a series of straightforward nested
likelihood ratio tests which are useful in checking whether one is using a fully appropriate
model when conducting ML phylogeny inference.

(a) Bayesian decision theory
In the Bayesian approach, the super-tree likelihood function, multiplied by a

specified prior probability, is integrated over all the branch length parameters t of a given
tree hypothesis. This gives the posterior probability value for that tree topology, by
Bayes’ Theorem:

    
P(tree topology|data) =  

P(tree topology)P(data|tree topology)
P(data)

, (21)

where P(tree topology) is a “prior” probability for a given tree topology (usually assumed
to be the same for all tree topologies); P(data) is a normalisation factor that insures that
the sum of the posterior probabilities of all tree topologies is unity; and

      P(tree topology|data) = L(t)f (t)dt∫ , (22)

where the integration is over the (2m – 3)-dimensional sub-space of the full parameter
space defined by non-zero values of bipartition lengths which are in the given tree topology
and by zero values for bipartitions not in the tree. The approach of picking the tree
topology with maximum posterior probability was first proposed (although not from a
super-tree perspective) by Rannala and Yang (1996); it is sometimes called maximum
integrated likelihood (Steel and Penny, 2000). There is however a difficulty in this
approach: one needs to define the prior probability function f(t), encoding prior knowledge
of putative branch lengths and evolutionary parameters for each tree topology. Note that
the chosen prior must necessarily be “proper”, i.e., integrate to unity over each tree
hypothesis, since the likelihood function does not vanish for large branch lengths – see,
e.g., the simple two-taxon case in Section 2.2. A uniform prior over all branch lengths is
therefore not allowed. Rannala and Yang (1996) have used a proper prior for clock-like
trees inspired by a model of speciation/extinction as a random birth/death process. Larget
and Simon (1999) have assumed a different prior, uniform on all clock-like trees with total
branch length sums less than a large constant.
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The main problem with the Bayesian approach appears to be computational
complexity. While the Markov Chain Monte Carlo algorithms of Yang and Rannala (1997)
and Larget and Simon (1999) allow for the integration over a tree hypothesis to be carried
out, they are restricted to being able to explore the full tree space only for small numbers of
taxa (less than ten for the first algorithm, less than forty for the second method); also, the
effect of site-rate distributions on the analyses has not yet been investigated.

(b) Direct likelihood comparison
Following the approach delineated by Edwards (1972) in Chapter 3 of his treatise

Likelihood, comparing log-likelihood estimates maximised under each tree
hypothesis – the usual ML procedure (Felsenstein, 1981), sometimes called maximum
relative likelihood (Penny and Steel, 2000)  –  is expected to be valid, and much simpler,
than the full Bayesian decision-theoretic analysis above. All tree hypotheses have the
same “simplicity”, i.e., number of fitting parameters, and the likelihoods of different trees
are indeed comparable as is most clearly evident from the super-tree perspective, where
the values are separate evaluations of a single super-tree likelihood function. Therefore,
the ratios of the maximum likelihoods of two tree hypotheses provides an appropriate
measure of their posterior odds.7 Thus, one can define a likelihood-based support8 value
P

l(tree) for a given tree hypothesis as its (maximal) likelihood divided by the sum of the
(maximal) likelihoods of all the considered tree hypotheses. Previously, the likelihood
ratios have generally not been interpreted so literally [for an exception, see (Strimmer and
von Haeseler, 1997)] due to the theoretical uncertainty regarding the apparent difference in
the likelihood form for different tree topologies [see (Nei, 1987), (Yang et al., 1995)]; the
super-tree perspective of Section 2, however, mitigates this uncertainty.

The ML approach, which can be applied with a uniform prior, is expected to
produce more conservative support estimates than the full Bayesian integration described
above as  n→∞. Explicitly, the ratio of the likelihood of the ML tree to the likelihood of
any alternative tree is expected to be lower than the corresponding ratios of integrated
posterior probabilities, since integration over the alternative tree parameters (which have
ML internal branch lengths closer to the boundary at zero) will pick up less of the higher
likelihood regions than the best tree. Indeed, analysis of a 895-bp mitochondrial DNA
data set from six primates by Rannala and Yang (1996) show that the ∆l = ∆[log L] values
from the usual ML analysis are consistently lower than the values ∆[log P(tree|data)]
based on integrated posterior probabilities.

(c) Frequentist approach; critical regions.
A frequentist approach is commonly assumed in the literature of phylogeny simulation.
Instead of simply assigning a “degree of belief” (like a single integrated posterior
probability or likelihood value) to each tree as in the analyses above, the idea is to find a
set of the statistics, and then a tree selection procedure based on comparison of these
statistics that minimizes the possibility of making the wrong choice.

Unfortunately the phylogeny estimation problem requires a comparison between
composite, non-nested hypotheses, and statistical theory offers little help in selecting a set
of statistics or a selection criterion; see Chapter 23 of (Kendall and Stuart, 1961). Instead,
biologists use a heuristic method; common statistics are the branch length sum S of each tree
(in minimum-evolution distance methods), the total number of evolutionary changes
N(steps) (in parsimony/cladistic analyses), or the values of the maximum log-likelihood l
for each tree hypothesis. The tree with the smallest value of S, N(steps), or – l is chosen as
the best tree.9

                     
7 This is the approach in, e.g., example 3.7.1 of Edwards (1972). Note that if it is possible to reformulate a problem so
that the likelihood ratio of composite hypotheses is independent of the unspecified, “nuisance” parameters, this
should, of course, be done [section 6.3, Edwards(1972)]. However, it does not seem possible to remove explicit
dependence on the internal branch lengths from likelihood ratios in the phylogeny inference problem.
8 “Support” is used here with the meaning of a “degree of belief” (in the range of 0% to 100%). It is not meant in
Edwards’(1972) sense of a log-likelihood difference.
9 Among the statistics listed, maximum likelihood  is almost certainly the best criterion in the frequentist approach to
composite hypotheses. In particular, it turns out that for easier problems involving comparison of simple hypotheses,
as well as for very special cases involving composite hypotheses, using a likelihood criterion (possibly with a slight
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To statistically evaluate the selection procedure, one needs to know the power
function, the probability of accepting the tree topology given that the true tree shares or
does not share the same topology as the found tree – the “true positive” rate (probability of
not making a Type I error) and the “false positive” rate (probabilities of making a Type II
error), respectively. See, e.g., section 22.24 of (Kendall and Stuart, 1961). Simulation-based
papers focusing on phylogeny reconstruction have been able to estimate the true positive
rate, by simulating several replicates of a  single known tree. However, it seems difficult to
estimate a false positive rate in the general comparison between composite hypotheses. In
particular, for phylogeny estimation, it is not known beforehand which alternative trees
are expected to occur in Nature and therefore might produce a “background” signal.
Therefore, the frequentist approach applied to the composite hypotheses of phylogenetic
inference seems incomplete, as well as computationally burdensome.

As an example of the inappropriateness of the frequentist approach, consider the
tree simulated in Figure 6D, with long branches together. It is well known that maximum
parsimony (MP) is "better" (i.e., has larger true positive rate) than maximum relative
likelihood at selecting this tree from data simulated with the tree [see, e.g., (Yang,
1994a)]. However, MP (but not necessarily ML) will also incorrectly select this tree if the
data was simulated with an alternative tree with the long branches separate; this is the
infamous bias of parsimony to collect together long branches, the Felsenstein zone (1978).
Thus, in a loose sense, MP has higher false positive rate than ML. However, a biologist
might claim that the alternative long-branches-separate tree does not arise in Nature due
to the molecular clock constraining the shape of trees connecting four extant taxa, so that
truly the false positive rate of MP is acceptably low for biologically relevant trees. But in
that case, one could just as well include the molecular clock assumption in the ML analysis
(by the appropriate constraint on branch lengths), and one expects then that both its true
positive rate and false positive rate would improve (increase and decrease, respectively)
over MP. Nevertheless, in either case, it appears that the rather important step of
estimating a false positive rate is not very well-defined in the frequentist approach to
statistically evaluating tree-selection methods.

(d) Bootstrapping
Bootstrapping describes the process of generating (pseudo)replicates of the given

data set by resampling its sites, with replacement; see, e.g., (Efron and Tibshirani, 1993).
Given a tree selection procedure like maximum parsimony or maximum likelihood, the
bootstrap support value Pboot(tree) for a given tree is the frequency at which is selected by
the procedure among bootstrap replicates (Felsenstein, 1985); it is very commonly used in
the current literature to statistically evaluate tree selection procedures on real molecular
data. Efron et al. (1996) have claimed that this support value is in fact a reasonable
assessment of the Bayesian posterior probability of the tree, given a uniform prior and the
assumption that the cut on the selection statistic would correctly separate the trees in the
limit of no statistical noise. Their analysis, however, appears to rely on a picture of a
continuous, convex parameter space divided into several contiguous regions corresponding to
trees. From the super-tree perspective, one might tentatively construct such a picture by
chopping up the super-tree parameter space so that, e.g., the region (t I > t II;  t I > t III)
corresponds to tree topology I in the four-taxon problem. However, this is a different, and
arguably incorrect, formulation of the tree selection problem from the one described above,
in terms of composite hypotheses.

An alternative interpretation of the bootstrap support value is that, in being taken
from pseudo-replicates of the correct tree, it is an estimate of the true positive rate, the
probability of not making a type I error. This appears to be the idea implemented by
Kishino and Hasegawa (1989) with their relative estimation of log-likelihood (RELL)
technique, which estimates the distribution of likelihood ratio between the two simple
(fully specified) hypotheses by bootstrapping. This interpretation has essentially been
discounted, however, by several simulation studies; see, e.g., (Zharkikh and Li, 1992) and
(Hillis and Bull, 1993). In particular, when the true positive rate is high, the bootstrap

                                                            
modification to correct bias) does indeed yield a uniformly most powerful (UMP) or uniformly most powerful
unbiased (UMPU) test. See sections 22.10 and 24.24 in (Kendall and Stuart, 1961).
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support tends to underestimate it; and when the true positive rate is low, the bootstrap
support can give misleadingly high values for the correct or incorrect tree.

(e) Comparison of statistical approaches by simulation.
This sub-section describes tree selection for four-taxon and six-taxon simulated data

sets (1000 replicates each) for the simplest binary model. There are four main simulated
data sets, using the simplest binary model for character evolution with mutation rates
uniform across all sites, using the four-taxon (100 bases and 500 bases) and six-taxon trees
(500 bases and 5000 bases) in Figure 7. A thousand replicates were simulated using PAML's
evolver and analysed using PAML's baseml. Figure 8 shows histograms of two possible
measures of statistical confidence – the likelihood-based support value
P

l(tree) = L tree/(LI+LII+LIII) and the bootstrap support value Pboot(tree) – for the correct tree
and for an alternative tree. Note that for the six-taxon case, only trees of topology I, II, and
III in Figure 7 were assumed to be valid trees. The bootstrap supports have been computed
using the RELL technique of Kishino and Hasegawa (1989), implemented in PAML's rell
application. For the six-taxon data sets, where the simulated tree is clock-like, Bayesian
posterior probabilities (integrating the likelihood over each tree topology) have also been
calculated using PAML's mcmctree application.10 These results are shown in Figure 9, and
compared to P

l(tree) where the likelihoods have been recomputed with a molecular clock
assumption.

Studying the histograms in Figure 8 yields several insights. On one hand, the
behaviour of the likelihood-based support value P

l(tree) is intuitive. For data sets with
low sequence lengths (and little phylogenetic information), the support is distributed
around 30–40% for both the correct and wrong trees. For longer sequence lengths, a large
fraction of data sets are phylogenetically informative. The likelihood-based support
values for the correct and incorrect tree are then clustered near 90–100% and 0–10%,
respectively, as expected.
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Figure 7. Four-taxon and six-taxon trees considered in the simulation studies. Tree topology I is the simulated (true)
phylogeny in both sets.

                     
10 Input parameters to the mcmctree program were as follows: empirical Bayesian analysis option; iteration
accuracy parameter δ1 = 0.5; average number of mutations per site from root to present m = 0.5 (the simulated
value); birth rate λ = 6.7; death rate µ = 2.5; species sampling fraction ρ = 0.06. The last three parameters are those
used in Yang and Rannala (1997) to describe a primate data set; they describe a fairly flat prior distribution for
divergence times relative to present. It has been checked that for a dozen replicates that lowering _ _, or  changing _,
_, or _ does not change the posterior probabilities by more than  a few percent.
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Figure 8 (continued on next page). Comparison of likelihood-based support values Pl(tree) = Ltree/(LI+LII+LIII ) and
bootstrap support values Pboot(tree) for the correct tree (I) and the wrong tree (II). Histograms are shown for the
data sets simulated with the four-taxon and six-taxon trees of Figure 7, with different sequence lengths.
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Figure 9. Comparison of likelihood-based support values Pl(tree) = Ltree/(LI+LII+LIII ) and Bayesian integrated
likelihood posterior probabilities for the correct tree (I) and the wrong tree (II); likelihoods are calculated with a
molecular clock assumption. Histograms (1000 replicates) are shown for the simulated six-taxon data sets. Note the
change to a log-scale, to better show the  tails of the distributions, in the bottom plots.

number of chars. MP ML (no clock) ML (clock) MAP (clock)

500 54.0% 53.1% 69.2% 67.1%

5000 91.2% 87.1% 99.2% 96.8%

Table 1. Probability of accepting the correct tree by maximum parsimony (MP), maximum (relative) likelihood (ML)
with and without a molecular clock assumption, and the maximum (integrated) likelihood MAP analyses (with clock
assumption). The results are for the six-taxon tree in Figure 7, simulated with the simplest binary model (1000
replicates).
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On the other hand, the bootstrap support value Pboot(tree) has undesirable
properties. In the low-sequence-length data sets, it ranges almost uniformly from 0–100% for
the correct tree and can be misleadingly high for the wrong tree. Furthermore, for higher
statistics data sets, the bootstrap support value for the correct tree clusters near a value less
than 100%.

The comparison for the six-taxon case of the Bayesian posterior probabilities of the
MAP analysis of Yang and Rannala (1997) and the likelihood-based support values is also
interesting. The right-hand column of Figure 9 shows that the MAP support value is more
likely to be large (> 50%) for the wrong tree than the likelihood-based support value.
Also, as predicted, the Bayesian posterior probabilities are generally higher than the
P

l(tree) values, even for the wrong tree.
Finally, consider the “performance” of all the methods as measured by the

probability of accepting the correct tree, summarised in Table 1 for the six-taxon
simulations for maximum parsimony, for maximum likelihood (with and without molecular
clock assumption), and for the MAP analysis (with molecular clock assumption). As
discussed above, this value, used by e.g., (Yang, 1996a) and (Penny and Steel, 2000), is only
half the story in assessment of phylogenetic methods; one would also like a measure of the
false positive rate, the probability that one has not accepted the wrong tree. Nevertheless,
concentrating on the true positive rate, Table 1 shows that maximum parsimony “out-
performs” the usual ML analysis without a molecular clock assumption, as would be
expected since the relevant internal branch (see tree diagram in Figure 7) is connected to
long external branches to taxon 1 and taxon 2. However, when the molecular clock
assumption is made, the performance of ML improves dramatically over MP. Somewhat
surprisingly, the ML-clock analysis also outperforms the MAP analysis by a statistically
significant margin (based on 1000 replicates). However, this may be a result of assuming an
inefficient MAP prior, and needs to be investigated further.

Based on the above results, the simplest valid procedure for phylogeny inference
appears to be the usual ML procedure, which is to find optimal likelihoods for each tree
hypothesis, and to pick the one with the highest likelihood as the best. The ratio of each
tree ML value to the sum of all tree likelihood values can then be interpreted as a useful
and completely intuitive estimator of statistical support. Note, of course, that this
procedure is only valid if the evolutionary model of the molecular sequences is correct – the
next section described a set of consistency checks which should be applied to test the
adequacy of an evolutionary model in describing a data set, before any final phylogeny
inferences are made.
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4. Proposed statistical tests to check model adequacy
The previous section has argued that the usual ML procedure is statistically sound, and
that the likelihood ratios are indeed directly interpretable between different trees as
posterior odds of the trees (unlike the bootstrap), if the assumed model of molecular
mutation is correct. But real data sets are certainly very complex – recombination,
purifying/positive selection (possibly acting differently on different taxa), and
compensating mutations, among other biological effects, may conceivably undermine the
simple molecular mutation models used in programs like PAML. This section proposes a set
of “consistency checks” – likelihood ratio tests which are able, in some cases, to reject
inadequate models.

Table 2 summarises the hierarchy of nested models whose likelihoods one can
evaluate for a given bipartition t I in a given data set with a given likelihood model. The
value lmax is defined as ∑ nilog[ni/n]. The star tree is defined by constraining t I = t II = t III = 0.
Four likelihood ratio tests will described, based on the following statistics:

(a) (lsuper-tree  – lI)

(b) (lmax – lsuper-tree)

(c) (lII/III – lstar)

(d) (lmax – lI).

Statistics (a) and (c) have been chosen as indicators of how close the higher likelihood
contours pass near parameters corresponding to the tree I topology; see, e.g., the diagram in
Figure 4. Statistics (b) and (d) indicate how much worse the likelihood gets if one uses a
finite set of parameters to fit the data rather than an infinite set, which would provide a
perfect fit (l→lmax). The two statistics (a) and (b) require computation of lsuper-tree , which is
trivial for the simplest binary model (where there is a  perfect fit to the collapsed site
pattern frequencies; see Section 2.5), but for general models is rather more complicated (and
possibly not unique; see Appendix A), since it involves the optimisation of at least 2m–1

parameters. The two other statistics (c) and (d) give much the same information as the two
involving lsuper-tree , but are somewhat less sensitive.

Note that even more sensitive tests of unequal frequencies, site-rate-variation, etc.
can be applied if one solves the maximum likelihood for a given tree under a more general
model and sees the change 2∆l in going to the nested, less general model [see, e.g., (Yang,
1994a), (Goldman and Whelan, 2000)]. However, such tests do not give the researcher a way
to check the overall adequacy of the final, most general model considered; the likelihood
ratio tests described in this section do offer such a consistency check.

Likelihood
value

Fitted parameters Number of parameters
(simplest binary model)

Number of parameters
(general model)

lmax  as many as possible (perfect fit)   2m – 1   cm – 1
lsuper-tree all bipartition lengths, plus evolutionary params.   2m–1  – 1   2m–1  – 1 + nparam

lI/II/III bipartition lengths in the ML tree I (or nearest-
neighbour alternatives II/III), plus evolutionary
params.

(2m – 3) (2m – 3) + nparam

lstar bipartition lengths in a given tree with a forced
multifurcation, plus evolutionary params.

(2m – 4) (2m – 4) + nparam

Table 2. Summary of the models considered in these reports, listed in nested order, from most general to least general.
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Data set
(model)

lsuper –  lI lsuper –  lII lsuper –  lIII lmax –  lsuper lI –  lstar lII –  lstar lIII  –  lstar lmax –  lI

4 taxa, 100
characters

1.3±1.0
(1.0±1.0)

1.9±1.5
(>1)

2.1±1.5
(>1)

4.1±1.9
(4.0±2.0)

0.82±1.1
(>0.25)

0.21±0.50
(<0.25)

0.10±0.30
(<0.25)

5.5±2.1
(4.5±2.2)

4 taxa, 500
characters

1.1±1.1
(1.0±1.0)

3.7±2.8
(>1)

3.8±2.8
(>1)

4.2±2.2
(4.0±2.0)

2.8±2.5
(>0.25)

0.16±0.41
(<0.25)

0.05±0.21
(<0.25)

5.3±2.4
(4.5±2.2)

6 taxa, 500
characters

11.3±3.4
(11.0±3.4)

11.7±3.5
(>11)

11.8±3.5
(>11)

17.5±4.5
(16.0±4.0)

0.58±0.93
(>0.25)

0.15±0.43
(<0.25)

0.16±0.40
(<0.25)

28.8±5.5
(29.5±5.4)

6 taxa, 5000
characters

10.8±3.2
(11.0±3.4)

12.7±3.7
(>11)

12.7±3.7
(>11)

16.0±4.0
(16.0±4.0)

2.0±1.9
(>0.25)

0.07±0.26
(<0.25)

0.08±0.29
(<0.25)

26.9±5.3
(29.5±5.4)

Unequal freq.
(not taken into
account)

2.9±2.3
(1.0±1.0)

5.0±3.2
(>1)

6.5±3.6
(>1)

145±13
(4.0±2.0)

3.7±2.8
(>0.25)

1.6±1.8
(<0.25)

0.13±0.38
(<0.25)

148±13
(4.5±2.2)

Unequal freq.
(taken into
account)

—
(0.5±0.7)

—
(>0.5)

—
(>0.5)

—
(3.5±1.9)

2.5±2.3
(>0.25)

0.09±0.24
(<0.25)

0.02±0.09
(<0.25)

4.8±2.3
(4.5±2.2)

Gamma rate
var. (not taken
into account)

6.2±3.5
(1.0±1.0)

7.6±4.3
(>1)

10.3±4.7
(>1)

4.3±2.1
(4.0±2.0)

4.7±3.5
(>0.25)

3.2±2.6
(<0.25)

0.57±1.00
(<0.25)

10.4±4.0
(5.0±2.2)

Gamma rate
variation (taken
into account)

0.6±0.8
(0.5±0.7)

2.2±2.0
(>0.5)

2.2±2.0
(>0.5)

4.3±2.1
(4.0±2.0)

1.7±1.8
(>0.25)

0.06±0.21
(<0.25)

0.07±0.25
(<0.25)

2.8±2.3
(4.5±2.2)

Table 3. Summary of mean±standard deviation (with expected values in parantheses if the assumed evolutionary
model is correct) of (lsuper-tree –  lI/II/III), (lmax –  lsuper-tree), (lI/II/III –  lstar), and (lmax –  lI) in the simulated binary data sets
(1000 replicates each). The last four rows, which show tests of the presence of unequal character frequencies and
site-rate-variation, are 4-taxa sets of 500 characters each. For the model with unequal character frequencies, the
super-tree likelihood is not uniquely defined (see text) and difficult to evaluate without direct optimisation; so those
entries are not evaluated.

The expected asymptotic distributions of these statistics is discussed below, and are
checked against computer simulations. The four main simulated data sets have been
described in the previous section. Histograms of likelihood ratio statistics from these runs
are shown in Figures 10–12. In addition, one data set of 1000 replicates of 500 bases each,
with the four-taxon tree, was simulated with unequal character frequencies (π0 = 0.8,
π1 = 0.2); and one data set (also 1000 replicates, 500 bases) was simulated with site-rate-
variation described by a Gamma distribution with α = 0.5, but with equal character
frequencies. Summary likelihood ratio statistics for all of the simulations are given in
Table 3.
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(a) The statistic (lsuper-tree  – lI)
One of the main observations of Section 2.4 was that for simulated data sets based

on a single tree topology, a point in super-tree space corresponding to the correct tree
topology was always enclosed by one of the high-likelihood contours. More quantitatively,
for large n, one expects the statistic 2(lmax – lI) to be distributed as χ2

k, where k is the
difference in the number of parameters of the full model and the nested model [chapter 24 in
(Kendall and Stuart, 1961)]. Explicitly,

      

dP
dl ∝ l k/2−1e−l , (χ2

k distribution) (23)

with the proportionality constant determined by normalising the distribution to have unit
integral. In this case,

k = (# super-tree parameters)  –  (# tree parameters) = (2m–1 –1)  –  (2m – 3),

which equals 2 (m = 4), 8 (m = 5), 22 (m = 6) etc., in the asymptotic limit n→∞. If, in a given
data set with a given evolutionary model, the best tree hypothesis yields a  (lsuper-tree  – lI)
larger than a critical value, as determined by a χ2 test at some specified significance level,
one can reject the assumed evolutionary model. Note that in using the likelihood lI of the
ML tree hypothesis rather than some guess of the “true tree” (which may be unknown), the
test is checking a “best-case” scenario – if the ML tree is rejected by the (lsuper-tree  – lI) test
than so will any other tree.

The histograms of Figure 10 show the actual (lsuper-tree  – lI) distributions for four
simulated data sets fitted to χ2

k distributions. The four-taxon data sets fit11 to k ≈ 2.6 (100
bases) and k = 2.1 (500 bases), which are close to the expected limit k = 2. In particular,
while the fits are not perfect for the lowest values of (lsuper-tree  – lI), they are excellent for
the right-hand tail of the distribution, which is the crucial part for carrying out confidence
tests. The six-taxon data sets fit well through the whole range of (lsuper-tree  – lI), with
k = 22.6 (500 bases) and k = 21.6 (5000 bases), quite close to the expected k = 22.

To illustrate the power of the test, consider the results of a more complex data
simulations with unequal character frequencies, and with site-rate-variation
parameterised by a Γ distribution (α = 0.5), summarised in Table 3. When the unequal
frequencies are not taken into account [i.e., when one forces π0 = π1 = 1/2] in the former data
set, the (lsuper-tree  – lI) statistic is found to be 2.9±2.3 (mean ± standard deviation), with
1.0±1.0 being the expected value. And when, in the latter data set, the site-rate-variation
is ignored and then taken into account, (lsuper-tree  – lI) decreases dramatically from 6.2±3.5
(expected: 1.0±1.0) to 0.6±0.8 (expected: 0.5±0.7). Thus, in the majority of data sets, if one
fails to take into account either unequal frequencies or site-rate-variation, checking
(lsuper–tree  – lI) will provide a necessary warning, especially in the latter case.

                     
11 Fits of the χ2

k distribution to simulations here (and later) are accomplished by setting k/2 equal to the mean of the
log-likelihood-difference found in the simulation.
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Figure 10. Distributions of the (lsuper-tree –  lI) statistic compared to predicted distributions of the form χ2
k for

simulations (1000 replicates) of the simplest binary model for the four-taxon and six-taxon trees shown in Figure 7.
Fitted values of the parameter k are given in the text.



28

(b) The statistic (lmax – lsuper-tree)
A second way to check the description of the evolutionary process is by looking at

the statistic (lmax – lsuper- tree).12 In the limit n→∞, 2(lmax – lsuper-tree) is expected to follow a χ2
k

distribution with

k = (# site patterns)  –  (# super-tree parameters) = (cm–1)  –  (2m–1–1) = cm–2m–1

(where c is the number of possible character states). For finite n, not all site patterns show
up in the data, and k is usually different from than the asymptotic limit but can still be
estimated fairly easily; see the discussion of (lmax – lI) in (d) below.

The histograms of Figure 11 show the (lmax – lsuper-tree) distributions for four simulated
data sets fitted to χ2

k distributions. The four taxa data sets fit well with k = 8.2 (100bases)
and k = 8.4 (500 bases), with the expected asymptotic limit being k = 8. The six-taxon data
sets fit well to k = 34 (500 bases) and k = 32 (5000 bases), with expected asymptotic limit
being k = 32.

The (lmax – lsuper-tree)statistic, like (lsuper-tree  – lI) above, provides a particularly good
consistency check on data sets which have unequal frequencies; see Table 3. For the
simulated data set with (π0 = 0.8, π1 = 0.2), not taking into account the unequal frequencies
yields (lmax – lsuper-tree) = 145±13, much larger than the expected value being 4.5±2.2. Note

that this statistic cannot provide a sensitive test for site-rate-variation, since lsuper-tre e does
not vary with, e.g., the shape parameter of an assumed Γ distribution of site rates. Indeed,
for the simulated data set with site-rate-variation, (lmax – lsuper-tree) = 4.8±2.3, with the
expected value, 4.5±2.2.

Thus the (lmax – lsuper-tree) statistic is especially good at catching inconsistencies in
unequal frequencies, and, presumably more generally, other parameters of the mutation
matrix. The other (lsuper-tree  – lI) statistic described above should be used to check site-rate-
variation.

                     
12 The reader may wonder why this statistic doesn’t vanish for the simplest binary model, where one can attain a
“perfect fit”. The answer is that the super-tree can perfectly fit the collapsed degrees of freedom – but in collapsing
pairs of site patterns which are inverses of each other (under the switch 0↔1), an assumption has been made that
the inverses in each pair occur with equal probabilities. Testing (lmax – lsuper-tree) checks this assumption.
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Figure 11. Distributions of the (lmax– lsuper-tree) statistic compared to predicted distributions of the form χ2
k for

simulations (1000 replicates) of the simplest binary model for the four-taxon and six-taxon trees shown in Figure 7.
Fitted values of the parameter k are given in the text.
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(c) The statistics (lII – lstar) and (lIII – lstar)

Consider (lII – lstar) and (lIII – lstar). Loosely speaking, these ratios, like (lsuper-tree  – lI)
statistic in (a) above, provide an indication of how close the t I axis crosses near the higher
super-tree likelihood contours (see Figure 4). The test has been mentioned in, e.g., (Yang et
al., 1994), but the distribution of the test statistics has not been predicted. The star tree
model has one less parameter than the tree II (or tree III) models, and therefore one might
naively expect 2(lII – lstar) to asymptotically follow a (1/2)χ2

0+(1/2)χ2
1 distribution. The

reason for mixing in the χ2
0 distribution, defined as a Dirac delta function at zero, is that

the optimal t II under tree II hypothesis (i.e., t I = t III = 0, t II > 0) will be at the boundary,
zero, half the time; see (Ota et al., 2000).

Actually, (1/2)χ2
0+(1/2)χ2

1 is not the correct asymptotic distribution. For most
phylogenetic cases, a positive correlation between t I and t II is expected. See Section 2.4.
Therefore, for large n, decreasing t I to zero from its positive value at the overall maximum
super-tree likelihood point, as is done to consider tree hypothesis II, will tend to also push
t II towards negative values. Thus, under tree hypothesis II, t II will end up at the boundary
zero more than half the time. Therefore, using the (1/2)χ2

0+(1/2)χ2
1 distribution is expected

to be conservative (i.e., less powerful at rejecting the model under consideration than if one
uses the true null distribution), and to get more conservative for larger sequence lengths n
and for harder phylogenies, i.e., larger external branch length/internal branch length
ratios.

These (lII – lstar) and (lIII – lstar)statistics are plotted for the four main simulated data
sets in the histograms of Figure 12. Clearly, the (1/2)χ2

0+(1/2)χ2
1 distribution is over-

conservative, especially for the data sets with larger n, as predicted.
Like the (lsuper-tree  – lI) statistic, the (lII – lstar) statistic should provide a sensitive test

of the site-rate-variation (see also Figure 6F). In the simulated data set with site-rate-
variation parameterised by a Γ distribution (α = 0.5), the statistic has value
(lII – lstar) = 3.2±2.6, with expected value less than the 0.25±0.43, when the site-rate-
variation is not taken into account. See Table 3. Fitting α, however, yields the proper value
(lII – lstar) = 0.06±0.21, consistent with a distribution far more conservative than the
predicted (1/2)χ2

0+(1/2)χ2
1 distribution. Also, for the simulated data set with unequal

frequencies, taking into account π0≠1/2 decreases (lII – lstar) from 1.6±1.8 to 0.17±0.50, with

expected value less than 0.25±0.43. Values for (lIII – lstar) are similar. So the test is
moderately sensitive to parameters of the mutation matrix and very sensitive to site-rate-
variation.
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Figure 12. Distributions of the (lII –  lstar) (squares) and (lIII  –  lstar) (squares) statistics compared to predicted
(1/2)χ2

0+(1/2)χ2
1 distribution for simulations (1000 replicates) of the simplest binary model for the four-taxon

and six-taxon trees shown in Figure 7. In these histograms, the bin at zero is not shown, as its value is an order-of-
magnitude higher than for any other bins; for each of the four data sets, more than half of the 1000 replicates yielded
(lII –  lstar)=0 or (lIII  –  lstar)=0.
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(d) The statistic (lmax – lI)

 The (lmax – lI) provides a test that combines the (lsuper-tree  – lI) and (lmax – lsuper-tree)
discussed in (a) and (b) above; it is expected to be less sensitive than conducting tests (a) and
(b) separately, but is more straightforward to carry out for general evolutionary models
where lsuper-tree  is difficult to find or not unique. In the asymptotic limit, 2(lmax – lI) is expected
to follow a χ2

k distribution with

k = (# site patterns) – (# tree parameters) = (cm–1) – np,

where np is the number of optimised model parameters, including branch lengths, character
frequencies, etc. This test statistic has been described before in e.g., (Navidi et al., 1991),
(Reeves, 1992), (Goldman, 1993), and (Yang, 1994b), but its predicted distribution depended
on either assuming the infinite-sequence-length limit or conducting numerically intensive
simulation.

For finite sequence length n, however, the distribution will not be this χ2
k

distribution, since all site patterns will generally not show up in the data – in fact, it is
common to see data sets where the vast majority (sometimes >90%) of sites are “constant”,
the same for all taxa. Yang et al. (1995) have attempted a strategy of combining into larger
categories those data points (site patterns) which have similar low probabilities, and then
checking the data against prediction with a likelihood ratio or Pearson X2 statistic.
However, the method of Yang et al. (1995) seems to involve some bias in determining which
site patterns to combine; so, in this report, the (lmax – lI) statistic (without such re-grouping
of the data) is used.

To approximate the distribution of this statistic, note that the mean (lmax – lI) is
expected to be rather large (exponentially growing with the number of taxa), and it is
therefore valid to approximate its distribution as a normal distribution, by the Law of
Large Numbers. The mean and variance of the normal distribution of (lmax – lI) can in fact be
easily estimated by a procedure described in Appendix B, based on summing contributions
from Poisson distributions for individual site patterns.

For the simulated data sets, the predicted (lmax – lI) distribution will simply be the

convolution of the (lmax – lsuper-tree) and (lsuper-tree  – lI) distributions, so the fit of the simulated
statistic to the predicted asymptotic distribution, as well as the sensitivity to parameters
of the mutation matrix, follows directly from the discussion above. See also the last column
of Table 3.
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Figure 13. Comparison of predicted mean (lmax – lI) to actual (lmax – lI/II/III) from 1000 simulated replicates, as a
function of the number of bases in the sequence. Data is simulated with the four-taxon tree of Figure 7, and the JC69
model for nucleotides. See also Table 4.
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n Predicted (lmax – lI) Observed (lmax – lI) Observed (lmax – lII) Observed (lmax – lIII )

10 11.3±4.7 11.4±4.2 11.5±4.1 11.7±4.2

20 22.1±5.6 21.5±5.3 21.9±5.5 22.1±5.4

100 39.5±6.9 39.2±7.1 40.9±7.4 41.0±7.4

300 61.1±7.5 60.6±8.3 64.3±9.2 64.4±9.3

1000 89.7±8.5 89.6±8.7 102.1±9.6 102.2±9.6

3000 111.3±9.3 113.7±9.0 150.5±15.2 150.7±15.0

10000 127.1±10.3 129.6±9.7 251.4±21.1 251.4±21.1

Table 4. Predicted mean and variance of the statistic (lmax – lI) for small number of characters nsites, as determined by
the one-time procedure of Appendix B, compared to observed values in 1000 replicates. A four-taxon tree (I in
Figure 7) is used, with the JC69 four-nucleotide model.

It is useful to check whether the prediction of the mean and variance of (lmax – lI)for
finite n agrees with more complicated simulations with more than two character states,
where all possible site patterns will not usually be present for moderate  n. Figure 13 and
Table 4 show the results of a simulation with four character states, using a JC69 model
(Jukes and Cantor, 1969), with the four-taxon tree of Figure 7. The (lmax – lI) found by the
simple one-time procedure described in the appendix fits very well to that found by
intensive multi-replicate simulation.

To summarise the results of this section, a set of consistency checks has been presented to test
the adequacy of an evolutionary model which should be applied to molecular data before
proceeding with phylogenetic inference by the ML procedure. Two tests, on the statistics
(lsuper-tree – lI) and (lmax – lsuper-tree), are based on the overall maximum super-tree likelihood
value and have been shown to be especially sensitive to inadequacies in modelling site-
rate-variation and mutation matrix parameters, respectively. Two more tests, on the
statistics (lII/III – lstar) and (lmax – lI) do not depend on evaluating the super-tree likelihood and
give good, but less sensitive, checks on the site-rate-variation and evolutionary
parameters.
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5. Real data sets
Before discussing the theoretical results introduced above, it is worth looking at some real
data sets. Does ML analysis using common evolutionary models on real DNA data pass the
“consistency checks” described in Section 4? Are the resulting likelihood-ratio-based
supports reasonable? This section applies ML analysis to phylogeny inference in four data
sets: a mitochondrial DNA (mtDNA) segment from five primates; α and β globin genes from
five mammals; mtDNA and the wingless gene from almost sixty species (the genera
Heliconius and Eueides, and outgroups) of passion-vine butterflies; and mtDNA from
several mimicking races of Heliconius erato and Heliconius melpomene butterflies.

5.1. Mitochondrial DNA from five primates.
This data set is a “classic” in molecular phylogenetic studies, having been previously
analysed by several authors, e.g., Yang et al. (1994b), and it is included with the PAML
package. The data consists of an aligned 895-bp segment of DNA (including a tRNA gene
and parts of two protein-coding genes) from human, chimpanzee, gorilla, orangutan, and
gibbon (Brown et al., 1982). The tRNA bases, and the first, second, and third codon positions
are considered separate site categories, and are analysed as separate data sets. The three
trees (plus a star tree) of Figure 14 are tested.

Before comparing likelihoods of the trees, the consistency checks described in
Section 3.1 must be applied. Since estimating the value of lsuper-tree  is difficult in this six-

taxon case, only the (lmax– lI) and (lII/III– lstar) tests have been performed. A succession of
evolutionary models are tested, starting with the simplest JC69 model (equal base
frequencies; no transition/transversion bias κ; no site-rate-variation), then F81 [allowing
for unequal base frequencies, measured empirically; (Felsenstein, 1981)], then HKY85
(allowing for unequal base frequencies and a fitted κ ≠1), and finally the more general
HKY85+Γ and HKY85+3cat (modelling the site-rate distribution as a Gamma distribution
with fitted shape parameter α, and as three discrete categories with fitted frequencies and
rates, respectively).

To illustrate the tests, lI, lII, lIII, and lstar are shown in Table 5 for the third codon
position bases, which might be expected to be a relatively “neutral” marker, since
substitutions at the third codon positions are usually synonymous. Models JC69 and F81 are
easily rejected (with 95% confidence) by the (lmax– lI) test, where the distribution of this
statistic is approximated as a normal distribution with mean and variance as estimated in
Appendix B; the HKY85 models (with and without site-rate-variation) cannot be rejected
at 90% confidence by this test. Furthermore, the HKY85 and HKY85+3cat models are also
rejected with 95% confidence by the (lII – lstar) test, whose null distribution is
(conservatively) taken to follow the (1/2)χ2

0+(1/2)χ2
1 distribution. Apparently site-rate-

variation must be taken into account – and with an appropriately shaped distribution. The
results for the other codon positions and the tRNA bases are similar to the results at the
third codon position, except the (lII– lstar) test is not able to reject any of the models for the
slow-mutating second codon position bases.

Tree I Tree II Tree III Tree Star

Figure 14. Possible unrooted phylogenies considered in five-primate mitochondrial DNA set.
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Model No. of fitted

evol. params.

Predicted lbest

(±std. dev.)

lI lII lIII lstar

JC69 0 –856.5±9.5 –1087.5** †† –1093.2** –1092.5** † –1094.0*

F81 3 –855.0±9.5 –1026.6** †† –1031.4** –1029.4** †† –1031.4*

HKY85 4 –854.5±9.5 –864.1†† –867.1†† –869.7* –869.7*

HKY85+Γ 5 –854.0±9.5 –857.4†† –859.1 –860.5 –860.5

HKY85+3cat 9 –852.0±9.5 –858.4†† –858.4†† –858.7†† –863.0

(*) and (**) marks those values that are rejected by the (lmax –  l) test (one-sided, Gaussian distribution) with 90% confidence and 95% confidence,
respectively. The best tree is expected to pass this test.

(†) and ( †† ) marks those values that are rejected by the (l –  lstar) test [distribution of 2(l –  lstar) assumed to be (1/2) χ2
0+(1/2) χ2

1] with 90% confidence
and

95% confidence, respectively. The alternatives to the best tree are expected to pass this test.

Table 5. Tests of various evolutionary models applied to third codon position nucleotides in five-primate
mitochondrial DNA data set. Observed values of lI, lII , lIII , and lstar , compared to the predicted value for the best tree,
based on the expected value of (lmax –  lbest) estimated by the procedure in Appendix B, and the observed value
lmax = –780.1. Results for other codon positions and tRNA nucleotides are similar.

Having performed these consistency checks of the evolutionary model, the relevant
log-likelihood values under the HKY85+Γ model for the three codon positions and tRNA
bases are given in Table 6. In addition the values are given for two analyses combining
information from all four site categories. The first combination analysis SEP fits all
parameters (base frequencies, κ, α, and branch lengths) separately for the four kinds of
sites; and the second analysis, here called HOMOGENOUS, mimics the analysis of
Yang et al. (1994b) by completely ignoring the codon/tRNA information about site
categories, and by treating them all as one big, homogenous data set. See (Yang, 1996b). It is
seen that none of the four site categories, when taken separately, disfavour tree I, and
indeed the third codon position and tRNA bases both favour it with likelihood support
values Pl(tree I) around 80%. There are thus no conflicting signals within the different rate
categories – a reassuring observation.

Adding the separate likelihood values (the SEP analysis) then allows tree I to be
well-supported with 97.3% probability. In the simpler HOMOGENOUS analysis, the
likelihood values under HKY85+Γ both pass the (lmax – lI) and (lII/III – lstar) consistency
checks, and the support for tree I becomes 96.6%. So barely any phylogenetic resolution is
lost in ignoring site category information, in this case.

Data set lmax Predicted lbest
lI lII–lI lII I–lI lstar–lI Pl(I) Pl(II) Pl(III)

First codon
position

–571.2  –633.3±9.4 –635.0 +0.5 +1.0 +0.0 17% 32% 51%

Second codon
position

–437.7  –458.7±5.7 –464.4 –0.3 –0.3 –0.3 40% 30% 40%

Third codon
position

–780.1  –854.0±9.5 –857.4 –1.7 –3.1 –3.1 81% 15% 4%

tRNA –424.4   463.9±7.8 –470.2 –2.5 –2.3 –2.3 85% 7% 8%

SEP –2427.3 –2409.9±15.3 –2427.0 –4.0 -4.7 (–5.7) 97.3% 1.8% 0.9%

HOMOGENOUS –2477.0 –2613.5±12.0 –2622.4 –4.0 –4.0 –4.0 96.6% 1.7% 1.7%

Table 6. Analyses of all codon positions in the HKY85+Γ model. See text for discussion of combined analyses. Note
that the likelihood function for the HOMOGENOUS analysis is different from the others since it ignores information
about site categories. Predicted values of lbest are based on the expected value of (lmax –  lbest) estimated by the
procedure in Appendix B, and the observed value lmax.
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5.2. α/β-globin codons from six mammals.
A second data set analysed here is the combined α- and β- globin codon sequences from
human, goat(α)/cow(β), rabbit, rat, and marsupial included with the PAML package.
These globin genes are, of course, textbook examples in most fields of molecular biology, from
structural genomics (Branden and Tooze, 1999) to biochemistry (Stryer, 1995). In
phylogenetics, they have played an important role is the search for positive selection in
genes (Yang et al., 2000) and in controversies of the relation of birds to reptiles and
mammals (Hedges, 1994).
The data set has been analysed in several ways: as one large DNA sets, with the HKY85+Γ
model; at each codon position separately as three DNA data sets (HKY85+Γ); as an amino
acid data set [with empirical transition matrices JTT, Dayhoff, mtREV24, and mtMAM
included in the PAML package, modified to reflect the codon frequencies empirically
determined from this data set]; and as a codon data set to be analysed with a model
including various distributions for a non-synonymous/synonymous ratio parameter. There
are fifteen (unrooted) bifurcating trees; Table 7 shows the results for the log-likelihood
values of the eight trees of Figure 15, for each of these analyses. Apparently Tree III' is
favoured by most of the analyses; but the true tree is known to be Tree I [see, e.g., (Janke et
al., 1997)]. However, none of the analyses pass the basic consistency checks, despite the
generality of some of these models. That is, the best tree in any of these analyses is rejected
by the (lmax – lI) test, indicating that the models are not complex enough to adequately
describe the data. See Section 5.2 for further discussion.
 What would happen if one ignored the rejection of the model by the consistency
checks and still analysed this data set using, e.g., the amino acids with the best-fitting JTT
matrix? The marsupial branch would be more favoured to attach to the goat branch than to
the correct rat branch by a factor of almost 100, based on likelihood-based support values,
and by a factor of 5, based on RELL bootstrap support values. Thus, dangerously misleading
phylogeny inferences can be made if one fails to test if the evolutionary model can be
rejected by the (lmax– lI) and (lalternative– lstar) consistency checks.

Tree I Tree II Tree III Tree Star

Tree I' Tree II' Tree III' Tree Star'

Figure 15. Eight (out of fifteen) possible unrooted phylogenies for which illustrative log-likelihood values are
presented (see Table 4), for the five-mammal α/β-globin data set.
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Data set lmax Pred. lbest
lI lII lIII lstar lI' lII' lIII' lstar'

DNA:

(no
categorisation)

–2872.8 –3124.2±15.0 -3148.2**†† -3148.7**† -3149.3** -3150.7** -3149.3**†† -3150.2**† -3151.7** -3151.8**

DNA:

1st codon
position

–790.8 –909.8±12.7 -934.3**†† -936.1**  -935.7** -936.2** -935.6** -935.6**  -935.1**  -935.6**

2nd codon
position

–685.8 –786.2±12.2 -810.7**  -810.9**  -808.6** -810.9** -807.5**†† -809.9**  -809.7**  -809.9**

3rd codon
position

–1059.6 –1206.9±13.1 -1250.5**  -1248.6**†† -1250.5** -1250.5** -1252.0** -1250.1**†† -1252.0**  -1252.0**

Amino acids:

JTT –1189.1 –1655.2±35.1 -1743.4**†† -1740.9**†† -1743.9**†† -1746.1** -1733.0**†† -1738.2**†† -1739.9**†† -1742.5**

JTT+_ –1189.1 –1654.7±35.1 -1720.1**† -1719.1**†† -1720.8** -1721.7** -1711.2**†† -1716.9**†† -1717.7**  -1718.2**

JTT+__ +empF –1189.1 –1645.2±35.1 -1694.7**†† -1695.2**†† -1696.5** -1697.5** -1688.2**†† -1693.8**†† -1694.5** -1695.5**

Dayhoff+__
+empF

–1189.1 –1645.2±35.1 -1682.1**†† -1681.6**†† -1683.0** -1684.1** -1676.1**†† -1680.8 **  -1682.0** -1682.9**

mtREV24+__
+empF

–1189.1 –1645.2±35.1 -1714.1**† -1713.8**†† -1714.6** -1715.7** -1706.3**†† -1711.6**† -1711.8**  -1713.0**

mtMam+  Γ
+empF

–1189.1 –1645.2±35.1 -1732.8**† -1732.6**†† -1733.8** -1734.6** -1725.5**†† -1730.2** -1730.8** -1731.5**

Codons:

4x3 base freqs
(single ω)

–1493.9 –2694.4±52.0 -3055.0**†† -3051.5**†† -3053.7**†† -3060.5** -3048.8**†† -3050.1**†† -3054.3**†† -3056.8**

61 empF
(3cat for ω)

–1493.9 –2667.9±52.0 -2804.5**†† -2805.5** -2806.4**  -2806.7** -2800.7**†† -2805.5** -2806.3**  -2806.3**

(*) and (**) marks those values that are rejected by the (lmax – l) test (one-sided, Gaussian distribution) with 90%
confidence and 95% confidence,

respectively. The best tree is expected to pass this test.
(†) and (††) marks those values that are rejected by the (l – lstar) test [distribution of 2(l – lstar) assumed to be (1/2)
_20+(1/2) _21] with 90% confidence and

95% confidence, respectively. The alternatives to the best tree are expected to pass this test.

Table 7. Tests of various evolutionary models applied to combined DNA, separate codon positions,
encoded amino acids, and codons of five-mammal ___-globin data set. Observed values of lI, lII, lIII, and lstar,
compared to the predicted value for the best tree, based on the expected value of (lmax – lbest) estimated by the
procedure in Appendix B, and the observed values of lmax.
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5.3. Mitochondrial DNA and wingless data for Eueides and Heliconius
butterflies
The Heliconius butterflies and its close cousins are well-studied neotropical butterflies
(Lepidoptera: Nymphalidae) which exhibit a wide-range of colourful wing patterns that
advertise their unpalatability to predators. Geographic variability and inter-species
mimicry have complicated phylogenetic analysis of these insects based on morphological
and behavioural characteristics (Brower, 1997); see Figure 16. The Heliconius butterflies
have played a central role in the theories of mimicry (Bates, 1862), the evolution of
unpalatibility (Mallet and Gilbert, 1995), and the co-evolution of insects and plants [the
cyanogen-containing passion vines, whose leaves the Heliconius caterpillars feed on, are
poisonous to most other animals; see, e.g., (Murawski, 1983)]. The recent availability of
short DNA sequences promises to answer many questions regarding the evolution of these
insects, by clarifying their phylogeny.

This section investigates the relationship of Eueides and Heliconius using
mitochondrial DNA and nuclear data (the gene wingless) collected by A. Brower for 59
butterfly species. Previous analysis of this data, using the heuristic maximum parsimony
(MP) method, has led to confusing results. Brower (1994) originally claimed, based on
analysis of the mtDNA sequences alone, that the Heliconius genus is paraphyletic to
(inclusive of) Eueides, which is traditionally considered its sister genus (Brown, 1981). More
recently, Brower and Egan (1997) retracted this controversial hypothesis, after combining
mtDNA and wingless data to obtain a better resolved tree, again using maximum
parsimony. Does an ML analysis clarify the position of Eueides with respect to Heliconius?

The data are 1105-bp and 378-bp sequences from the mitochondrial DNA (mtDNA)
and the nuclear wingless (wg) gene, respectively; the mtDNA data contains the end of
cytochrome oxidase I (COI) gene, the tRNA leu gene, and the start of the cytochrome
oxidase II (COII) gene. For the likelihood analyses, sites which are ambiguous in some of
the species are removed from the data; the resulting sequence  lengths, as well as average
nucleotide frequencies, fitted transition/transversion bias, and fitted site-rate-variation
shape parameter α (for a Gamma distribution) obtained by PAML are given in Table 8.

The initial tree search on 59 species was carried out in the fastDNAml package,
which is faster than PAML, but does not take into account site-rate variation. Figure 17
shows the ML tree obtained by fastDNAml (Olsen et al., 1994a) assuming an HKY85 model
with κ=85, using all of the mtDNA and wingless data.13

To evaluate the support for Heliconius being monophyletic with respect to Eueides,
log-likelihood values (obtained separately for different codon positions in different genes,
under the HKY85+Γ model) are given in Table 8 for this tree (called tree I) and the two
trees obtained by forcing the Eueides clade to be the sister group of the sara-sapho-erato
clade, and of the melpomene-cydno-silvaniform-“primitive” clade. These latter trees
(called tree II and tree III respectively) are the ones obtained by nearest-neighbour
interchange around the branch leading to the Heliconius clade. Collapsing this branch
yields the "star" tree, for which log-likelihoods are also given in Table 8.

                     
13 The parameter settings for fastDNAml were the following: empirical frequencies (F); jumble (J) the taxon order for
step-wise addition; transition/transversion bias (T) = 5; NNI rearrangements during taxon step-wise addition
(G 1 1); outgroup (O) =Speyeria; and categorize (C) according to gene content. The relative rates of the ten different
categories of sites (see Table 8) were taken to be (1, 0.4, 7, 0.4, 1, 0.4, 7; 0.7, 0.4, 4). A similar phylogeny (with some re-
arrangement of long-branched groups like demeter and the outgroups, but the same high-level clades) is obtained
with fastDNAml without categorization, by the MP analysis of Brower and Egan (1997), and also by the (heuristic)
distance-based minimum evolution method implemented in PAUP* (Swofford, 1998) using a variety of distance
estimators (an ML-based distance, the uncorrected P-distance, and the LogDet distance), so the topology appears to
be quite robust to changes in the tree search method.
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Figure 16. Mimicry rings amongst the Heliconius species of East Peru; figure from J. Mallet. Top row, with bright
yellow hind-wing band, are H. melpomene and H. erato . Bottom ten species form a “rayed” mimicry ring dominating a
separate geographical area [Left, H. melpomene, H. elevatus, H. demeter; centre, Laparus doris, Neruda aoede, Eueides tales
and a pericopine moth; right, H. erato, H. burneyi, and H. xanthocles].

Site category #
bases

κ α rel. mut.
rate

lmax pred. lI lI lII –  lI lIII  –  lI lstar  –  lI
COI 1st cod. pos. 41 1.9 0.2 1.0 –102.0 –267.7±34.0 –242.9 –2.4 –2.4 –2.4
COI 2nd cod. pos. 42 2.7 0.2 0.5 –77.5 –109.8±9.5 –109.8 –0.0 –0.0 –0.0
COI 3rd cod. pos. 41 33 0.6 9.5 –138.6 –702.2±51.4 –738.0 –2.0 –1.4 –2.0
tRNA leu 69 8.5 (0.5) 0.4 –146.5 –231.5±18.5 –237.5 –0.0 –0.0 –0.0
COII 1 st cod. pos. 207 9.3 0.2 0.9 –553.2 –1186.0±104.7 –1071.4 –6.9 –6.9 –6.9
COII 2nd cod. pos. 207 2.5 0.1 0.3 –432.5 –669.2±57.0 –622.0 –0.0 –0.0 –0.0
COII 3 rd cod. pos. 205 52 0.5 11 –978.0 –3967.6±119.0 –3992.4 –0.7 +3.3 –0.7
wg 1st cod. pos. 108 3.6 0.3 0.5 –273.9 –416.3±31.2 –451.7 –0.0 –0.0 –0.0
wg 2nd cod. pos. 109 1.8 (0.5) 0.3 –232.5 –344.9±19.4 –349.1 –0.0 –0.0 –0.0
wg 3rd cod. pos. 108 8.1 1.1 2.7 –468.0 –1481.0±85.1 –1551.4 –2.4 –2.4 –2.4

Table 8. Likelihood parameters for analysis of the position of the Eueides clade relative to the Heliconius butterflies;
data set contains 59 species. For tree definitions, see Figure 15. Sequence lengths are given for data after ambiguous
sites have been removed. The transition-transversion bias κ and the shape parameter α of the Gamma distribution
for site rates have been fitted for each site category separately (with tree I) by PAML, except in the tRNA and
wingless 2nd codon position data where the mutation rate was so low that α =0.5 was imposed to help the program
converge. Mutation rates (relative to COI 1st codon position) were found by fitting tree I with all site categories
simultaneously with the constraint that corresponding branch lengths for each site category were proportional The
predicted values of lI are based on the observed lmax for each site category and a predicted (lmax– lI) obtained from
simulations (ten replicates for each site category).
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For each codon position separately, the HKY85+Γ model cannot be rejected with
90% confidence by either the (lmax– lI) or the (lII/III– lstar) tests of Section 4. However, Table 8
does reveal a contradiction within the data: the COII third position data appears to
strongly favour a different tree than the rest of the data set! Taking the likelihood values
literally, the COII third codon positions prefer Tree II (where Eueides is the sister clade of
Heliconius melpomene-cydno-silvaniform-“primitive” clade) over Tree I (where Eueides is
outside Heliconius) with a likelihood ratio of 25. In contrast, using information from the
first codon positions from the mtDNA data and the wg data, gives Tree I a likelihood
higher by a factor of 104 and 10, respectively, over each of the alternative trees.

It is not difficult to guess a reason for this contradiction. At the third codon
positions, DNA sequences from different species have rather unbalanced nucleotide
compositions. The biological selection process that is responsible for the low G content is not
well understood [see, e.g., (Rodríguez-Trelles et al., 2000)], and may be much more
complicated (involving, say, dramatic variation in selection pressure over time) than in the
simple HKY85 mutation matrix. The HKY85+Γ model used above assumes, however, that
the nucleotide composition has the same equilibrium value throughout the tree. The PAML
package does have an option (nhomo = 4) to fit different nucleotide frequencies at different
branches of the tree. However, the program did not converge properly when this option was
used; different initial conditions and different values of the smalldiff parameter led to
different optimisations.

Thus, the maximum likelihood analysis, using the HKY85+Γ model, while passing
the consistency checks of Section 4, still appears to give contradicting results at different
codon positions in the mtDNA data. There is thus still some uncertainty in applying ML to
determine the relation of Eueides and Heliconius – although maximum likelihood does
seem preferable to the maximum parsimony analyses of (Brower, 1994) and (Brower and
Egan, 1997), which do not take into account site-rate-variation or the
transition/transversion bias. A definitive analysis awaits a more sophisticated likelihood
program which can smoothly take into account variation in nucleotide frequencies across
lineages for the third codon position data. For now, however, one can say that the weight of
the evidence is in favour of Heliconius being monophyletic with respect to Eueides. In
particular, if the third codon position data are ignored, the mtDNA and the wingless data
sets separately (and together) favour this topology with strong confidence.
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5.4. Mitochondrial DNA data applied to race formation in Heliconius erato
and Heliconius melpomene

Brower (1996) has also collected mtDNA data for mimicking races of Heliconius erato (53
specimens) and Heliconius melpomene (44 specimens). Based on a maximum parsimony
analysis, he found an unexpected result: sympatric sub-species which exhibit remarkably
similar wing-pattern phenotypes do not appear to have shared a common recent
evolutionary history. Moreover, the parsimony mtDNA cladogram shows evidence for H.
melpomene to be paraphyletic with respect to the species H. cydno. Are these phylogenetic
results also supported by an ML analysis?

The mtDNA segment for the H. melpomene and H. erato data sets is the same as for
the more general Heliconiinae of the previous section. For a description of the wing patterns
and geographic location of the sub-species, see (Brower, 1996). For the tree search, the
program fastDNAml14 was used to find initial topologies for the erato and melpomene data
sets; then, the nearest-neighbour tree search with PAML was carried out, taking into
account site-rate variation and imposing a molecular clock15. Since the divergence times
relevant to race formation are short, the slow-mutating second codon position and tRNA
data are not phylogenetically informative and are not analysed here; the data at first and
third codon positions (for COI and COII genes combined) are analysed separately. The
assumed transition/transversion bias parameters, gamma site-rate-variation parameters,
and final log-likelihoods (with and without the molecular clock assumption) are given in
Table 9. The trees, with ML branch lengths, are shown in Figure 17.

Before studying these phylogenies, the consistency checks of Section 4 need to be
applied to the data set to check the adequacy of the assumed evolutionary model; see
Table 9. Interestingly, the assumed HKY85+Γ model is rejected with 95% confidence when
applied with these trees to the third codon position data in the erato analysis, and to the
first codon position data in the melpomene analysis. The problem in the former case is
probably related to the very low G content in that data, as discussed in the previous section.
For now, the likelihood ratios will still be interpreted as literal (but heuristic) measures of
posterior odds; but when a better understanding of the mutation processes for unbalanced
nucleotide composition is available, the erato data should be re-analysed. The problem in
the latter case, the first codon position of the melpomene data, may have to do with
selection effects (first codon position substitutions are more often non-synonymous than third
codon positions). The problem is not so drastic, however – removing the first codon positions
does not significantly change the phylogeny obtained or its statistical evaluation.

Statistical evaluation of the tree is accomplished in terms of likelihood ratios. In
particular, for each branch in the ML tree (call its likelihood LI), the likelihoods LII and LIII

are obtained for each of the two trees II and III obtained by nearest-neighbour interchange
(NNI) around the given branch. An estimate of the stability of that branch is then given by
PNNI = LI/(LI+LII+LIII). So, for example, if this value is near 33% the branch is not well
resolved, as nearest-neighbour interchanges produce trees with the same likelihood. When
PNNI is larger than 60% for a branch, it means that the branch is fairly well-supported – the
likelihood of the ML tree is better by a factor of 3 than each of the alternative NNI trees.
Figure 18 shows PNNI values, based on likelihoods obtained with and without the molecular
clock assumption, for such well-supported branches in the erato and melpomene trees.

Comparison of the trees in Figure 18 with the cladogram in (Brower, 1996)  –  with
respect to placement of outgroups, to definition and arrangement of race clades, and to
resolution within the clades – shows that this maximum likelihood analysis gives better
resolution than the maximum parsimony analysis.

                     
14 Settings for fastDNAml are the same as in the previous section.
15 The molecular clock was useful particularly in resolving the arrangement of the outgroups in each data set. A
molecular clock has not been imposed in previous sections because the clock assumption can be rejected for the
previous data sets, based on a likelihood ratio test [see, e.g., (Yang, 1996b)]. In the erato and melpomene data sets in
this section, however, imposing the molecular clock constraint only increases the log-likelihood l for third codon
positions by 22.9 and 18.5, respectively, with expected values being 24.5±5.0 and 21.0±4.6 – this data (the first codon
positions give similar results) appears consistent with the molecular clock assumption.
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H. erato data set
Site category # bases κ α rel. mut.

rate
lmax pred. ltree ltree

COI+COII 1st cod. pos. 274 65 0.1 1 –498.9 –572.2±18.0 –570.7
COI+COII 3rd cod. pos. 272 65 0.5 10 –747.3 –1105.0±49.5 –1260.6

H. melpomene data set
Site category # bases κ α rel. mut.

rate
lmax pred. ltree ltree

COI+COII 1st cod. pos. 277 65 0.1 1 –469.6 –509.3±12.4 –538.9
COI+COII 3rd cod. pos. 276 65 0.5 10 –660.7 –938.6±39.2 –1002.3

Table 9. Likelihood analysis for H. erato  (53 species) and H. melpomene (44 species) data sets. For tree
definitions, see Figure 16. Sequence lengths are given for data after ambiguous sites have been removed. The
assumed values of κ (transition/transversion bias) and α (shape parameter for Gamma distribution of site rates) are
those fitted to the melpomene data set; in fact, doubling or halving these values for either melpomene or erato data set
barely changes the fit (∆l < 1), because the divergence times are so low. The slow-mutating second codon position
and tRNA data are not phylogenetically informative and are not analysed here; the data at first and third codon
positions (for COI and COII genes combined) are analysed separately. The predicted values of lI are based on the
observed lmax for each site category and a predicted (lmax– lI) obtained from simulations (ten replicates for each site
category).

Firstly, the putative outgroups in the ML analysis are indeed put outside the
H. erato and H. melpomene clades. In particular, the ML tree supports the traditional view
of putting H. himera outside the H. erato races with fairly good confidence (PNNI = 66% and
64%, with or without the molecular clock assumption, respectively); the position of himera
was not resolved in the MP analysis. More strikingly, the molecular clock assumption
allows the H. cydno complex to be placed outside H. melpomene (PNNI = 65%), also the
traditional assumption; the MP cladogram of Brower (1996) made melpomene paraphyletic
to cydno.

Secondly, the memberships of the race clades are very well-defined. In H. erato, an
eastern clade (containing butterflies from Bolivia, Brazil, Peru, Guiana, and parts of
Ecuador and Colombia) and a western clade (containing butterflies from Panama, Costa
Rica, and other parts of Ecuador and Colombia), are very well-resolved (PNNI =100% and
>90% for clade monophyly, with and without the molecular clock assumption,
respectively). Brower (1996) found the same clades – geographically separated by the
Andes – except that he was not able to determine the placement of the H. erato
chestertonii. In contrast, the ML analysis places the chestertonii as the basal sub-species in
the western erato clade with strong confidence (PNNI >80% for relevant branches). In
H. melpomene, the ML analysis produces the same clades (with strong confidence PNNI

=100%) as the MP analysis: an eastern and western clade, as well as separate clades for the
two nanna sub-species in the sample from Southeast Brazil and for the four Guiana
butterflies. The ML analysis, like the MP analysis, does not provide much information
about the relative arrangement of these four H. melpomene clades; obtaining data from
more specimens, especially from the rather under-sampled Amazonian basin area, would
help to resolve this higher level of the tree.

Figure 18. (next page) Trees found by PAML (with ML branches under molecular clock assumption) for the H. erato
(above) and H. melpomene (below) data set. Labels of erato and melpomene races are given as abbreviation of race
name, country of origin [BO=Bolivia; BR=Brazil; CO=Colombia; CR=Costa Rica; E=Ecuador; G=French Guiana;
PA=Panama], and locale number [see (Brower, 1996 )]. Branches are statistically evaluated in terms of
PNNI = LI/(LI+LII+LIII ) (where II and III are trees obtained by nearest-neighbour interchange around a given branch);
these support values are given on the trees (with/without molecular clock assumption) for well-supported
branches. The taxon H. sara has been left out of the top tree for clarity; its position is external to all the other taxa
(PNNI = 100%/33%).
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Finally, the radiation of races into eastern and western erato/melpomene clades
has occurred rapidly and recently, so full resolution within each clade would require much
longer segments of mtDNA to be sequenced for each sub-species; but a few phylogenetic
statements relevant to intra-clade relationships can be made. On one hand, like the MP
analysis of Brower (1996), the ML analysis is able to pair some of the erato taxa (e.g., an
emma specimen with a dignus specimen in the erato eastern clade) and melpomene taxa
(e.g., a penelope specimen with an aglaope specimen in the melpomene western clade). Less
trivially, ML finds H. melpomene melpomene specimens to be basal to both the eastern and
western melpomene clades, also like MP. On the other hand, the ML analysis provides a
few intriguing insights into the internal topologies which have been missed by the MP
analysis. In the erato western clade, the sub-species from Panama, Costa Rica, and Ecuador
are grouped by the ML analysis into a strongly supported subclade (PNNI =100%, with or
without the molecular clock assumption) to the exclusion of the butterflies from Colombia.
Also, in the melpomene western clade, the sub-species from Brazil, from Bolivia, and from
most of Peru are grouped into a subclade.

This additional, unexpected geographic substructure within the race clades,
combined with the new information on chestertonii, cydno, and himera, discussed above,
brings up new evolutionary questions which were not brought up in the MP analysis of
Brower (1996). For example, what historic event might have caused a subclade of the
western eratos to spread away from Colombia into the peripheral regions in Ecuador and
Panama? The divergence time for this subclade is remarkably similar to the divergence
time for the western melpomene clade. Could the western melpomene radiation have
somehow impelled the erato subclade radiation, or were both radiations catalysed by some
external geographic event? Also, regarding wing pattern evolution, H. erato hydara is
found in both eastern and western erato clades, but H. erato chestertonii – with an
incredibly different wing pattern – is basal to the western clade. So was the primal wing
pattern of chestertonii similar to that of hydara? Or is the mtDNA phylogeny, being
solely a representation of matrilineal heritage, not completely relevant to the complex
evolution of wing patterns, which requires an understanding of the nuclear genes and
recombination? Answering such questions is well beyond the scope of this essay – but they
demonstrate how a maximum likelihood tree search, statistically evaluated by comparing
the likelihoods of nearest-neighbour trees, can squeeze out more information from a given
data set than a maximum parsimony analysis.
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6. Discussion

6.1.Theoretical basis for the ML method in molecular phylogenetic
inference.
This report has presented an extension of the usual likelihood function for a tree describing
a molecular data set. This super-tree likelihood is a function of the lengths of all possible
taxon bipartitions. It is defined to have the desirable property that for a given tree, the
super-tree likelihood function reduces to the usual likelihood function (Felsenstein, 1981)
under that tree hypothesis when bipartitions not in the tree are set to zero. Thus,
theoretical uncertainties that appear to arise in the usual ML method – where the
likelihood function appears to take a different form for different tree topologies (Nei, 1987)
 –  are not a problem from the super-tree perspective. In particular, the phylogeny
estimation problem is seen to be one of the traditional form of choosing between composite
hypotheses, given a likelihood function. The solution is to maximise the likelihood over
each tree hypothesis: the usual ML method. It should be noted that for general models, the
super-tree extension of the likelihood function is not unique or necessarily simple (as it is for
the simplest binary model), but it is always definable – and the fact that it exists in
principle provides the theoretical basis for the usual ML procedure.

The resulting likelihood value for each tree (normalised to the sum of likelihood
values over all considered trees) gives an estimate of confidence Pl(tree) in the tree which
behaves intuitively, as has been shown by numerical simulation. This estimate of
support – unlike the bootstrap support value or, in some cases, the MAP value in the
Bayesian analysis of Rannala and Yang (1996)  –  does not give a misleadingly high value
in the cases where the wrong tree happens to be the ML tree.

Why then have most authors avoided directly interpreting likelihood ratios as
giving quantitative estimates of posterior odds of different trees? The validity of the
likelihood analysis depends on the accuracy of the assumed evolutionary model. If, for
example variation of the mutation rate at different sites is not taken into account, the log-
likelihood differences between different trees tends to be exaggerated (see, e.g., Table 5, for
primate mtDNA data under the simplest JC69 model). The likelihood-based support value
in such an analysis would therefore be skewed near 100% for the maximum likelihood tree,
even if it is the wrong tree. It is no wonder then that the more conservative support
measures, like exp[∆l12/σ(∆l12)] [where σ(∆l12) is the estimated variance of the log-
likelihood difference; see (Jermiin et al., 1997)] and the bootstrap support have been
proposed as support indicators in such incomplete analyses. As this report has shown, the
likelihood-based supports are more appropriate (and easier to compute) than these
alternative, possibly misleading measures, as long as the assumed evolutionary model is
indeed a correct description. To check the model’s validity, some basic consistency checks
have been presented in this report, two of which [comparison of (lmax– lbest) and (lalternative– lstar)
to a normal distribution estimated as in Appendix B, and to a (1/2)χ2

0+(1/2)χ2
1 distribution,

respectively] require little extra computation.

6.2. What if the analysis does not pass a consistency check?
For rather general evolutionary models, none of the DNA-based, amino-acid-based, or
codon-based analyses of the α/β globin data set of Section 4.2 pass both the (lmax– lbest) and

the (lalternative– lstar) consistency checks, even for the third codon position nucleotide data. The

fact that the likelihood ratio tests are actually quite conservative tests [the statistics (lmax–

lsuper) and (lsuper– lbest), which are more difficult to evaluate, provide more powerful checks;
see Section 4.] means that the data is not described at all well by the evolutionary
model – it would be dangerous to proceed with the phylogeny inference.

Why would the data fail the consistency check? Several possible problems can be
identified, including use of wrong transition matrix, the presence of different selection
pressures on different lineages, recombination, and correlations of (“compensating”) site
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mutations. In the first case, the fit can be improved with a more appropriate transition
matrix. For example, one might use structural information to find different matrices for, e.g.,
trans-membrane helices and hydrophilic polar residues. See, e.g., (Liò et al., 1998); (Liò
and Goldman, 1999) for promising approaches.

In the second case, where selection pressures are different among different lineages,
the fit might be somewhat improved by allowing non-synonymous substitutions to become
more favourable along different lineages. The best bet, however, might be to guess which
sites are under strongest selection pressure, and to either throw them out of the phylogenetic
analysis, or to somehow carefully model the selection process. For example, the third codon
positions of the α/β globin data set appear to have statistically distinguishable nucleotide
frequencies in the different taxa; if one can understand the cause of this variance, it could be
included in the likelihood model.

In the third case, recombination, the analysis will fail to resolve short internal
branches corresponding to fast radiations of species. The data set would then be expected to
fail the consistency check if it contains separate segments that support different trees
(corresponding to the different ways genes have fixed after being shuffled around by proto-
species during the radiation). A better analysis might then be to divide the data into
physically separate genes, and to compare the ML trees from each gene.

Finally, most ML analyses assume that mutations at different sites are
independently distributed (i.d.) of each other; but for protein-coding and RNA genes this is
usually not the case, as mutations often occur in tandem to prevent distortion of the three-
dimensional structure or sabotaging the chemistry of the relevant protein/RNA molecule. In
such cases where several sites are under selection to change simultaneously, the i.d.
assumption gives too much credence to several mutations which should really all be
considered a single “event”. To avoid this danger, one might hope to incorporate structural
information or other such prior knowledge in designing the likelihood model that accounts
for correlation of mutations at separate sites.

6.3. Comparison of super-tree function to “phylogenetic networks”.
Strimmer and Moulton (2000) have also recently given a generalisation of the likelihood
function for evolutionary trees to a more general "phylogenetic network" as a directed
graphical model. Despite sharing some superficial similarity with the super-tree model
presented here [for example, Figure 5c in their paper is identical to Figure 5 in this report],
the approaches are quite distinct.

In the phylogenetic network approach, a graphical “network” model containing the
full set, or a subset, of bipartitions is drawn. It is rooted at a prescribed node, and all edges
in the tree are given a direction pointing away from the node. Then, the usual calculation of
site pattern probabilities [see, e.g., eq. (10)] needs to be modified, since now each node may
have more than one "parent". In particular, Strimmer and Moulton (2000) specify that the
probability P(x|y ,z) of observing a state x given parents y  and z separated by edges ty and tz,
respectively, to be p yPyx(ty) + p zPzx(tz), where p y and p z are pre-specified “prior”
probabilities.

As a simple example, take the four taxon tree, but with the constraint
tA = tB = tC = t III = 0, with the simplest binary model. The super-tree approach would give
the probability of observing the same character at a given site in all four taxa as [see eq.
(13)]:

    
psame

(super-tree) =
1
8

1 + e −2 tI( ) 1+ e −2tII( ) 1+ e −2tD( ) (24)

In the approach of Strimmer and Moulton, if the root is specified at the internal node
closest to with B, C, or D (see Figure 5), the site pattern probability for the phylogenetic
network will be the same as the expression above. If the root is taken at node A, however,
one obtains:

    
psame

(network) = psame
(super -tree) +

1
8

precomb 1+ e −2tI( ) 1− e −2tII( ) + 1 − precomb( ) 1− e −2tI( ) 1+ e−2tII( )[ ] 1− e−2tD( ) , (25)
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where p recomb is some pre-specified prior probability of the sequence flowing from the root
through I and then II. Strimmer and Moulton suggest interpreting p recomb as a "recombination
frequency". The differences between the phylogenetic network and super-tree approaches is
now clear. Firstly, the phylogenetic network approach is not unique, since it requires the
specification of a root, and a set of prior probabilities like p recomb. In contrast, the super-tree
likelihood is independent of rooting (for reversible models) and of the values of any new
parameters.

Secondly, the question arises: how should one specify the root and p recomb in the
phylogenetic network model? Strimmer and Moulton (2000) suggest the choice of a root
which produces a maximum likelihood; however the likelihood function in the different-
root cases will be different, so the comparison of the different rooting hypotheses is
questionable, for the very reason that the usual ML method of phylogeny estimation was
questioned (Yang et al., 1995). Even if the root can be specified (for example, by a known
outgroup), determining p recomb poses a harder problem. For the simplest binary model, there
are exactly as many degrees of freedom (assuming equal character frequencies) as there are
possible bipartitions. Therefore, there is no way to constrain p recomb by the data in the
simplest binary model! [Even for more general models, it is clear that attempting to fit all
the extra p recomb parameters (which is Strimmer and Moulton's approach in their sample
data set) will dramatically increase the variance in the estimated branch length
parameters.] On the other hand, in the super-tree approach, there are no extra parameters
or necessary rootings.

Finally, the phylogenetic network and super-tree methods approach the limit of
usual evolutionary tree hypotheses in different ways. On one hand, in the equation (25)
above, both constraints t II = 0 and p recomb = 1 are required to obtain Tree topology I; the
constraints t I = 0 and p recomb = 0 give tree topology II. Note that the likelihood functions for
Tree I and Tree II have different parameter values for p recomb; thus the phylogenetic network
model provides no theoretical justification for comparing tree likelihoods. Statistical
evaluation of Strimmer and Moulton's approach relies on simulation, or RELL bootstrapping
(Kishino and Hasegawa, 1989). On the other hand, in the super-tree method, one simply
sets all bipartition lengths not in a given tree to zero. So, in the example of (24), one sets
t II = 0 or t I = 0 to get the Tree I or Tree II topology, respectively. Thus, the same form of the
likelihood function with all the same evolutionary parameter values are being compared in
the different trees, and the theoretical basis for likelihood methods in tree selection is
clear. In particular likelihood ratios between different trees can be properly interpreted as
posterior odds of the trees.

6.4. Comparison of ML to other phylogeny inference methods.
Having established that the likelihood is theoretically justified in its application to
phylogeny inference, other existing methods seem less desirable. Here, the methods of
parsimony, minimum evolution, and spectral analysis are described in terms of consistency
and statistical evaluation.

Maximum parsimony is known to be inconsistent for trees with long branches
separated by internal branches; and corrected versions of parsimony do not have a
theoretical basis, aside from a vague invocation of Occam's razor. Statistical evaluation
usually relies on bootstrapping, or Bremer/decay supports (Bremer, 1998) measured in
integer units, but it is not clear how to generally interpret these values.

Distance-based methods may be more promising for phylogenetic inference based on
non-molecular data. The theoretical basis for the “minimum evolution” procedure has been
established for the problem of phylogeny inference based on a pair-wise distance matrix
with statistically independent entries (as would be obtained from DNA hybridisation
experiments). See (Rzhetsky and Nei, 1993). This distance-based theory, however, has not
been extended to phylogeny inference based on comparison of known molecular sequences.
Again, statistical estimation usually relies on the hard-to-interpret bootstrapping, or
testing the positivity of internal branch lengths, which is known to be liberal
(Sitnikova et al., 1995).

Finally, the spectral analysis (Hadamard conjugation) method (Hendy et al., 1994;
Waddell et al., 1997) has some similarity with the super-tree perspective in that it



49

produces length estimates for all possible internal bipartitions. However, the Hadamard
transform used in that method does not extend to more general evolutionary models with,
e.g., unequal character frequencies. Moreover, in spectral analysis, heuristic methods, like
parsimony or a “closest-tree” fit, are applied to the bipartition length estimates to yield a
tree; and also, statistical evaluation, except via a heuristic measure of “conflict”,
bootstrapping (Lento et al., 1995), or extensive numerical simulation (Waddell et al., 1994),
appears difficult.

Thus, ML phylogeny inference appears to be the only existing method with a firm
theoretical basis in addition to an easy-to-measure estimate of statistical confidence (the
likelihood ratio) that conforms to intuition. But maximum likelihood does have its
disadvantages. Firstly, for large numbers of taxa and for more general evolutionary models,
ML requires heavy computational power. However, modern programs like fastdnaml (Olsen
et al., 1994a) take less than half an hour on modern workstations to estimate the overall
maximum likelihood tree for data sets as large as 60 taxa (1000bp DNA sequences) via an
uphill climb with an assumed HKY85 model, as shown in Section 5.4 for Heliconius race
formation data. The guess can then be refined by, e.g., checking nearest-neighbour trees
with more general evolutionary models implemented in PAML. Evaluation of the relevant
star trees, and the maximum possible value of the likelihood is also quick; it is therefore
straightforward to perform the consistency checks based on the (lmax – lbest) or the

(lalternative – lstar) statistics. Then comparison of likelihood ratios of the best tree with, say, the
trees obtained by nearest neighbour interactions, allows for likelihood-based support
values to be assigned to each internal branch.

Possibly the biggest problem with ML (and indeed with the other phylogenetic
inference methods available) is our incomplete understanding of the basic biological
processes involved in molecular mutation, as is evidenced by the rejection of several of the
data sets in Section 5 by the likelihood ratio tests discussed in Section 4. Hopefully, as
recombination, purifying/positive selection due to chemical and structural constraints on
the coded tRNA/proteins, compensating mutations, etc., are better understood, these effects
will be properly incorporated into likelihood-based programs. The resulting, ever more
sophisticated analyses, in a likelihood framework, will surely illuminate the
contradictions that currently abound in molecular phylogenetics.
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Conclusions
Before summarising the main points of this report, it is informative to compare what was
originally intended to be researched to what has actually been investigated for this M.Res.
summer project. The original proposal (from 2 May, 2000) was to study the relation of
"distance-based" methods as approximations to the likelihood-based methods of molecular
phylogenetic inference. In fact, some progress was made in approximating a tree likelihood
by a formula containing only the tree branch lengths (results not reported here). However,
after reading about the conflicting results of maximum likelihood analyses applied to real
data [see, e.g., (Zardoya et al., 1998), and (Hedges et al., 1990)] and the theoretical
uncertainties of ML as posed by Nei (1987) and Yang et al. (1995), the author became
concerned with his basic assumption – that the likelihood function was worth
approximating!

The author's research has therefore been pushed to deeper questions: Is maximum
likelihood theoretically justified for molecular phylogenetic inference? Can likelihood
ratios between different trees be "literally" interpreted as posterior odds of the trees? Are
evolutionary models assumed in the current generation of ML analysis programs adequate
for describing the complexities of real molecular data? The following conclusions have been
reached:

• A "super-tree" likelihood expression has been constructed – explicitly for the simplest
binary model – which is a function of all possible bipartition lengths, and which
reduces to the individual tree likelihood functions when bipartitions not in a given
tree are set to zero. The construction can be generalised to more general models of
molecular mutation. Thus, different tree hypotheses can be considered composite
hypotheses residing in a single super-tree space, and described by a single super-tree
likelihood function.

• Therefore, the likelihood ratios of different trees can indeed be interpreted as the
posterior odds of the trees. As is shown by simulation, tree support values based on
likelihood ratios provide an intuitive indicator of tree selection accuracy, while
bootstrap supports [and possibly the "integrated" likelihood values of the MAP
analysis of Rannala and Yang (1996)] can be misleading.

• A set of "consistency checks" have been presented to test how adequate an evolutionary
model describes a given data set. Two of the tests are particularly straightforward,
involving the log-likelihood differences between the maximum possible log-
likelihood value and the ML tree, and between an alternative tree (obtained by
nearest-neighbour interchange around a given branch in the ML tree) and a star tree.

• The consistency checks have been applied to four real data sets, and are shown to reject
the HKY85+Gamma model (which takes into account unequal nucleotide frequencies,
transition/transversion bias, and site-rate-variation modelled as a Gamma
distribution) for several of these ML analyses, including the ones for third codon
positions in α and β globin genes from five mammals and in mtDNA data from
Heliconius erato butterflies.

• Considering the inadequacy of present models of molecular mutation in describing these
real data sets, ML analysis should, at present, be considered a "heuristic" procedure
for most molecular data. However, such (tentative) ML analyses can still illuminate
more phylogenetic information in a given data set than, for example, maximum
parsimony methods, as is exemplified by likelihood-based analyses in Section 5 of
the position of the Eueides clade with respect to the passion-vine butterflies of genus
Heliconius, and of the geographic structure of race formation in Heliconius erato and
Heliconius melpomene.

Thus, the likelihood framework is theoretically justified for molecular phylogenetic
inference. As the complex biological processes that affect molecular mutation – from special
structural and chemical constraints on the coded protein/tRNA, to correlation between
different mutations, to variation in selection pressure over time – are better understood,
they will hopefully be included in (and analysed by) ever-improving likelihood programs,
which will, in turn, make more reliable phylogenetic inferences.
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Appendix A
This appendix outlines the procedure for designing a super-tree likelihood function which
reduces to the usual tree likelihood function when the lengths of bipartitions not in a given
tree are set to zero.

The basic idea here will be to re-write the formulas for the predicted site pattern
probabilities in a given m-taxon tree as the sum of several exponentials of “path-sets” (i.e.,
linear combinations of bipartition lengths). The two-taxon case is the simplest example.
Given the c×c instantaneous transition matrix Q of an evolutionary model for c characters
[so that the time evolution of the column vector of character probabilities P is given by
dP/dt = Q P] the transition probability matrix for two taxa separated by time t can be found
by diagonalizing Q. In particular, the c eigenvectors of Q, with eigenvalues λ0, λ1, ... λc–1, are
arranged into the columns of a matrix U = {uij}. Also, denote U–1={v ij}. Then it is easy to
show that the probability matrix is

 

      

pij(t){ } = exp(Qt) = U  
exp(λ0 t)

O

exp(λc−1t)
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 
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 
 
 U−1 = uim exp(λmt)vmj

m
∑ ,         (A1)

Note the convention here: p ij(t) is the probability of the character state j becoming the
character state i after time t. The eigenvectors (“channels”) provide an alternative basis
from the usual character states (which correspond to unit vectors); in the channel basis, the
time dependence is particularly simple (exponential). Note that if non-diagonal entries of
Q are positive (the usual case), and if probability is conserved, one is guaranteed to have
the largest eigenvalue as λ0=0, with the components of the corresponding eigenvector
proportional to the equilibrium character frequencies.

Now, this process of decomposing formulas into “channels” can be extended to the
general m-taxa case. Consider finding the probability of finding site pattern xyzw for a
four-taxon tree like Tree I in Figure 3. The usual sum over internal states, arbitrarily picking
taxon A as the “root” (the final answer is independent of the choice of root for reversible
models; Felsenstein, 1981) is, with summation over indices suppressed:
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For a general m-taxon tree and site pattern, the formula is similar. There is a sum over
exponentials corresponding to possible “channel”-assignments (or “path-sets”) to the
branches of the tree. The coefficients of these exponentials is determined by a set of terms
like {πx vmxuynuzruws }which give the transformation from the basis of usual character states
to the basis of “channels”, eigenvectors of Q. Finally, there are a set of “vertex” operators
like Vmnk=∑uimvniv ki which encode factors to assign for each trisection of channels. For simple
models, the vertex operator is zero for many types of channel intersections; the operator can
then be concisely presented diagramatically as a set of “allowed” vertices (those producing
non-zero factors) with corresponding operator values.
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Figure A1. The vertex operator, in diagrammatic representation, for the simplest binary model. If the following
channel intersections occur in the tree, a factor of 1 is given to the path-set; other intersections give factors of zero
(i.e., are disallowed).

For the simplest binary model,

    
U =

1
2

1 1
1 −1

 
  

 
  ; (A3)

U–1 = 2 U; and the vertex operator is diagrammatically presented in Figure A1. There are
two channels, the “equilibrium” (λe = 0) and “changing” (λc = –2) channels. Based on these
diagrammatic rules, it is easy to see that the only path-sets that will be included in a
formula for a given site pattern are those which have c-channels threading through the
tree in connected, non-intersecting lines; see the examples in Figure A2. For a given site
pattern the coefficient of the exponential is determined by assigning a factor 1/2 to each
taxon starting in an e-channel, and a factor ±1/2 (sign depending on the taxon’s character for
that site pattern) for each taxon starting in a c-channel. The factors are multiplied to yield
a coefficient ±1/2m. With these rules for finding the formulas for the site pattern
frequencies, the log-likelihood function for a given tree is l = ∑ nilogp i, summed over all site
patterns.

How then can one define a super-tree likelihood function? For an m-taxon tree, the
predicted site pattern probabilities take the form of a sum of several exponentials of sums of
the bipartition lengths t. For the simplest binary model above, there are 2m–1 such
exponential terms, each corresponding to an allowed path-set; and each path-set term is
uniquely determined by which pair (or quartet, hextet, etc.) of external branches is given
channel label c. For different trees, there will be the same path-sets contributing to a given
site pattern probability; only the internal bipartition lengths going into the exponent of
each path-set term will be different. To produce a formula for a super-tree site-pattern
probability, one includes in the exponent of each path-set term any bipartition length that
might show up for any tree. By construction, then the site-pattern probability reduces to the
usual formula for a given tree when bipartitions not in that tree are set to zero. This is the
procedure used to find eq. (13) for the four-taxon tree in Section 2.4.

A similar, well-defined procedure can be defined for finding the super-tree site
pattern probabilities for a Kimura 3-state model, where the instantaneous transition
matrix is:

Q = 
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Figure A2. Two sample path-sets for a 10-taxon tree. For each path-set – a labelling of each branch with a channel
(light lines are the “e” channel; dark lines are the “c” channel)   –   there is an exponential term in the site pattern
probability, with the exponent proportional to the sum of the lengths of all c-branches.

The matrix of eigenvectors is then:

    

U =
1
4
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and U–1 = 4 U . The eigenvalues of the channels are λe = 0; λc1 = –2 – 2κ2; λc2 = –2κ1 – 2κ2; and
λc3 = –2 – 2κ1. The diagrammatic vertex rules are given in Figure A3. Again, each site
pattern probability is a linear combination of path-set exponentials. It can be shown that
for any given tree, each path-set can be uniquely indexed based on the channel-labeling of
the external branches only. Thus the site pattern probability for the super-tree can again be
determined by including in the exponents of each path-set term all bipartition lengths that
might show up for any tree.

The above construction of the super-tree fails for more general models. For example,
in the binary model with unequal frequencies, the instantaneous rate matrix is:

    
Q =

−π 1 +π0

+π 1 −π0

 
  

 
  , (A6)

and the matrix of eigenvectors, and its inverse can be written as:
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π0 +1/ 2
π1 −1/ 2
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with eigenvalues λe = 0 and λc = –2. The diagrammatic vertex rules are those given in Figure
A4. However, here the path-set cannot be indexed solely based on the channel-labelling of
the external branches; see Figure A5. Thus, it is somewhat arbitrary to decide which
pathset in a given tree corresponds to a given pathset in a different tree. The procedure for
defining the super-tree site pattern probability is still possible, but not unique.
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Figure A3. The vertex operator, in diagrammatic representation, for the Kimura 3-state model. If the following
channel intersections occur in the tree, a factor of 1 is given to the path-set; other intersections give factors of zero
(i.e., are disallowed).
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Figure A4. The vertex operator, in diagrammatic representation, for the binary model with unequal frequencies. The
following channel intersections give non-zero values. In particular, the third vertex gives a factor proportional to
π0 – π1, and is therefore zero only in the equal frequency case (see Figure A1).
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Figure A5. Two path-sets which contribute separate exponential terms in the formulas site pattern probabilities for
the binary model with unequal frequencies, but which have the same channel labelling of external branches.

For models like HKY85 for DNA sequences the Dayhoff matrix for amino-acid
sequences, the result is the same: the super-tree site pattern probabilities can be defined, but
not necessarily uniquely.16 Indeed, the super-tree probabilities given above for the simplest
binary model and the Kimura three-state model are not unique, either. Those simple
procedures can easily be modified by extra terms which will not perturb their limits for
individual tree hypotheses. However, the procedures above are useful for obtaining well-
defined, especially simple formulas, with intuitive properties like the additivity relation
for pair-wise distances given in Section 2.4 for the simplest binary model. Defining such
procedures for more general models, possibly based on geometrical pictures like Figure 3, is
currently under investigation.

Appendix B
The mean and variance of the normal distribution of statistics like (lmax– lI) described in
Section 3.1 are approximated as follows. For a finite number of sites n, the full cm–1 site
patterns are not expected to be seen in the data set; indeed, many real data sets are
dominated by sites which are the same in all or most taxa [“sparseness” of the data; see,
e.g., (Goldman, 1993), (Yang et al., 1995)]. A first guess might be to assume that each site
pattern with non-zero frequency constitutes one degree of freedom; the contributions of each
degree of freedom to the mean and variance of (lmax– lI) are 1/2 and 1/2, respectively. The
overall mean and variance would be predicted to be (npatt–nparam)/2 and npatt/2, respectively.

In actuality, site patterns which do not appear in the given data set still make a
contribution to the mean and variance of (lmax– lI). Given the expected probability p i of a

given site pattern, the contribution of that site pattern to the mean and variance to (lmax– lI),
under Poisson statistics, are explicitly
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        (B1)

The functions for the mean and variance are plotted in Figure B1; it is seen that both
functions approach 1/2 quickly for pi > 1, but are nevertheless non-vanishing pi<0. For a real

                     
16 It is clear, in fact, that the super-tree site pattern probabilities can be defined for  any model, reversible or not.
Basically, in describing the site pattern probabilities, there are (N – 1) × 2B possible pathset coefficients, where B is the
number of possible bipartitions times the number of characters, and N is the number of site patterns (cm). One can
always choose the coefficients to satisfy the smaller number of (N – 1) × 2[c (2m – 5)] constraints obtained in forcing the
super-tree likelihood function to reduce to the usual tree likelihood functions when bipartitions not in a given tree
are set to zero.
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data set, one thus needs estimates of pi for all site patterns with predicted frequencies
greater than, say, 1/10; the accuracy of the estimates for pi > 1 is not terribly critical. This
estimation can easily be done for a given data set by optimising branch lengths and
evolutionary parameters for any tree close to the expected maximum likelihood tree. The
resulting parameters are then used in, e.g., PAML's evolver program, to simulate a data set
with, say, 10 times as many sites as the data set under consideration. Then the formula (B1)
is applied to non-vanishing site pattern frequencies of the simulated data set, and summed
to find the overall predicted mean and variance of the (lmax– lI) distribution. If a number

nparam of parameters are fitted to obtain lI, the predicted mean should be decreased by
approximately nparam/2. In this report, for DNA and amino acid data, a simulated data set
100 times and 10,000 times, respectively, the length of the real data set is constructed.

Of course, an alternative way to find the predicted mean and variance would be to
actually do, say 100 simulations of data sets of the same length as the real data set, and to
find (lmax– lI) for each replicate. See Yang (1994) for examples. This latter procedure is
generally much more time-consuming, since the likelihood parameters need to be optimised
for each simulated replicate. Estimates from both procedures agree (see Figure 11).
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Figure B1. Mean (dark thick line) and variance (grey thin line) of l– l max for Poisson distributions with different
expectation values.


