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ABSTRACT
Motivation: For high-throughput prediction of the helical arrangements
of large RNA molecules, an innovative method termed multiplexed
hydroxyl radical (·OH) cleavage analysis (MOHCA) has been
proposed (Das et al., 2008). A key step in this promising technique
is to detect peaks accurately from noisy radioactivity profiles. Since
manual peak finding is laborious and prone to error, an automated
peak detection method to improve the accuracy and throughput of
MOHCA is required. Existing methods were not applicable to MOHCA
due to their high false positive rates.
Results: We developed a two-step computational method that can
detect peaks from MOHCA profiles in a robust manner. The first
step exploits an ensemble of linear and nonlinear signal processing
techniques to find true peak candidates. In the second step, a binary
classifier trained with the characteristics of true and false peaks
is used to eliminate false peaks out of the peak candidates. We
tested the proposed approach with 2002 MOHCA cleavage profiles
and obtained the median recall, precision, and F-measure values of
0.917, 0.750, and 0.830, respectively. Compared with the alternatives
considered, the proposed method was able to handle false peaks
substantially better, thus resulting in 51.0–71.8% higher median
values of precision and F-measure.
Availability: The software and supplemental data are available at
http://dna.korea.ac.kr/pub/mohca.
Contact: sryoon@korea.ac.kr

1 INTRODUCTION
Determining ribonucleic acid (RNA) structures is critical for
biological research. Despite advances in related technology and a
large effort to uncover RNA structures, progress has been slow due
to the challenges in processing thousands of RNA samples in a high-
throughput manner. Among many techniques developed to constrain
RNA structure models, hydroxyl radical cleavage patterns have been
used to acquire accurate residue-residue distance constraints. In
spite of its accuracy, it is still unwieldy to investigate the structure of
a large RNA molecule using the cleavage mapping method, because
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it is laborious and expensive to tether cleavage agents to each residue
in a large RNA molecule.

For high-throughput prediction of large RNA molecules, Das
et al. (2008) proposed an innovative method termed multiplexed
hydroxyl radical (·OH) cleavage analysis (MOHCA). This method
randomly incorporates radical cleavage agents followed by two-
dimensional gel electrophoresis to detect pairs of contacting
residues within a structured RNA molecule. The information on
residue-residue interactions is then translated into constraints for
modeling tertiary structure with the fragment assembly of RNA
(FARNA) method (Das and Baker, 2007).

A flowchart of MOHCA is shown in Figure 1(a). To randomly
incorporate cleavage agents into RNA, Das et al. (2008) first
performed in vitro transcription of the RNA in the presence of a
modified nucleotide triphosphate (one type at a time) at a frequency
of one modification per RNA. The modified nucleotide contains a
2’-amino group for attachment of the cleavage agent (an Fe-EDTA
chelate) and a phosphorothioate group for specific cleavage to locate
the position of the cleavage agent. Then the RNA is radio-labeled
and a cleavage agent is tethered to the modified nucleotide. The
pool of RNA molecules is gel purified and folded to the desired
state, and radical generation is initiated by reducing Fe(III) to
Fe(II). The cleavage products are separated by polyacrylamide gel
electrophoresis to identify the cleavage position. The cleaved RNA
molecules in the gel are then treated with iodine to induce backbone
scission at the phosphorothioate and separated in the orthogonal
dimension to identify the position of the responsible cleavage agent.

Figure 1(b) shows the image of a 2-dimensional MOHCA gel,
where each vertical strip represents a cleavage profile generated by a
different source residue. The cleavage profile due to a radical source
at A115 (Adenosine at 115) for the gel is shown in Figure 1(c) with
four replicates independently prepared. In each cleavage profile,
the peak location corresponds to the location of the nucleotide hit
by the radical source at A115. Since the sequence of the sample
RNA is already known, one can deduce the type of nucleotide at the
position indicated by the peak. Secondary structure of the molecule
(Figure 1(d)) is then generated with the constraints inferred from the
gel, and its tertiary structure is determined by FARNA (Figure 1(e)).

A key step in the entire MOHCA method is therefore to accurately
detect the peak location in each cleavage profile. The peak locations

1© The Author (2009). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

Associate Editor: Prof. Anna Tramontano

 Bioinformatics Advance Access published February 26, 2009



Kim et al.

Transcription reaction

Radio-labeling

Coupling of 2'-amino-2'-

deoxy nucleotide-modified

RNAs to ITCB-EDTA and

Fe(III) loading

Gel purification

OH cleavage

Gel separation in the first

direction

I2 cleavage

Gel separation orthogonal

to the initial direction

Semi-automated analysis

of MOHCA gels

Quantitative analysis of

MOHCA cleavage patterns

.

(a) (b) (c) (d)

25 Å

(e)

Fig. 1. Inferring RNA structure by MOHCA (Das et al., 2008). (a) Flowchart of MOHCA. (b) A sample MOHCA gel image with cleavage agents tethered to
adenosine. (c) The cleavage profile (red) due to Fe(II) tethered at A115 for the gel in (b) and four replicates. (d) The native secondary structure for the P4-P6
domain of the Tetrahymena ribozyme with the constraints inferred from the gel in (b) overlaid. Cleavage agents (filled circle) are connected to representative
cleaved residue (open circles). (e) A structural model using FARNA constrained by MOHCA with rainbow coloring from blue (5’) to red (3’).
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Fig. 2. Five cleavage profiles from an actual MOHCA experiment. In each
profile, the x and y axes correspond to the position of ·OH cleavage and
intensity, respectively. Each potential hit judged by eyes is marked with a
solid dot. Any hits that appeared to be gel smudges, nucleases, or spectator
hits (i.e. present in other profiles) are marked with open circles. Each profile
shares a background cleavage pattern due to the occasional presence of extra
spectator sources on the RNA. This background often has apparent peaks,
but these are not correct hits. The dotted lines mark where RNA products
corresponding to different cleaved residues would run on the gel.

in each profile correspond to the position of the nucleotides that
are interacting with a radical source, and the peak detection
performance will eventually affect the quality of structure inference
to a great extent. Consequently, in the original MOHCA study, the
peak location in each cleavage profile was selected and verified
manually, which limited the overall throughput of MOHCA.

Due to gel smudges, nucleases, heterogeneous remnants
from cleavage events, and the additive noise from observation
instruments, the cleavage profile is usually very noisy and contains
many false peaks. This makes it challenging to automate the peak
detection process. For example, Figure 2 shows five cleavage
profiles from an actual MOHCA experiment. The top profile
indicates that the resulting cleavages (as shown by peaks) occur
by the radical source at position 113, and the hit nucleotide is the
residue at position 207. Small peaks at position 199, 172, and 155
are considered as false positives. The true “hit” is indicated by a
black dot and the false hits by white dots.

The conventional techniques we tested tend to erroneously
filter out important signals while preserving false peaks. For
instance, continuous wavelet transform-based pattern matching
(CWT) (Du et al., 2006) and the PROcess package included in
Bioconductor (Gentleman et al., 2004), which were developed
mainly for analyzing mass spectrometry data, show rather
unsatisfactory detection performance on MOHCA profiles. In
addition, popular signal processing techniques such as low-pass
filtering (LPF; Oppenheim and Schafer, 1989) followed by zero-
crossing detection in the derivative produce too many false peaks.
Using these existing methods typically results in high misdetection
rates and is of little use for MOHCA peak detection.

We propose a new computational method for accurately detecting
peaks from many MOHCA profiles in a high-throughput manner.
As outlined in Figure 3, the proposed approach consists of two
major steps called intra-profile peak detection and inter-profile peak
analysis. The first intra-profile step considers individual cleavage
profiles and collects peak candidates from each profile using an
ensemble of sophisticated signal processing techniques. The focus
of this step is to reduce false negative rates or to discover as
many true peaks as possible. It is thus possible that the peak
collection may contain false positives. The second inter-profile step
is to eliminate such false peaks by considering multiple cleavage
profiles simultaneously. To distinguish true and false peaks, we
use an SVM-based binary classifier (Bishop, 2007) trained with
labeled peaks with respect to features extracted from both spatial
and Fourier domains. We next describe our results in detecting peaks
by the proposed method from cleavage profiles collected from actual
MOHCA experiments.

2 RESULT AND DISCUSSION
We tested the proposed peak detection method with the profiles
obtained from 2002 gels used in 79 batches of MOHCA
experiments. These gels covered all possible radical source
attachment points, both 5’ and 3’ labeled samples, and different
RNA solution conditions. Our technique was then compared with
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Fig. 4. We defined TP, FP, and FN peaks as detected true peaks, falsely
detected peaks, and undetected true peaks, respectively.

several alternatives including CWT (Du et al., 2006) and LPF-
based methods (Oppenheim and Schafer, 1989) in terms of three
widely-used performance measures — recall, precision, and F-
measure (Witten and Frank, 2005; Manning and Schütze, 1999). The
execution time and space requirement of all the techniques tested
were negligible and not compared.

CWT was chosen because it is one of the most advanced
algorithms in terms of robustness, efficiency and ease of use.
Although CWT was originally developed for mass spectrometry
data, it was able to detect peaks in MOHCA profiles to some
extent. The LPF-based technique was included due to its popularity
and wide applicability in the signal processing area. Besides, we
tested the PROcess package included in Bioconductor (Gentleman
et al., 2004) but failed to make it detect any meaningful peaks,
and no further result comparison were made for PROcess. There
also exist deconvolution-based peak detection techniques for gas
chromatography data (e.g. Vivó-Truyols et al., 2005), but they were
not included in comparison since we found that MOHCA peaks do
not fit well the peak model used in these methods.

Figures 5–9 summarize our results; more details of the profiles
used and the full statistics obtained are available in the supplement.
For notational convenience, we refer to the tested methods by the
short labels defined in the caption of Figure 5. Of note is that a
partial implementation of our approach, namely the first intra-profile
step alone, was included in comparison. We wanted to assess how
well this part performs by itself and how much performance gain the
second inter-profile step adds thereafter.

In order to compute precision, recall, and F-measure, we defined
true positive (TP), false positive (FP), and false negative (FN) peaks
as illustrated in Figure 4. Note that true negatives cannot be defined
in our context. Recall is given by TP

FN+TP and indicates the fraction
of detected true peaks out of all true peaks. The maximum value
of recall is 1, and recall decreases as the number of undetected
true peaks (i.e. false negatives) increases. Precision is defined as

TP
TP+FP and represents the portion of true peaks out of all detected
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Fig. 5. (Updated) Performance comparison: recall, precision, and F-
measure values measured over 2002 MOHCA profiles. The line in the middle
of a box indicates the median position, and the upper and lower boundaries
represent the locations of the 75th and 25th percentiles, respectively. Symbol
+ indicates an outlier. The peak detection methods used and their labels
are as follows: P: proposed method, Pi: proposed method (intra-profile step
only), C1: CWT (SNR > 1), C5: CWT (SNR > 5), C12: CWT (SNR
> 12), L21: 21-tap LPF, L101: 101-tap LPF, L1001: 1001-tap LPF. The
normalized passband frequency of all LPFs is 0.01. Refer to the supplement
for additional results.
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Fig. 6. (Updated) Peaks detected from a typical profile set by the different
techniques tested (profile set used: mk84-Abomb-5prime-Unfolded). The
proposed method detects much fewer false positive peaks than the
alternatives.

peaks. A perfect detector would have precision of 1, but precision is
lowered if false peaks are detected. F-measure can combine recall
and precision into a single performance measure and is defined
as 1

α/Precision+(1−α)/Recall , where α is a parameter determining the
weighting of precision and recall. The F-measure of a perfect peak
detector would be 1.

Figure 5 compares the proposed method with the alternatives
with respect to the three comparison criteria. As far as recall
is concerned, all the techniques tested resulted in high values,
suggesting that few true peaks went undetected by using any of
these methods. However, the precision of the proposed method
was significantly higher than that of the others. This indicates that
the proposed technique would typically detect much fewer false
peaks (see Figure 6 for an example). Furthermore, the F-measure of
the proposed method was much higher due to its higher precision.
Figure 5 also reveals how the proposed technique achieves its
performance advantage over the alternatives. The first intra-profile
step seeks to minimize the number of false negatives (or undetected
true peaks) to maintain high recall. The second step then prunes
out most false peaks detected by the first step, for achieving high
precision. Taken together, the proposed technique outperformed the
competing methods by a large margin: The median precision and
F-measure (α = 0.25) of our approach were higher by 64.0–71.5%
and 51.0–71.8%, respectively.

We further investigated how F-measure changes as varying α
from 0 to 1. Given that F-measure is equal to recall when α = 0
and gradually becomes precision as α increases to 1, this test would
reveal the relative performance of the compared techniques over all
possible combinations of weights on precision and recall. As plotted
in Figure 7, it is evident that the proposed technique consistently
produced the highest level of F-measure for most α values. The
performance of Pi and the LPF-based methods was slightly better
only around α = 0. Figure 7 also indicates that using only the
first half (i.e. label Pi) of our approach was sufficient to achieve
higher F-measure than that the alternatives could provide. The full
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Fig. 7. (Updated) F-measure comparison as α varies from 0 to 1. Each line
corresponds to the average F-measure value of a certain technique calculated
over 79 profile sets, and each vertical bar centered at the curve represents the
standard error range around the average.

implementation of our approach (i.e. label P) showed even better
F-measure leveraged by the second inter-profile step, only with a
negligible performance loss near α = 0.

One of recall and precision can be traded-off for boosting the
other, and suboptimal detectors would have near perfect recall but
very poor precision, or vice versa (Manning and Schütze, 1999). To
see how this trade-off occurs, we plotted in Figure 8(a) the two-
dimensional distribution of the precision and recall measured over
all the 2002 profiles. For clarity in presentation, only the mean and
standard deviation of each distribution are presented. As indicated
in the figure, the proposed technique maintained balanced precision
and recall over all the profile sets whereas the other methods skewed
more towards high recall. In addition, the average precision of the
proposed method was significantly higher, although the standard
deviation values of some alternatives were smaller.

In order to compare the baseline performance and robustness
to noise, we selected 494 “noisy” profiles out of the entire 2002
profiles and measured the precision and recall therein. The true
peaks appearing in these profiles were more difficult to distinguish
from false peaks, according to our manual assessment described
in Section 4.4. As shown in Figure 8(b), the impact of noise
on precision and recall was marginal for all the methods tested.
However, the performance of the proposed technique remained
superior to that of the alternatives, and the precision-recall balance
was also maintained well.

Besides the three performance measures, we also compared the
competing methods using the constraint maps of radical sources
and cleavage sites. If two maps of constraints look similar, that will
strongly suggest that the final RNA models predicted by FARNA
or other tertiary structure predictors will also look similar. Figure 9
shows two sets of such maps, where the dots in each map correspond
to the peak location predicted from the techniques in comparison.
The circles in the maps indicate the locations of manually picked
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Fig. 8. (Updated) Comparison of precision-recall distribution. Points of
different shapes indicate the locations of the average precision and recall
values of different detectors. Each two-dimensional error bar centered at a
point represents the range set by the standard deviation around the average.
More details of the 494 noisy profiles are available in the supplementary
material.

Table 1. The average MSE value of the constraint maps derived from
each detection method over the 2002 profiles (all values normalized to P).

Method P Pi C1 C5 C12 L21 L101 L1001

1.00† 2.82 16.5 7.46 3.95 14.0 14.0 10.0

†The original (unnormalized) value is 2.3744× 10−5

peaks. As is evident in Figure 9, the map derived from the proposed
method matches the manual map most closely. For more quantitative
comparison, we also calculated the mean squared error (MSE; Kay,
1993) of every map with respect to the corresponding manual map.
The average MSE value calculated for each method over the entire
2002 profiles is listed in Table 1; more details of computing MSE are
explained in Section 4.4. It is clear that our technique can provide a
constraint map that matches the manual map most closely.
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Fig. 9. Comparing maps of radical sources and cleavage sites. The x
and y axes represent the locations of radical sources and cleavage sites,
respectively, in an RNA sequence. A dot indicates the location of a predicted
peak either manually (labeled ‘Manual’) or computationally (labeled ‘P’,
‘C5’, ‘L21’, etc.). The location of a manually picked peak (i.e. a dot in
the ‘Manual’ map) is marked by a circle in the maps derived from the
computational methods.

3 CONCLUSION
We have developed a computational means to detect peaks
appearing in the cleavage profile curves of the MOHCA method.
The proposed approach combines signal processing techniques
with supervised learning in order to maintain high true positive
rates while suppressing detection of false peaks. Sensitivity and
specificity analysis was performed using 2002 profiles collected
from 79 batches of MOHCA experiments. The median recall,
precision and F-measure (α = 0.25) values achieved were
0.917, 0.750 and 0.830, respectively, outperforming the alternatives
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tested by a large margin, especially in terms of precision and
F-measure. These results suggest that our approach can be a
very effective tool for enhancing the throughput and accuracy of
MOHCA by automating its most time-consuming part, thereby
making high-throughput prediction of RNA structures by MOHCA
more attractive. Furthermore, it would be possible to apply our
approach to other peak detection tasks that are based upon similar
peak characterization and modeling.

4 METHODS
4.1 Characterizing peaks in MOHCA profiles
According to our analysis, the peaks appearing in MOHCA profiles possess
the following characteristics:

C.1) As the intensity and width of a peak candidate decrease, so does the
possibility of this being a true peak.

C.2) The largest peaks at the beginning and the end of a profile are not
true peaks but rather other features of the MOHCA pattern (bands that
are not cleaved in the first or second cleavage steps of the protocol,
respectively), and these two peaks should be ignored.

C.3) The possibility of a peak candidate being true decreases as its location
gets close to the beginning or end of a profile.

C.4) If multiple profiles have peak candidates at almost the same location,
then they are usually false peaks generated by spectator sources or gel
smudges, possibly except the case described in C.5).

C.5) Even if multiple profiles have peak candidates at similar locations, these
candidates are often true peaks if the profiles that contain those peaks
were extracted from close locations on the gel.

As is evident above, considering profiles individually is not sufficient, and
multiple profiles should be examined simultaneously for accurate detection.

4.2 Intra-profile peak detection
4.2.1 Motivation We first describe our approach to find peaks in each
profile. Denoting y(x) as an observation sequence, and g(x) and n(x) as
desired information and noise sequence, respectively, then the statistical
model of an observation is y(x) = g(x) + n(x), where g(x) is assumed as
a sampled sequence of well-behaved function g(t), t represents either time
or space, and the unpredictable portion of the signal n(x) is statistically
modeled as white Gaussian noise. In general, no statistic on the g(x) and
n(x) is given and only decision guideline of peak can be provided.

In the absence of noise, the peak detection problem can be easily
translated into a problem to find local maxima, and hence the points xk

satisfying ∂y(x)
∂x |xk = y′(xk) = 0 become the solutions (Bertsekas,

1999). In practice, due to the discrete nature of the sequence, difference
∆y(xk) = |y(xk) − y(xk−1)| is being used instead of derivative and
this method is implemented via the zero-crossing detection of the difference
sequence. That is, if ∆y(xk) is positive and ∆y(xk+1) is negative, we
choose xk (or xk+1) as a peak point. However, in this model where
the signal is surrounded by the noise, the problem becomes complicated.
Consider the derivative of y(x) given by y′(x) = g′(x)+n′(x). Typically,
the derivative operator ∂

∂x amplifies the noise fluctuations since they contain
high frequency components. Moreover, no magnitude information matters
in this process. Hence, even though a biologist observes only a single peak,
many zero-crossing points caused by the noise sequence are generated. If we
decide all those points as a peak, the false peak rate will be unacceptably
high. In order to reduce the false peak rate, pre-filtering is commonly
used before the derivative such as Parks-McClellan filtering or windowing-
based low-pass filtering (Oppenheim and Schafer, 1989). Since the peak
detection is a blind problem and no prior knowledge on the spectrum of

the information is given, this method is in general not so effective in erasing
all the false peaks.

4.2.2 Assumptions on signal model As described, the peak detection
problem in a noisy environment requires deliberate processing and thus some
assumptions are critical. This subsection provides these assumptions on the
desired signal g(x) and peak point xp.

A.1) g(x) is gradually changing, i.e., | g(x1) − g(x0) | < ε0 for adjacent
values of x1 and x0, where ε0 is a predefined small constant.

A.2) The magnitude (intensity-level) of the valid peak signal is distinct from
most of the observations. In other words, among all points near the
valid peak point xp should satisfy y(xp)" E[y(x)] where E[·] is the
average.

A.3) g(x) is monotonically increasing in the local interval [x1 xp] and
monotonically decreasing in [xp x2], where xp is a valid peak point.

4.2.3 Peak detecting procedure The proposed intra-profile peak
detection step is divided into four substeps: 1) rejection of high-intensity
noise (so called speckle), 2) nonlinear peak amplification, 3) derivative
operation followed by a smoothing, and 4) peak candidate collection.

In order to remove the speckles while minimizing the modification of data,
we employ a median filtering in the first step. Employing the median filter,
the signal at the point k is replaced by the median value in a prescribed
window. With A.1) and noting that the speckles have a high intensity
and narrow shape, they are distinct from the valid peak signal and hence
the median filtering is effective in erasing them. In fact, as shown in
Figure 10(b), only small magnitude noise is left after this step.

Thus, the system model for the median filtered sequence ym(x) =
m(y(k)) is readily expressed as

ym(x) = g(x) + ε(x) (1)

where the noise signal ε(x) satisfy

| ε(x) | < ε1. (2)

From A.1) and (2), we deduce that | ym(x1)− ym(x0) | < ε0 +2ε1 = ε2.
Clearly, the change of ym(x) would be far more gradual than y(x). After
taking the derivative of (1), we have y′m(x) = g′(x) + ε′(x). Although
the noise intensity is reduced, we still expect a considerable amount of zero-
crossings due to the fluctuation of ε(x). Hence, further processing is needed
to separate the false peak from the valid one.

The following observations are useful in devising the additional operator
enhancing the detection quality: First, due to the median filtering, A.2) is
strengthened and we expect ym(xp)" ym(xf ) where xf is the false peak
point. If we multiply ym(x) to y′m(x) then

ym(x)(g′(x) + ε′(x)). (3)

The evaluation of (3) at xp, ym(xp)(g′(xp)+ ε′(xp)), would be large with
positive sign. Likewise, the evaluation at xp+1 would be large with negative
sign. Hence, we expect

ym(xp)(g′(xp) + ε′(xp))− ym(xp+1)(g
′(xp+1) + ε′(xp+1))

" ym(xf )(g′(xf ) + ε′(xf ))− ym(xf+1)(g
′(xf+1) + ε′(xf+1)) (4)

where xf is the false peak point. The antiderivative of (3) is
1

2
y2

m(x) =
1

2
(g(x) + ε(x))2. (5)

Secondly, we expect that ε′(x) are located near zero. In fact, since | ε(x) | is
small, so are ε′ and ∆ε(x). Further, considering the random behavior ε′(x),
we may assume that the number of positive and negative signs are roughly
equal. Hence, by A.3), we have

∑
ym(x)(g′(x) + ε′(x)) =

∑
(g(x) + ε(x))(g′(x) + ε′(x)) (6)

=
∑

(g(x)g′(x) + g(x)ε′(x) + ε(x)g′(x) + ε(x)ε′(x)) (7)

∼
∑

g(x)g′(x)" 1 (8)
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Fig. 10. Proposed peak detection procedure: (a) raw data (simulated), (b) median filtered output, (c) squaring operator output, (d) derivative of (c), and (e)
output after postprocessing. False peaks are suppressed, and only the peak in the middle is detected.

Intensity
0

Width Proximity

Fig. 11. The parameters for the intra-profile peak detection. The intensity of
a peak is defined as the peak height in the profile. Detected are only those
peaks whose intensity is greater than a threshold. The width of a peak refers
to the distance between the two points that have the zero gradient value and
that are nearest to the peak location. A peak is not detected if its width is
less than a threshold. The proximity of two peaks is defined as the distance
between the two. When two or more peaks exist within a threshold, only the
peak with the highest intensity is detected.

on the local interval [x1 xp]. In the similar manner, we have

−
∑

ym(x)(g′(x) + ε′(x)) ∼ −
∑

g(x)g′(x)" 1 (9)

on the local interval [xp x2]. In summary, for the median filtered sequence,
the square operation in (5) is applied before taking derivative. For the
derivative output, smoothing is employed to further clean the residual
noise ε(x). As a smoothing operator, a small-tap low-pass filter would
be sufficient. Figure 10(e) shows the smoothing result of Figure 10(d)
with three-tap finite impulse response filter. We observe that only the
zero-crossing point associated with the valid peak survives after smoothing.

Finally, peak candidate collection is performed. The zero-crossing
detection described in the previous subsection is used. Additional intensity
based detection employing (8) and (9) can be added. Specifically, for a given
threshold γ, we reject the peak candidate xp if

ym(xp)(g′(xp) + ε′(xp)) − ym(xp+1)(g
′(xp+1) + ε′(xp+1)) < γ.

Other than intensity based thresholding, the implementation of the proposed
algorithm exploits the additional parameters shown in Figure 11.

In order is a remark on how our intra-profile peak detector handles
multiple peak candidates existing within a proximity threshold described
in Figure 11: Only the peak candidate with the highest intensity is
selected. When analyzing gas chromatography (GC) data, the notion of
deconvolution (Vivó-Truyols et al., 2005) comes particularly useful for
detecting peaks from overlapped signals. Given that false peaks in MOHCA
profiles are caused more frequently by speckle-shaped noise than by the
convolution of data, further investigation is needed to determine the benefits
of incorporating the deconvolution technique into MOHCA.

4.3 Inter-profile peak analysis
According to the peak characterization presented in Section 4.1, we need
to examine multiple MOHCA profiles simultaneously for accurate peak
detection. In addition, the three parameters (intensity, width, and proximity)
of the intra-profile peak detector are set so to minimize the number of

false negatives, or the true peaks that are erroneously left undetected.
Consequently, it is likely that the peaks detected in the previous step contain
false peaks that further need to be filtered out. In this inter-profile peak
analysis step, we seek to resolve these issues using a binary classifier that
can distinguish true and false peaks with respect to the following features:

F.1) The adjusted intensity of a peak: As shown in Figure 12(a), we set
a window centered at the peak under consideration. A new baseline
for measuring the peak intensity is then defined as the average of the
minimum values in the left and right window. We use 30 positions as
the size of the left and right windows.

F.2) The relative location of a peak: The x-coordinate of a peak location is
divided by the total length of the profile the peak resides in, as shown
in Figure 12(b).

F.3) The number of nearby peaks in other (distant) profiles: For each
potential peak location in a profile with index i, we set up a window
centered at this location in another profile with index j. (Recall that
each profile is indexed by the location of the radical source used.) We
count the number of the peaks within this window only if |i− j| ≥ δ.
(This is because those profiles that have similar indices can have true
peaks at very close locations, as described in Section 4.1. We use
δ = 7.) We repeat counting for all other profiles with the same window
and accumulate the number of peaks within the window. An example is
presented in Figure 12(c).

F.4) The logarithm of fast Fourier transform (FFT; Oppenheim and Schafer,
1989) coefficients: The window mentioned in the description of F.1
is considered again. The partial profile within this window is then
transformed into the Fourier domain using FFT. From the transformed
profile, 32 coefficients are extracted, and the logarithm of these
coefficients is used as a 32-dimensional feature. This is to reflect
the difference between true and false peaks in terms of the changing
frequency within the window centered at each peak.

F.5) The location of radioactive nucleotides on the RNAs: RNA samples are
radiolabeled at the 5’-end or 3’-end to visualize cleavage profiles on
the gel. Both 5’-end and 3’-end labeling methods are adapted, because
5’-end-labeled samples cannot produce cleavage profiles if the position
of cleavage agent is located at the downstream of the cleavage point.
(The cleavage products will appear on the diagonal stripe.)

F.6) RNA solution conditions: MOHCA uses three different types of
conditions (unfolded, native, and non-native high monovalent ion
conditions) to provide structural similarities and differences between
the three states of RNAs.

F.7) The type of radical source: When performing in vitro transcription of
RNAs, modified Adenine (A), Cytosine (C), or Uracil (U) is added to
the reaction, and thus, radical sources are incorporated at A, C, or U.
(The original MOHCA experiments with modified Guanosine could not
be carried out due to the scarcity and difficulty of synthesizing 2’-NH2-
guanosine α-thio-triphosphate.)
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Fig. 12. Illustration of some features used in the inter-profile peak analysis.
The example in (c) represents the situation in which δ = 7 and a window
centered at a peak in the profile with index A120 is being considered.

Fig. 13. A screen shot of the GUI we developed for this study.

4.4 Implementation and data preparation
We implemented the proposed method in MATLAB. The binary classifier
used in the inter-profile step is based upon LIBSVM (Chang and Lin,
2001), a MATLAB implementation of SVM. We developed a graphical
user interface (GUI) for convenience of the user, and a screen shot of one
of the GUI windows developed is shown in Figure 13. The source code
and a brief user manual are available as the supplementary material. For
performance comparison, we obtained the R implementation of two existing
peak detection methods — CWT (Du et al., 2006) and the PROcess package
included in Bioconductor (Gentleman et al., 2004). Additionally, we created
MATLAB code for the conventional low-pass filtering method.

We conducted 79 batches of MOHCA experiments and collected 2002
profiles out of these batches. For thorough performance analysis, we
examined every profile and manually identified and labeled all true peaks.
In total, 914 true peaks were identified. For the robustness test shown
in Figure 8(b), we also selected 494 profiles in which the manual peak
identification was difficult due to high noise. In order to train the binary
classifier used in the inter-profile step, we randomly selected 176 peaks
(19.3% of total peaks) and reserved them as positive (i.e. true) examples.

The intra-profile peak detector was invoked for each of the 2002 profiles.
To determine the best algorithm parameter values, we performed 10-fold
cross validation and found the values that resulted in the smallest error rate.
The parameters used in the intra-profile peak detection step were (width,
intensity, proximity) = (5, 0.15, 15). The intra-profile peak detector reported
2383 peaks in total as potential peaks. We compared them with the labeled

peaks and randomly selected 314 out of 1469 (= 2383 − 914) false peaks
(21.4%) as negative (i.e. false) examples for training the classifier.

For each training example, we extracted a 38-dimensional feature vector,
which consists of 32 FFT coefficients and 6 other features, as explained in
Section 4.3. We trained the SVM-based binary classifier using these 490
training examples in their 38-dimensional feature space. Although the SVM
implementation we used was regularized in order to alleviate the effect of
outliers, we made an outlier remover that is based upon k-means clustering,
for additional robustness. We set k = 2 for two categories (outliers and non-
outliers) and observed that using cosine similarity tends to show the best
outlier detection performance.

Finally, we used the trained classifier in order to predict the labels of the
non-example 1893 peaks and computed the precision, recall, and F-measure
values based upon the classification result. To calculate MSE of constraint
maps, every map was converted into a matrix of binary integers by assigning
1 to the peak location and 0 to the rest. The MSE of each matrix was
then computed by comparing it with the binary matrix of the corresponding
manual map.
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