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We describe the proceedings and conclusions from the ‘‘Workshop on Applications of Protein Models in
Biomedical Research’’ (the Workshop) that was held at the University of California, San Francisco on 11 and
12July,2008.At theWorkshop, international scientists involvedwithstructuremodelingexplored (i) howmodels
are currently used in biomedical research, (ii) the requirements and challenges for different applications, and (iii)
how the interactionbetween the computational and experimental research communities couldbe strengthened
to advance the field.

Introduction: Background And Goals Of The Workshop
Molecular Modeling Is Well Established
Three-dimensional modeling of biological molecules and their
interactions has a long history and is now established as
a cornerstone of modern structural biology. Classic examples

include the molecular model of the DNA double helix that was
built by James Watson and Francis Crick in 1953 (Watson and
Crick, 1953); models for the polypeptide a helix and b sheet
proposed by Linus Pauling some 2 years earlier (Pauling et al.,
1951); and the first homology model of a protein (a-lactalbumin),

Structure 17, February 13, 2009 ª2009 Elsevier Ltd All rights reserved 151

mailto:torsten.schwede@unibas.ch
mailto:sali@salilab.org


built by David Phillips and coworkers, based on hen egg white
lysozyme (Browne et al., 1969). Although not every model can
have the same impact as these early landmark examples, the
potential of molecular modeling to produce new biological
insights has never been greater than it is today, thanks to the
recent explosion of sequence and structural data, advances in
modeling methods, and vastly more powerful computers.
Types of Molecular Models
Protein structure predictionmethodsdiffer in termsof the needed
input information and the aspects of protein structure that can be
computed. The secondary structure, transmembrane segments,
and disordered regions can be predicted from a protein
sequence (Bryson et al., 2005; Rost, 2003); an atomic model of
a domain can be obtained from the sequence alone by ab initio
or de novo prediction methods (Das and Baker, 2008); fold
assignment and sequence-structure alignment can be achieved
by threading against a library of known folds (Godzik, 2003);
atomic models of a protein can be calculated on the basis of
known template structures by homologymodeling (Marti-Renom
et al., 2000; Petrey and Honig, 2005; Schwede et al., 2003); and
atomic and reduced representationmodels of protein complexes
with small ligands and other macromolecules, such as nucleic
acids, can be derived with various docking methods (Lensink
et al., 2007). Increasingly, integrative or hybrid methods rely on
more than one type of information, especially for the structural
characterization of protein assemblies (Alber et al., 2008).
New Context for Modeling Provided by the Protein
Structure Initiative
A stimulating catalyst formolecularmodeling is theProtein Struc-
ture Initiative (PSI), which aims to determine representative
atomic structures of most major protein families by X-ray crystal-
lography and nuclear magnetic resonance (NMR) spectroscopy,
so that most of the remaining protein sequences can be charac-
terized by homology modeling (http://www.nigms.nih.gov/
Initiatives/PSI/) (Chandonia and Brenner, 2006; Liu et al., 2007).
In the PSI, experimental structure determination and molecular
modeling are especially mutually reinforcing. On the one hand,
the experiments provide essential template structures for
homology modeling of specific sequences, and the expanded
data set of protein structures provides opportunities for devel-
oping better modeling methods. On the other hand, modeling
greatly leverages experimentally determined structures. By judi-
cious selection of target proteins determined by experiment,
each experimental structure enables the modeling of many
protein sequences that could not be modeled well before (Liu
et al., 2007). Molecular modeling can also add value to both
experimentally determined structures and models; for example,
docking of small molecules to proteins can be used for functional
annotation (Hermann et al., 2007), and docking of proteins canbe
used for the characterization of large macromolecular machines
(Lensink et al., 2007). Finally, integrative methods have actually
begun to improve the process of experimental structure determi-
nation itself (Alber et al., 2007a; Qian et al., 2007).
Protein Structure Initiative Knowledgebase
and Protein Model Portal
To make the fruits of PSI available as widely as possible, the PSI
Structural Genomics Knowledgebase (the Knowledgebase) was
launched in February 2008 (http://kb.psi-structuralgenomics.
org) (Berman et al., 2009). The Knowledgebase is designed to

provide a ‘‘marketplace of ideas’’ that connects protein
sequence information to experimentally determined structures
and computationally predicted models, enhances functional
annotation, and facilitates access to new experimental protocols
and materials. The initial version of the Knowledgebase is a web
portal to a series of modules, including the Experimental
Tracking, Material Repository, Models, Annotation, and Tech-
nology portals. The Protein Model Portal (Arnold et al., 2008) in
particular provides access to models calculated by SWISS-
MODEL (Kiefer et al., 2009) and ModBase (Pieper et al., 2009),
as well as models produced by the four PSI large-scale produc-
tion centers (http://www.proteinmodelportal.org/). Its design
and implementation are based on the recommendations
proposed at the ‘‘Workshop on Biological Macromolecular
Structure Models’’ in 2005 (Berman et al., 2006). The Protein
Model Portal aims to foster effective usage of molecular models
in biomedical research by providing convenient and comprehen-
sive access to the models and their annotations. An associated
annual workshop will be a forum for developers and users of
modeling methods to discuss best practices, including methods
for estimating model accuracy, guidelines for publishing theoret-
ical models, and educational resources on using models for
different biological applications. Thus, the Protein Model Portal
presents amajor opportunity to increase the impact of molecular
modeling on biology and medicine.
Workshop Aims
Sixty-four participants from 30 academic, industry, and govern-
ment institutions worldwide, including 9 from non-US locations,
attended a workshop at the University of California, San
Francisco (http://www.proteinmodelportal.org/workshop/). The
participants discussed state-of-the-art applications of molecular
modeling to biomedical problems, the requirements and chal-
lenges for various applications, as well as ways to strengthen
the collaboration between the modeling and experimental
communities. Although the Workshop was concerned primarily
with applications of homology modeling as a cornerstone of the
PSI, other relevant molecular modeling areas were also covered,
including application of modeling to improving experimental
structure determination (e.g., molecular replacement in X-ray
crystallography) and the use of homology models in conjunction
with other methods (e.g., docking of small molecules and
proteins). The participants’ consensus was formulated as
specific recommendations, aimed to increase the impact of
molecular modeling on biology and medicine.
Workshop Program
On the first day, 16 presentations were given on topics that
ranged from the coverage of protein sequence-structure space
to the uses of modeling in biology and medicine. On the second
day, four independent discussion groups were asked to address
the same set of specific questions covering the topics of the
Workshop, report on their findings, and make recommendations
for the future. Thus, each set of participants approached the
issues in their own way; the resulting redundancy provided
a rich source of ideas revealing both a commonality and a diver-
sity of opinions that are incorporated in this document.

Coverage of Sequence Space by Homology Modeling
The utility of molecular modeling hinges on its coverage and
accuracy. In other words, modeling needs to be applicable to
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many proteins, and the models need to be sufficiently accurate
for biological applications. The coverage issue was addressed
in a recent comprehensive analysis of the current sampling of
the protein universe (M.L., unpublished data). The protein
universe is the set of protein sequences and structures in all
organisms. It was explored in terms of sequence families that
have single- or multidomain architectures, with or without known
structures. The domains were defined based on the Conserved
Domain Architecture Retrieval Tool resource at the National
Center for Biotechnology Information (Geer et al., 2002), which
contains almost 30,000 domain families. Growth of single-
domain families has now saturated: almost all current growth
comes from multidomain architectures that are combinations
of single domains. Structures are known for a quarter of the
single-domain families, and half of all known sequences can
be partially modeled due to their membership in these families;
20% of the structures for such modeling come from the struc-
tural genomics effort, in particular, from the PSI. Multidomain
architecture families continue to grow rapidly and at the same
rate as deposited sequences; almost all novelty, therefore, arises
from the arrangement of known single domains within a chain,
particularly for eukaryotes. A quarter of the sequences do not
appear to match any domain pattern and constitute the dark
matter of the protein universe.
These empirical observations demonstrate the relatively high

degree of applicability of homology modeling and the important
role that structural genomics plays in increasing this coverage.
Moreover, the generation of novel proteins through combining
individual domains increases the importance of molecular dock-
ing as a means to characterize the structures of the multidomain
proteins.

Applications of Modeling for Biology and Medicine
Modeling is not only widely applicable, but it is often sufficiently
accurate to make an impact on biology and medicine. To
demonstrate this point, we do not discuss here the purely tech-
nical measures of the geometrical accuracy of a model; instead,
we focus on the bottom line corresponding to the numerous pub-
lished studies in which models have helped provide important
biological insights. In most examples presented at the Work-
shop, the models have been combined with experimental efforts
to produce results of significant biomedical impact. Therefore,
despite its remaining limitations, modeling can certainly add
substantial value to experimentally determined protein struc-
tures.
Drug Discovery
Homology modeling is widely applied in the pharmaceutical
industry and is integrated into most stages of pharmaceutical
research (Tramontano, 2006). For example, it is used to design
protein constructs and to enhance protein production, solubility,
and crystallization. Once aprotein is established as a viable phar-
maceutical target, homology modeling is used in assay develop-
ment, compound screening, identification of biologically active
small molecules, and further optimization of the potency of those
compounds.
Homology models are used in ‘‘structure-based ligand

discovery,’’ facilitating the investigation of ligand-protein interac-
tions in an effort to find ligands and improve their potency (Rester,
2008). One technique, ‘‘virtual screening,’’ computationally

screens large libraries of organic molecules for those that
complement the structure of a protein-binding site (Huey et al.,
2007). Success rates for identifying compounds with biological
activity typically range from 1% to 15% of those molecules that
are predicted to bind (Babaoglu et al., 2008; Doman et al.,
2002). The relatively high false-positive rate reflects the remaining
challenges with accurate prediction of affinity. Nevertheless,
virtual screening was found to be as useful as experimental
‘‘high-throughput screening’’ in side-by-side prospective studies
(Babaoglu et al., 2008; Doman et al., 2002). Homology models
accelerate the virtual screening process and can help make
helpful suggestions before crystal structures are available or
experimental high-throughput screening begins (Oshiro et al.,
2004).
Other applications of structural models involve the ‘‘optimiza-

tion’’ of hits from virtual screening or high-throughput screening
by detailed examination of the ligand-protein interactions and
the exploitation of new contacts with the protein via ligandmodi-
fication (Noble et al., 2004). The discovery and development of
neuraminidase inhibitors is an important case in which struc-
ture-based methods were used to guide the design of the first
anti-influenza drug, Relenza (zanamivir), brought to market by
GlaxoSmithKline (von Itzstein et al., 1993). Coupledwith informed
molecular biology efforts, even crude homology models based
on remotely related structures havebeensuccessful in facilitating
drug discovery (de Paulis, 2007). Modeling is especially robust
and informative when used in a target class mode; for example,
homology modeling of kinases has been applied to ligand
discovery, as well as to the optimization of binding potency and
selectivity (Buckley et al., 2008; Diller and Li, 2003; Rockey and
Elcock, 2006). Long before experimental structures of G-pro-
tein-coupled receptor (GPCRs) were determined, models helped
the selection and introduction ofGPCR ligands to the clinic (Engel
et al., 2008;Webb and Krystek, 1998;Webb et al., 1996). Clearly,
the recent GPCR structures (Cherezov et al., 2007; Rasmussen
et al., 2007; Warne et al., 2008) will further aid modeling of this
important class of biological targets.
Biotherapeutics, Biologicals, and Industrial Enzymes
Several biotherapeutics have been developed with the aid of
homology modeling. Antibody construct design and humaniza-
tion is a mature field (Lippow et al., 2007). Of the 21 antibodies
on the market as of 2007, it is estimated that 11 were the result
of the computational design of humanized constructs via
homology modeling. Three examples are Zenapax (humanized
anti-Tac or daclizumab), Herceptin (humanized anti-HER2 or
trastuzumab), and Avastin (humanized anti-VEGF or bevacizu-
mab) (Carter et al., 1992; Presta et al., 1997; Queen et al.,
1989). Manymore have reached clinical trials. Similar techniques
have been used to engineer smaller antibody fragments with
improved specificity, affinity, and half-life (Hinton et al., 2004;
Lazar et al., 2006; Lippow et al., 2007).
Enzymes and other biologicals are widely used in biotech-

nology and industrial processes; they are key components of
detergents and animal feed, and they are used in the production
of bread, wine, and fruit juice, as well as in the treatment of
textiles, paper, and leather. Enzymes frequently replace tradi-
tional chemicals or additives and help to save water and energy
in a variety of production processes. Molecular modeling often
provides the basis for understanding and engineering their
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biophysical properties, such as stability at high temperature and
oxidation, activity at low temperatures, and substrate specificity
(Alquati et al., 2002; Hult and Berglund, 2003).
Protein-Protein Interactions
Most proteins act in the cell through interactions with other
proteins. Therefore, the impact of individual models, as well as
experimentally determined atomic structures, can be increased
by computational docking methods that produce models of
protein complexes. The need for computational docking is
emphasized by the difficulty of experimental structure determi-
nation for complexes, especially the more transient ones.
Despite remaining challenges, the results of the Critical Assess-
ment of Predicted Interactions (CAPRI) effort (Janin et al., 2003)
demonstrate that substantial progress in docking methods has
been made during the last few years (Lensink et al., 2007). The
ClusPro docking server, which returns best-scoring models of
a complex between two input atomic structures or models, is
a case in point (Comeau et al., 2004). The main applications of
the server have included modeling multidomain proteins and
oligomers, frequently in combination with additional data from
experimental or other computational techniques.

For example, the configuration of the histone domain relative
to the Dbl-homology, pleckstrin-homology, and catalytic
domains in the Ras-specific nucleotide exchange factor son of
sevenless (SOS) was determined by filtering top-scoring docking
models by small-angle X-ray scattering, mutagenesis, and calo-
rimetry data (Sondermann et al., 2005); the orientation and posi-
tion of the histone domain implicated it as a potential mediator of
membrane-dependent activation signals. Similarly, the high-
resolution solution structure of the 15.4 kDa homodimer CylR2,
the regulator of cytolysin production from Enterococcus faecalis,
was solved by combining paramagnetic relaxation enhancement
data with docking (Rumpel et al., 2008). Furthermore, the binding
of cofilin to monomeric actin (Kamal et al., 2007) was character-
ized by a combination of docking with mass spectrometry data
(Kamal and Chance, 2008). Additional examples of docking
include a model of the human p53-controlled ribonucleic reduc-
tase (p53R2) homodimer, which was used to explain mutations
that cause mitochondrial DNA depletion (Bourdon et al., 2007),
and an L-type Ca2+ channel, which was used for the character-
ization of binding interactions with 1,4-dihydropyridines (Cosco-
nati et al., 2007).
Membrane Binding Specificity
The recognition by peripheral membrane proteins of different
biological membranes and distinct phospholipids underlies
a variety of signaling processes. What is the molecular basis of
these recognition mechanisms? In close collaboration with
experimental groups, modelers studied this problem by first
building homology models of proteins, both within functional
families and across genomes, and then predicting the subcel-
lular localization of proteins based on the calculated electrostatic
properties of those models. For example, a computational study
of structures and models for all retroviral matrix domains, such
as those from HIV-1, revealed that matrix domains contain
a characteristic basic surface patch and, thus, exploit electro-
static interactions to bind membrane surfaces (Dalton et al.,
2005; Murray et al., 2005). This discovery provides insight into
the mechanism used bymatrix domains to localize to the plasma
membrane of infected cells.

The construction of models of the membrane-binding domains
from different families (Ananthanarayanan et al., 2002; Blatner
et al., 2004; Stahelin et al., 2004; Yu et al., 2004) also illustrates
how homology modeling allows for the identification of functional
properties of proteins that are different than a family member
whosestructurehasbeendeterminedbyexperiment.Specifically,
calculationswith a homologymodel for the PXdomain fromphos-
pholipase D-1 showed that this domain binds membranes con-
taining the cellular growth-inducing PI, PI(3,4,5)P3, primarily
through electrostatic interactions, although the model was built
by using the structure of a PX domain that binds to PI(3,4)P2-
containing membranes with significant hydrophobic penetration
(Stahelin et al., 2004).
Ligand Specificity of Receptors
Members of the neurotransmitter/sodium symporter (NSS)
transporter family are responsible for the uptake of neurotrans-
mitters (such as glycine, g-amino butyric acid, serotonin, dopa-
mine, and norepinephrine) from the synaptic cleft; mutations in
NSS transporters have been implicated in psychological and
digestive disorders, including schizophrenia. Furthermore,
several NSS transporters have been shown to be targets for
psychoactive compounds such as cocaine. Thus, an under-
standing of the molecular mechanisms underlying transport by
these proteins is of considerable interest. It has been extremely
difficult to crystallize mammalian members of this family, but
bacterial substitutes have beenmore tractable. These structures
can then be used as templates to construct homology models of
mammalian homologs, which, in turn, can be used to deduce
function. In a specific example, the chloride-binding site of the
serotonin transporter SerT was identified from a homology
model built from the previously published structure of a bacterial
amino acid transporter, LeuT, which does not bind chloride (Forr-
est et al., 2007). The prediction was confirmed experimentally.
The work was highlighted in an Editor’s Choice in Science,
emphasizing the importance of homology modeling to this class
of problems (Chin and Yeston, 2007).
Substrate Specificity of Enzymes
Many enzymes encoded by sequenced genomes and metage-
nomes have unknown functions. One promising approach to
leverage structures for functional annotation is to dock libraries
of possible substrates or chemical intermediates against the
enzyme active site (Hermann et al., 2006, 2007; Kalyanaraman
et al., 2005). Homology models can extend the utility of this
approach to the many uncharacterized enzymes lacking experi-
mental structures, and they enable prediction of substrate spec-
ificity among related enzymes in protein families.
In a joint computational and experimental effort, homology

models were created for !100 homologs of an Ala-Glu epim-
erase enzyme for which a crystallographic structure was avail-
able (Kalyanaraman et al., 2008). Docking possible substrates
against the models suggested that many had different substrate
specificities and, hence, biological functions. Subsequent
experimental screening confirmed several novel functions,
including N-succinyl-Arg racemase (Song et al., 2007) and Ala-
Phe epimerase (Kalyanaraman et al., 2008), and crystal struc-
tures confirmed the predicted binding modes. Because enzyme
specificity is related to fine details of the binding site, such as
precise orientations of side chains, one promising approach is
to treat the binding site of homology models as flexible during
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docking, reducing the sensitivity of the results to small errors in
the model (Hamblin et al., 2008; Song et al., 2007).
Analysis of Mutations
The onrush of personal genetic data adds new urgency for more
effective computational analysis of the structural and functional
impact of mutations, such as nonsynonymous, single DNA
base variants (i.e., those that change the encoded amino acid
residue type) (Karchin et al., 2007). Exon sequencing is already
providing single-base somatic mutation information in individual
cancer cell lines. Many more data of this type are expected
shortly (Di Bernardo et al., 2008; Sjoblom et al., 2006; Stacey
et al., 2008). It is impossible to characterize the functional conse-
quences of all mutations by experiment, because there are too
many of them. Therefore, computational approaches are
required that are based on general principles of protein evolu-
tion, structure, and function. Full utilization of the mass of muta-
tion data will require knowledge of the structure of human
proteins, and that knowledge will come primarily from models.
With a particular machine-learning method, homology models

based on experimental templates down to 40% sequence iden-
tity provide as accurate a prediction of the functional impact of
a DNA base variant as experimental structures (Yue et al.,
2005). Use of these models doubles the number of human
common base variants that can be fully analyzed for likely
impact, compared with using experimentally determined struc-
tures alone. Further improvements in modeling methods
enabling the use of models based on sequence identity down
to 20% would add an additional 50% to the number of analyz-
able single-point mutations. Recent progress measured in the
CASP experiments (Kopp et al., 2007; Kryshtafovych et al.,
2007) suggests that this coverage is not an unreasonable expec-
tation. A particularly successful example is provided in the next
section.
Cancer Biology
Homology modeling and other computational tools have also
been used to study structure-function relationships of proteins
involved in DNA repair, cell-cycle progression, chromatin forma-
tion, apoptosis, and other cellular processes associated with
cancer development. Recent examples include explaining
mutant phenotypes in a complex of yeast cyclin C and its cy-
clin-dependent kinase, cdk8p (Krasley et al., 2006), analysis of
patient-derived mutants of c-kit in gastrointestinal stromal
tumors (Tarn et al., 2005), and a prediction of the docking struc-
ture of BAK with p53 in apoptosis that relied on the structure-
based design of mutants (Pietsch et al., 2008).
One of the most useful applications of molecular modeling in

cancer biology is to dissect the roles of multiple interacting
proteins in various pathways associated with cancer (Huang
et al., 2008). As an example, collaboration between experimental
biologists and molecular modelers at the Fox Chase Cancer
Center was aimed at understanding different phenotypes of
overexpression of the chromatin remodeling protein ASF1a in
humans (Tang et al., 2006; Zhang et al., 2005). Overexpression
of this protein causes two different phenotypes: an increase in
the formation of senescence-associated heterochromatin foci
(SAHF) and G2-cell-cycle arrest. A homology model of the
human ASF1a protein was constructed based on an experimen-
tally determined yeast protein structure. It was found that muta-
tions affecting SAHF formation were clustered together at one

end, whereas mutations that did not affect SAHF formation
were scattered in other regions of the structure (Tang et al.,
2006). To investigate the cell-cycle arrest phenotype, modelers
searched for a cluster of surface residues elsewhere in themodel
that were conserved within ASF1a, but different from ASF1b
(which does not exhibit the cell-cycle arrest phenotype). Muta-
tions of residues that were predicted to affect cell-cycle arrest,
but not the SAHF phenotype, were subsequently verified exper-
imentally.

Integrative or Hybrid Structure Determination Methods
Molecular modeling plays an increasing role in experimental
structure determination. In point of fact, the experimentally or
theoretically derived information about a structure being deter-
mined must always be converted to a structural model through
computation. The ‘‘integrative’’ or ‘‘hybrid’’ approaches explicitly
combine diverse experimental and theoretical information, with
the aim to increase the accuracy, precision, coverage, and effi-
ciency of structure determination (Alber et al., 2008; Robinson
et al., 2007). Input information may vary greatly in terms of reso-
lution (i.e., precision), accuracy, and quantity. To be precise, all
structure determination methods are integrative, but there is
a difference in degree. At one end of the spectrum, even atomic
structure determinations by X-ray crystallography and NMR
spectroscopy rely on a molecular mechanics force field as well
as on the ‘‘raw’’ X-ray and NMRdata, respectively. An archetypal
hybrid method is flexible docking of comparative models for
component proteins into an electron density map of their
assembly determined by cryo-electron microscopy (Rossmann
et al., 2005; Topf et al., 2008). Such hybrid methods begin to
blur the distinction between models based primarily on theoret-
ical considerations and those based primarily on experimental
data about the characterized system.
Atomic Structure Determination
Modelers have begun to contribute directly to the atomic struc-
ture determination of proteins. In crystallography, de novo
protein structure prediction can sometimes solve the phase
problem, via molecular replacement models for proteins of
distant homology or even no detectable homology to previously
solved structures (Qian et al., 2007). In structure determination
by satisfaction of NMR-derived restraints, high-resolution,
physics-based refinement can now consistently improve the
accuracy of NMR model ensembles (Bhattacharya et al., 2008;
Qian et al., 2007). Perhaps most promising are methods that
can dramatically accelerate NMR-based structural inference,
by bringing together limited chemical shift data with modeling
techniques to achieve structures with near-atomic resolution
(Cavalli et al., 2007; Shen et al., 2008).
Structural Characterization of Large Assemblies
at Low Resolution
Even low-resolution biophysical and biochemical data can
provide a rich source of structural information that can be inte-
grated into realistic representations of macromolecular assem-
blies, as shown by determining the positions of the 456 constit-
uent proteins in the yeast nuclear pore complex (NPC) (Alber
et al., 2007a, 2007b). The structure was determined at !5 nm
resolution by satisfying spatial restraints that encoded protein
and nuclear envelope-excluded volumes (from the protein
sequences and ultracentrifugation), protein positions (from
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immunoelectron microscopy), protein contacts (from affinity
purification), and the eight-fold and two-fold symmetries of the
NPC (from electron microscopy). Although each individual
restraint may contain little structural information, the concurrent
satisfaction of all restraints derived from independent experi-
ments drastically reduced the degeneracy of the structural solu-
tions. The resulting low-resolution map was combined with
atomic structures and homology models of constituent proteins,
resulting in insights about the evolution and function of the NPC.
This study illustrates how structural genomics and the PSI can
make a major impact even on the most challenging structural
biology problems, through providing atomic structures and
homology models of the individual proteins that are then assem-
bled into models of large macromolecular machines and
processes.

Recommendations
We now summarize the recommendations reached by
consensus among the four independent Workshop discussion
groups. The recommendations are concerned with (i) coverage
of the sequence space by homology modeling, (ii) publication
and archiving of models, (iii) standards for data formats, (iv) esti-
mating model accuracy, (v) communication between modelers
and experimentalists, and (vi) development and the role of the
Protein Model Portal.
The Coverage of the Sequence Space by Homology
Modeling Needs to Be Quantified
As discussed above, modeling can significantly expand the
structural coverage of the protein universe. It remains unclear
how best to integrate the experimental structure determination
and computational modeling to maximize the impact of struc-
tural genomics on biology. The present focus of the PSI on large
families that have no structural representatives and on very large
families with limited structural coverage is a promising approach
to achieve this goal.
Recommendation. We recommend that the modeling and struc-
tural genomics communities interact closely to formulate how
maximizing the structural coverage can be most efficiently
achieved. Suitable metrics for measuring structural coverage
must be developed by the modeling community. Once these
metrics are adopted, the PSI Knowledgebase will continually
update and report them.
Standards for the Publication of Models Must
Be Established
Journal Requirements. At the present time,models are published
with different amounts of information about how these models
were derived. A set of guidelines for what should be included
in a modeling paper needs to be established. For homology
modeling, these guidelines may include decisions leading to
the choice of the template structure(s), details of sequence align-
ment, methods used to derive the model, indication of the ex-
pected accuracy of the model, and how the model may be ac-
cessed publicly. These guidelines should be shared with
journal editors and reviewers.
Model Access and Archiving. Models that have been peer re-
viewed and referred to in published literature should be publicly
available. Without access to the model coordinates and suffi-
cient annotation of the model, it is impossible for the reader to
interpret the results and to assess the validity of the interpreta-

tions. In the past, some of the models were archived in the
Protein Data Bank (PDB). Since 2006, only structures that have
been determined experimentally are allowed to be deposited in
the PDB (Berman et al., 2006).
Recommendation. We recommend that a Model Working Group
be established to set standards for journal publication, to define
minimum annotation standards, and to establish the scope and
requirements of a public archive of in silico models. Membership
of this group should consist of a representative of the wwPDB
(Berman et al., 2003), the Protein Model Portal, as well as
members of the modeling and user communities.
Standards for Data Formats Must Be Established
to Facilitate Data and Software Exchange
Although the experimental structural biology community has
essentially reached a consensus on the definition of common
data formats that enable the seamless exchange of data and
algorithms (Westbrook and Fitzgerald, 2003; Winn, 2003), most
software tools for protein structure modeling use proprietary
data formats for input data, parameters, and results. Although
data formats for experimental structures can be applied to the
protein model coordinates, data types specific to computational
modeling, such as target-template alignments, error estimates,
force field parameters, and specific details of the individual
modeling algorithms, frequently vary between different applica-
tions. This incompatibility is a serious impediment for the
exchange of tools and algorithms; it hinders both method devel-
opment and thewidespread use of tools outside of the developer
groups themselves.
Recommendation. We recommend that the Model Working
Group initiates a community-wide mechanism for reaching an
agreement on a common open data format for information
related to molecular modeling, with the aim of facilitating the
exchange of algorithms and data. Once these standards are
established, the services offered by the Protein Model Portal
should be based exclusively on these common formats.
Standards for the Assessment of Models Must
Be Established
Model Accuracy Criteria. As with structures determined by
X-ray crystallography and other methods, accuracy can be esti-
mated globally, akin to the crystallographic R value, or locally,
akin to residue-specific, real-space correlation coefficients and
R values. Applications of models strongly depend on their accu-
racy, with different applications having varied requirements for
accuracy and precision. Even if the overall accuracy of themodel
is high, the accuracy of specific regions (binding sites, loops,
pockets, surface features, and overall fold) may vary. Criteria
based on the global correctness of Ca coordinates are often
insufficient to determinewhether amodel is suitable for a specific
application, such as modeling ligand binding (Kopp et al., 2007).
Accuracy measures that convey the suitability of models for
specific applications need to be established.
Estimating Model Accuracy. Methods for estimating model
accuracy are being actively studied. No accurate or dominant
method has yet emerged. In one type of approach, global and
local model properties are compared against expected values
from statistical analyses of experimentally determined struc-
tures, such as main chain dihedral angle distributions, rotamer
probabilities, and solvation properties (Benkert et al., 2008;
Bhattacharya et al., 2008; Pettitt et al., 2005; Shen and Sali,
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2006; Sippl, 1993;Wallner and Elofsson, 2003). However, it is still
possible for an inaccurate model to pass these checks. In cases
in which a number of independent models are available for
a given target, consensus-based approaches can be applied
(Ginalski et al., 2003; Wallner et al., 2003).
Recommendation. We recommend that the Model Working
Group establishes guidelines for estimating model accuracy,
with special emphasis on identifying criteria reflecting the suit-
ability of models for specific biological applications. For this
purpose, the Group should work most closely with members of
the experimental research community representing specific
model application requirements. The Protein Model Portal
should provide a technical platform to make validated tools for
estimating model accuracy available to the users of the models;
it should also establish a mechanism for a continuous evaluation
and improvement of these tools.
The Scientific Community Needs to Be Aware
of the Strengths and Limitations of Models
At present, many members of the scientific community are
unaware of the advances in molecular modeling, its limitations,
and its applications. It is primarily the responsibility of modelers
to educate the community about their area of research (e.g., in
the form of scientific publications, presentations, collaborative
projects, and web resources). However, the Workshop partici-
pants felt that molecular modeling is often not used to its full
potential in biomedical research, and that the impact of struc-
tural biology in general could be increased by better education
on the optimal use of existing modeling methods.
Recommendation. We recommend that the PSI Knowledgebase
and its Protein Model Portal proactively solicit educational
contributions from the modeling community in the form of
reviews, tutorials, or even open workshops, aimed at demon-
strating the applications and limitations of computational
modeling methods.
The Protein Model Portal Can Play a Key Role
The discussion at the Workshop explored how to maximize
the impact of the Protein Model Portal (http://www.
proteinmodelportal.org/) on the application of molecular models
in biomedical research.
Recommendation. We recommend that the Protein Model Portal
provide unified access to molecular models and their annota-
tions, and support thedevelopment of data standards to facilitate
exchange of information and algorithms. The Protein Model
Portal should play an active role in facilitating discussions
between developers of computational methods and their users,
provide access to tools for estimating model accuracy, and
promote their further development. Its user interface should allow
for a broad range of queries to the participatingmodel databases
as well as links to experimental data. Tools for estimating model
errors and selecting the likely best model among the available
models should be included. An interface to interactive services
for modeling should be established. Mechanisms to notify users
when a particular sequence is modeled (or experimental data
become available) should be implemented. The Protein Model
Portal should work closely with the Knowledgebase to establish
a series of online documentswith community feedback to explain
the value and limitations of protein structure models. Finally, the
Protein Model Portal should be as inclusive of all method devel-
opers and prediction methods as technically feasible.
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