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ABSTRACT
Motivation: Capillary electrophoresis (CE) of nucleic acids is a
workhorse technology underlying high-throughput genome analysis
and large-scale chemical mapping for nucleic acid structural
inference. Despite the wide availability of CE-based instruments,
there remain challenges in leveraging their full power for quantitative
analysis of RNA and DNA structure, thermodynamics and kinetics.
In particular, the slow rate and poor automation of available analysis
tools have bottlenecked a new generation of studies involving
hundreds of CE profiles per experiment.
Results: We propose a computational method called
high-throughput robust analysis for capillary electrophoresis
(HiTRACE) to automate the key tasks in large-scale nucleic acid CE
analysis, including the profile alignment that has heretofore been a
rate-limiting step in the highest throughput experiments. We illustrate
the application of HiTRACE on 13 datasets representing 4 different
RNAs, 3 chemical modification strategies and up to 480 single
mutant variants; the largest datasets each include 87 360 bands.
By applying a series of robust dynamic programming algorithms,
HiTRACE outperforms prior tools in terms of alignment and fitting
quality, as assessed by measures including the correlation between
quantified band intensities between replicate datasets. Furthermore,
while the smallest of these datasets required 7–10 h of manual
intervention using prior approaches, HiTRACE quantitation of even
the largest datasets herein was achieved in 3–12 min. The HiTRACE
method, therefore, resolves a critical barrier to the efficient and
accurate analysis of nucleic acid structure in experiments involving
tens of thousands of electrophoretic bands.
Availability: HiTRACE is freely available for download at
http://hitrace.stanford.edu.
Contact: sryoon@korea.ac.kr; rhiju@stanford.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Capillary electrophoresis (CE) is a widely used approach for
biochemical analysis. The rapid electrophoretic separation of

∗To whom correspondence should be addressed.

fluorescently labeled nucleic acid fragments inside electrolyte-
filled capillaries significantly accelerated genome sequencing (Ruiz-
Martinez et al., 1993; Woolley and Mathies, 1995). A more recent,
powerful application of CE enables the high-throughput structure
analysis of self-assembling nucleic acid-containing systems (Mitra
et al., 2008; Vasa et al., 2008; Das et al., 2010; Kladwang and
Das, 2010; Weeks, 2010) as complex as viruses (Watts et al., 2009;
Wilkinson et al., 2008) and ribosomes (Deigan et al., 2009) at
single-nucleotide resolution.

The CE profiles obtained in this recent generation of ‘structure-
mapping’ experiments present tens of thousands of individual
electrophoretic bands; quantifying these data gives detailed portraits
of nucleic acid structure, folding thermodynamics and kinetics but
requires significant informatics efforts (Mitra et al., 2008). ‘Base-
calling’ software packages can assign sequences to these bands in
special four-color experiments (see, e.g. Ewing and Green, 1998;
Ewing et al., 1998) but are not applicable to structure mapping
experiments, which require more robust sequence annotation and
quantitative fits of each profile to a sum of peak shapes. Such
quantitative analysis is aided by the design of experiments so that the
desired information appears as differences between corresponding
bands across profiles [see, e.g. (Das et al., 2005; Kladwang and
Das, 2010)]; then, sequence annotation of one profile results in
annotation of corresponding bands across the entire data. For these
datasets, tools for alignment of features or ‘rectification’ (Das et al.,
2005; Laederach et al., 2008) across different profiles resulted in
improvements in quantification speed and accuracy, but these tools
remain poorly automated. As the experimental steps of large-scale
CE measurements continue to accelerate, the bioinformatic task of
profile alignment has become a rate-limiting step in carrying out
these information-rich structural studies.

Current approaches to aligning and fitting capillary profiles
include capillary automated footprinting analysis (CAFA; Mitra
et al., 2008) and ShapeFinder (Vasa et al., 2008); we have found
these methods difficult to apply to large-scale titration or mutate-
and-map datasets (Kladwang and Das, 2010; Kladwang et al., 2011).
For instance, CAFA is focused more on peak fitting and has limited
alignment capabilities. The ShapeFinder alignment function can
align spectrally separated products within a single capillary but not
profiles across multiple capillaries with initially poor alignment. Use
of these tools requires tedious manual intervention and risks bias
or unnecessary errors from such manipulation. Analysis tools for
alignment and peak fitting have also been proposed in other domains
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such as chromatography (Nielsen et al., 1998; Tomasi et al., 2004),
mass spectrometry (Kazmi et al., 2006; Wong et al., 2005) and slab
gel electrophoresis (Das et al., 2005; Laederach et al., 2008), but,
empirically, these approaches give unsatisfactory performance for
CE data.

To address the limitations of existing methods, we have developed
high-throughput robust analysis for capillary electrophoresis
(HiTRACE) to automate the alignment and quantification of
nucleic acid structure mapping profiles obtained from hundreds
of capillaries. As depicted in Figure 1, the proposed method
consists of four major steps: preprocessing (step A), correlation-
optimized linear alignment (step B), dynamic programming-based
non-linear adjustments (step C), sequence annotation (step D) and
peak fitting (step E). After describing the core algorithms that
underlie the robust automation of each step, we present quantitative
comparisons illustrating the substantial boosts in both accuracy and
speed of HiTRACE over previous approaches. With the proposed
methodology, the previously rate-limiting step of quantifying high-
throughput CE data is now faster than experimental data acquisition
times, enabling the investigation of nucleic acid structure at an
unprecedented rate.

2 METHODS

2.1 Experimental setup
An experimental protocol that is optimal for HiTRACE alignment and
quantification has been developed; complete descriptions of reaction
components, purification procedures and sequencing ladder generation have
been given previously (Das et al., 2010; Kladwang and Das, 2010; Kladwang
et al., 2011). Briefly, RNA samples were chemically modified under the
desired solution conditions and then reverse transcribed with primers (labeled
at the 5′ ends with the rhodamine green fluorophore) complementary to
the 3′ end of the RNA. Because the reverse transcription stops at modified
nucleotides, the length distribution of the resulting DNA products encodes
the chemical reactivities of the RNA. Length separation of the DNA was
carried out on Applied Biosystems ABI 3100 and ABI 3730 sequencers; these
instruments permit the single-nucleotide separation of products as long as
500 nt for 16 and 96 samples, respectively. To facilitate HiTRACE alignment,
all samples were coloaded with a reference ladder that fluoresces in a different
color and provides fiducial markers that are identical between samples. The
ladder, prepared in a large batch for many experiments, was derived by
reverse transcribing an arbitrary RNA (typically the 202-nt P4-P6 RNA)
with a Texas red-labeled primer.

2.2 Assumptions and definitions
CE profiles each contain hundreds of ‘bands’ (when the data are viewed
in gray scale) or ‘peaks’ (when the intensity is plotted as a function
of electrophoresis time) whose intensities or areas report on individual
residues of a nucleic acid sequence. In CE experiments that use hundreds of
capillaries, profiles are typically obtained in multiple batches of experiments,
e.g. with 16 capillaries in an ABI 3100 sequencer, as illustrated in Figure 1.
The first profile of each batch is designated the reference to which other
profiles of the batch should be aligned. Each profile i represents fluorescence
intensity measured at uniformly spaced time points (here, 0.1 s) denoted by
n=1,2,...,N with associated intensity values yi(n). As shown in Figure 1,
the horizontal and vertical axes correspond to the profile index and the
measurement position in time points, respectively. Fluorescence intensity
levels are represented in gray scale, with nucleic acid species of different
lengths appearing as separated, dark bands. The desired final output of the
proposed methodology is a set of aligned profiles with their quantified band
areas.

2.3 Preprocessing (step A)
In a typical profile, the starting and ending regions contain no signal. To
accelerate subsequent steps, the user has the option of defining a window
that brackets the electrophoretic signals in all the profiles. As another
preprocessing step, we subtract an offset, constant within each profile, so as
to bring the signal to zero at the boundaries of the window; this step corrects
for overall drift in signal baselines that are observed in sequencer detectors.
We have also implemented an option to derive and subtract a smooth (but not
necessarily linear) baseline from each profile by using a procedure similar to
Xi and Rocke (2008). This operation removes smoothly varying backgrounds
in fluorescence signal sporadically seen in experimental CE profiles and,
empirically, brings independent replicates into closer agreement.

2.4 Alignment by linear transformation (step B.1)
The first alignment step involves a linear scaling and shifting of the time axis
based on maximizing the correlation coefficient between each fluorescence
profile yi(n) and the reference profile y1(n) within each batch:

(!∗
i ,σ

∗
i )= argmax

(!i,σi)∈Di×Si

{
corr

[
y1(n),yi

(
n
σi

−!i

)]}
(1)

where Di and Si represent the sets of possible values of the shift !i and scale
factor σi, respectively, and Di ×Si denotes their Cartesian product. Based on
the values found above, we first time scale each profile yi(n) by σ∗

i using
linear interpolation and then shift it by !∗

i . The correlation coefficient was
chosen as the optimization target because it is independent of signal offset
and scaling and has been widely used in other alignment tasks (Bylund
et al., 2002; Nielsen et al., 1998; Pravdova et al., 2002; Tomasi et al., 2004).
We carry out the search over shifts (!i) efficiently through a Fast Fourier
Transform (FFT; Oppenheim and Schafer, 2009). By default, we carry out
the alignment based on the reference ladder pattern that is coloaded with
each sample (see above).

2.5 Alignment between batches (step B.2)
Due to variabilities between batches, performing only the intrabatch
alignment above produces stratified alignment results, where a number
of up-and-down ‘stairs’ appear. To resolve this problem, we perform an
additional interbatch alignment.This step constructs a representative profile
of each batch by calculating the average of the first, middle and last profiles
selected from each batch. We align these representative profiles to the
first representative profile by the procedure above. Assume that, for the
representative profile from batch b, we have determined !∗

b and σ∗
b values.

We then realign all the profiles in batch b using these !∗
b and σ∗

b values
(see Fig. 1B). More details of step B.2 can be found in the Supplementary
Material.

2.6 Non-linear alignment (step C)
With current CE equipment, we found that it was not feasible to get
complete alignment for profiles with single-band resolution through just
linear scaling of the time axis. There are two reasons for this problem. First,
the electrophoretic mobilities of the same products in different capillaries,
or for the same capillary used at different times, can vary due to temperature
differences and geometry differences. As a result, long profiles, containing
hundreds of bands measured over tens of minutes, can be aligned well
over the initial part of the data (e.g. the first 2 min) or the final part of
the data (e.g. the last 2 min), but both parts cannot be simultaneously
aligned with a single linear transformation. Second, we often run capillary
electrophoresis experiments for structure mapping of molecules with slightly
different sequences, e.g. libraries of single-mutation constructs (Kladwang
and Das, 2010; Kladwang et al., 2011). This leads to small perturbations in
the band mobilities at the site of the mutation and requires a locally non-
linear transformation to permit alignment. To correct for both these issues,
we perform another round of refining the alignment.
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A

B

D E

C

Fig. 1. Overview of the proposed HiTRACE methodology. (A) Raw electropherograms for an example dataset. (left) Dimethyl sulfate (DMS) modification of
the MedLoop RNA (Kladwang et al., 2011), read out by reverse transcription with rhodamine green-labeled primers followed by DNA separation by capillary
electrophoresis; data shown are DMS profiles for 80 (of 120) single nucleotide mutants, 2 replicate controls without chemical modification and sequencing
ladders for C, U and G. (right) Electropherograms of the Texas red-labeled DNA ladder that was coloaded with each sample to produce fiducial markers for
alignment. (B) Profiles after automated preprocessing (baseline subtraction) and correlation-optimized linear alignment. (C) Profiles after automated alignment
refinement by dynamic programming-based non-linear adjustments. (D) Interactive sequence annotation guided by features (red circles) at mutation positions
and bands in the sequencing ladder. Blue, cyan, orange and red lines correspond to modifications at A, C, G and U, respectively. (E) Quantitated band areas
(the final output of HiTRACE). Shorter DNA fragments (higher mobility) are at the top of each panel.
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The concept underlying the non-linear alignment is depicted in the
Supplementary Material, and resembles the warping method presented in
Nielsen et al. (1998) for chromatographic data. We break the time axis of
a non-reference profile into m-pixel windows and then shift each window
boundary within a predefined range over the reference profile so as to
maximize the correlation between profiles summed over all windows. We
assume that the window ordering is preserved during alignment. The number
of possible arrangements in this setup is large but can be enumerated
efficiently by a dynamic programming (DP) approach (Bylund et al., 2002;
Cormen et al., 2009; Nielsen et al., 1998; Robinson et al., 2007) that
recursively solves the problem for the first window, then the first two
windows, etc. As in steps B.1 and B.2, we accelerate the calculation by
computing correlation coefficients through FFT. Example results are shown
in Figure 1C. The Supplementary Material includes a graphical description of
determining the shift amount for each window edge for aligning two example
profiles.

2.7 Sequence annotation (step D)
Each band in a fluorescence profile corresponds to a position in the nucleic
acid sequence. Currently, we carry out sequence annotation interactively
and manually, as this encourages visual inspection of the data and makes
use of expert knowledge to ensure accurate annotation. This step is
accelerated compared to prior approaches (Mitra et al., 2008; Vasa et al.,
2008) through visual feedback. Sequence assignments are made based
on Sanger sequencing ladders included in the experiments; as the user
makes assignments, ‘guidemarks’ appear at expected band positions (one
residue longer than the corresponding position of modification, due to
dideoxynucleotide incorporation). These guidemark positions can be visually
confirmed or adjusted to overlay on experimental bands (see circles in
Fig. 1D). In addition, these guidemarks can be set to appear on A and C
positions for dimethyl sulfate alkylation experiments (Peattie and Gilbert,
1980; Tijerina et al., 2007), as well as mutated positions in mutate-and-map
experiments (Fig. 1D), which typically give visually distinct perturbations
in chemical modification. These features provide cross-checks on the
sequencing ladder that confirm accuracy. Due to the alignment of traces
achieved in previous steps, sequence annotations need to only be provided
once and are applicable to all traces. Automated annotation procedures
are also being developed and will be incorporated in future versions of
HiTRACE.

2.8 Band deconvolution and quantification (step E)
In this last step of HiTRACE, we approximate each profile y(n) for n=
1,2,...,N by a sum f (n) of K Gaussian curves with the form

f (n)=
K∑

k=1

Ak exp

[

− (n−µk)2

2σ2
k

]

(2)

such that the deviation defined by
√√√√ 1

N

N∑

n=1

[f (n)−y(n)]2 (3)

is minimized. Ak , µk and σk are the parameters that determine the
amplitude, the center location and the width, respectively, of a peak
modeled by a Gaussian. We find the optimal values of these parameters
by a standard Levenberg–Marquardt optimization technique for least-square
minimization (Levenberg, 1944; Marquardt, 1963), and report the area of
each peak as the final output.

2.9 Implementation and data preparation
We implemented the proposed HiTRACE methodology in the MATLAB
programming environment (The MathWorks, http://www.mathworks.com)
and are making it freely available for download at http://hitrace.stanford.edu.

For comparison with HiTRACE, we also prepared the implementations
of the five different profile analysis algorithms: CAFA (Mitra et al.,
2008), ShapeFinder (Vasa et al., 2008), msalign (Kazmi et al., 2006),
SpecAlign (Wong et al., 2005) and COW (Tomasi et al., 2004). We could
not apply some methods to all situations due to their intrinsic limitations.
For instance, the alignment feature of CAFA and ShapeFinder requires
significant manual intervention to handle hundreds of profiles; we did not
include ShapeFinder in the alignment result comparison. Similarly, msalign,
SpecAlign and COW can align profiles but do not carry out peak fitting. We
thus excluded them in fitting result comparisons.

2.10 Criteria for evaluating alignment results
We applied two widely used mathematical criteria—the mean squared error
(MSE; Kay, 1993) of aligned peak positions with respect to the reference
peaks and the Kullback–Leibler (KL) divergence (Cover and Thomas, 2006)
between reference and non-reference profiles.

In MSE computation, we consider the position p of each peak in the
reference profile as the true value being estimated, and use the position p̂ of
the aligned peak on a non-reference profile as the estimator of p. The MSE
for the j-th reference peak pj is then

MSEj =E
[
(p̂j −pj)2

]
= 1

L

L∑

i=1

(
p̂ij −p1j

)2 (4)

where L is the number of profiles in the dataset used, and p1j and p̂ij represent
the positions of the j-th reference peak and the peak on profile i that is
aligned to pj , respectively. For the peak detection step involved in the MSE
computation, we used the peak algorithm described by Mitra et al. (2008),
which is specifically designed for finding peaks in CE profiles and shows
satisfactory performance for our purpose.

To evaluate the alignment results from an information-theoretic
perspective, without explicitly considering specific peaks or band positions,
we utilized the KL divergence. We calculated the KL divergence between
the reference profile y1(n) and a non-reference profile yi(n) as

DKL(y1||yi)=
N∑

n=1

y1(n)log
y1(n)
yi(n)

(5)

where N is the number of pixels in each profile. We repeat this calculation
for every reference and non-reference pair in a dataset. Before computing
KL divergence, intensity values were limited to two SDs above the mean to
prevent KL divergence values from being dominated by strong bands at the
beginning and end of each profile.

3 RESULTS

3.1 High-throughput RNA structure mapping datasets
To test HiTRACE, we collected 13 nucleic acid structure mapping
experiments read out by capillary electrophoresis (Table 1). These
datasets were diverse: probed molecules included artificial model
systems (the MedLoop RNA and the X20/H20 RNA/DNA system)
as well as natural structured RNAs (a conserved domain from the
signal recognition particle and the P4-P6 domain of the Tetrahymena
group I ribozyme), with lengths between 60 and 202 nt. Three
common chemical modification strategies were represented in the
data: dimethyl sulfate alkylation (Tijerina et al., 2007), carbodiimide
modification (Walczak et al., 1996) and 2′-OH acylation [the
SHAPE strategy (Merino et al., 2005)]. In addition, the datasets
were challenging in their size. Three experiments each gave 182
bands over 480 electropherograms, for a total of 87 360 bands per
dataset. Finally, to test the precision of quantification relative to
other sources of error, five experiments were conducted twice by
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Table 1. High-throughput RNA structure mapping datasets analyzed by
HiTRACE

Name Profiles (n) Bands per profile (n) Total bands (n)

X20/H20 DMS-1a 98 40 3920
X20/H20 DMS-2a 88 40 3520
MedLoop DMS-1b 120 60 7200
MedLoop DMS-2b 136 60 8160
MedLoop CMCT-1b 128 60 7680
MedLoop CMCT-2b 120 60 7200
SRP DMS-1c 88 60 5280
SRP DMS-2c 96 60 5760
SRP CMCT-1c 88 60 5280
SRP CMCT-2c 88 60 5280
P4-P6 DMSc 480 182 87 360
P4-P6 CMCTc 480 182 87 360
P4-P6 SHAPEc 480 182 87 360

SRP, signal recognition particle conserved domain; P4-P6, P4-P6 domain of the
Tetrahymena group I ribozyme; DMS, dimethyl sulfate; CMCT, 1-cyclohexyl-3-(2-
morpholinoethyl) carbodiimide metho-p-toluenesulfonate; SHAPE, selective hydroxyl
acylation analyzed by primer extension.
aKladwang and Das, 2010.
bKladwang et al., 2011.
cThis work.

two independent researchers. Additional datasets were collected
to confirm HiTRACE’s ability to quantify data for RNAs over
400 nt in length (the L-21 ScaI Tetrahymena group I ribozyme)
and to compare overlapping SHAPE data derived from reverse
transcription starting at different primers on the same RNA (the
P4-P6 domain). Overall, these datasets provide a diverse and
challenging benchmark of nucleic acid CE experiments at the large
scale permitted by current high-throughput experimental protocols.

3.2 Robust alignment of CE profiles
As the most basic test, we first compared the alignment results
of HiTRACE with previously available methodologies by visual
inspection (Fig. 2). Prior to alignment, CE experiments gave initially
poor alignments of DMS chemical mapping profiles for the 60 band
MedLoop RNA and the 182 band P4-P6 RNA (‘Raw’ in Fig. 2A and
B). Application of automated HiTRACE alignment aligns the strong
bands across all profiles (‘HiTRACE’ in Fig. 2A and B; see also
Fig. 1A–C). In the alignment results produced by methods other than
HiTRACE, profiles within each group tend to be reasonably aligned,
whereas profile groups are not well-aligned. We did not observe this
‘stratification’ problem in the HiTRACE result, mainly due to the
interbatch alignment step (B.2) used by HiTRACE. Additionally,
comparing HiTRACE results with SpecAlign and CAFA results
reveals the effectiveness of the HiTRACE non-linear alignment
step, which adapts alignment to weakly varying electrophoretic rates
along the profile. In the alignment results produced by SpecAlign
and CAFA, some parts of the profiles appear reasonably aligned, but
the top (SpecAlign) or bottom (CAFA) portions are not well aligned.
For msalign and COW, this problem is much more noticeable.

For more quantitative evaluation of profile alignments, we
compared the different methodologies in terms of two mathematical
criteria, mean squared error in peak position (MSE) and KL
divergence between profiles. Figure 2C and D show the distributions
of the average MSE and KL divergence values over the 13 datasets

A

B

C

D

Fig. 2. Comparison of available alignment strategies for nucleic acid
CE profiles. (A) Comparison of electrophoretic profiles of the 88 profile
MedLoop DMS mutate-and-map dataset (Kladwang et al., 2011) (replicate 2)
before alignment and after alignment by HiTRACE, msalign (Kazmi et al.,
2006), SpecAlign (Wong et al., 2005), COW (Tomasi et al., 2004) and
CAFA (Mitra et al., 2008). (B) Alignment results for the 480 profile P4-P6
DMS dataset. (C) Quantitative comparison of alignment results for all 13
datasets based on MSE (Kay, 1993) of aligned peak positions with respect
to the reference peaks. The line in the middle of a box is median value;
box boundaries represent 75th and 25th percentiles; error bars represent the
most extreme values whose distance from the box is less than 1.5 times
the box length; plus symbols are outliers beyond this range. (D) Quantitative
comparison in terms of the Kullback–Leibler divergence (Cover and Thomas,
2006) between reference and non-reference profiles.
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used for different algorithms. With respect to HiTRACE, the
alternative methodologies produced poorer results, 1.73–3.09 and
1.51–3.94 times higher median MSE and KL divergence values,
respectively.

3.3 Leveraging accurate alignments into accurate
quantification

To assess the accuracy of the entire quantification procedure,
including alignment, sequence annotation and band deconvolution,
we compared final quantified results between HiTRACE and
previously available software for RNA structure mapping CE data,
using two MedLoop DMS mutate-and-map datasets (Kladwang
et al., 2011) (see also Supplementary Material for a comparison
with the X20/H20 DMS data). Each set contained at least 120
profiles with 60 bands, for a total of 7200 data points per set.
(Further comparisons between software packages were precluded
by the difficulty of carrying out the analysis with prior software:
ShapeFinder gave poor alignment even after several hours of manual
intervention, and CAFA analysis required 10 h of manual adjustment
for this data set and would have required days for larger data sets.)

The MedLoop sets gave excellent Pearson’s correlation
coefficients between band intensities quantified with HiTRACE to
those quantified with CAFA (r of 0.979 and 0.965; Fig. 3A and B),
confirming the lack of any major systematic errors introduced by
the HiTRACE method. We hypothesized that the small, residual
variance between the methods might stem from user-introduced
variation during alignment (CAFA) or sequence assignment of bands
(in CAFA and HiTRACE). To test this hypothesis, we carried out
replicate quantification of the same datasets; the second independent
analysis gave values with correlation coefficient (r) to the first
analysis of 0.987 and 0.989 (HiTRACE; Fig. 3C and D) and
0.989 and 0.974 (CAFA; Fig. 3E and F). We conclude that any
differences between HiTRACE and CAFA can be explained by
imprecision (variance of 1.1–1.3% in HiTRACE and 1.1–2.6% in
CAFA) introduced by users; this error is much smaller than variances
arising from experimental error, as is discussed in the next section.

3.4 Consistency in band quantification between
experimental replicates

A stringent measure of the accuracy of an experiment and
its analysis is the correlation of quantified intensities between
independent replicates. The goodness of this correlation is
determined by experimental factors, including small variations in
sample purity, pipetting errors, temperature differences and variable
times of each experimental step, and is also sensitive to any
uncertainties arising from the data analysis procedure. We compared
correlation coefficients between separate independent replicates
of the MedLoop DMS mutate-and-map experiments (Kladwang
et al., 2011), quantified by both HiTRACE and CAFA (Fig. 4A
and B). In both cases, the cross-replicate correlations (0.89–0.90) are
significantly lower than the intrareplicate comparisons (0.97–0.99)
above, verifying that variances in experimental procedures exceed
any variances in the data quantification.

The throughput of HiTRACE quantification enabled us to carry
out this cross-replicate comparison for the additional replicate sets
(see Supplementary Material) and to explore whether alternative
data processing schemes might improve the precision of the
HiTRACE quantification. We tested a computationally expensive

A B

C D

E F

Fig. 3. Quantification accuracy and precision for HiTRACE and CAFA.
Correlation of HiTRACE and CAFA results for two MedLoop DMS datasets
(A) and (B) confirms the absence of any systematic deviation between the
two approaches. Precision of HiTRACE (C) and (D) is similar or better than
CAFA (E) and (F), based on independent analyses of the same dataset.

band deconvolution procedure [previously used in SAFA (Das
et al., 2005)] that optimized centers of fitted Gaussians for each
individual profile. We observed indistinguishable cross-replicate
correlation coefficients (Fig. 4C) with this procedure as compared
to the the default HiTRACE method (no refinement of band
centers). This comparison further validated the high quality of
the profile-to-profile alignment in earlier HiTRACE steps, and
motivated our choice to make as the HiTRACE default the 10-
to 100-fold faster band-deconvolution procedure without band
center refinement. We observed similarly invariant or slightly
worse correlation coefficients in experiments without the baseline
subtraction procedure; with additional alignment steps of ‘binarized’
profiles; and with other methods to automatically refine band
positions in each profile (see Supplementary Material).

3.5 Reduced time demand of quantification
Although HiTRACE relies on multiple steps for accurate analysis,
the time demand of quantification by HiTRACE was considerably
smaller (a few minutes) than the time required by prior informatic
approaches as well as the time involved in preparing and obtaining
the CE experiments (a few hours). Figure 5 shows the average
running time of HiTRACE for different datasets, along with the
breakdown of the running time. The largest dataset (P4-P6 CMCT;
480 profiles and 87 360 bands) took approximately 12 min to
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A

C

B

Fig. 4. Correlation of results between experimental replicates for
HiTRACE (A) and CAFA (B) for the MedLoop DMS mutate-and-map
experiments (Kladwang et al., 2011), and (C) for HiTRACE on five replicate
data sets without (black bars) and with (white bars) optimization of Gaussian
positions during band deconvolution.

quantify, and the smaller sets (88–136 profiles, 4000–8000 bands)
required 3 min or less. Overall, HiTRACE averaged 1.58 s per
profile from beginning (raw data load-in) to end (quantified band
intensities). For the same datasets, the overall computational time
of the tools for alignment only (i.e. msalign, SpecAlign and COW)
were between 10 min to 2 h (without peak fitting) depending on the
data size. As discussed above, CAFA and ShapeFinder, the previous
full suites available for nucleic acid CE quantification, required even
more time (hours for the smaller datasets, extrapolated to days or
weeks for the larger sets). As shown in Figure 5, the HiTRACE
time breakdown is similar for all datasets, except for the P4-P6
RNA datasets, in which later stages are lengthened by increasing the
number of bands in each profile (200 residues in the P4-P6 RNA,
compared to under 100 residues for the other RNAs). We further
used HiTRACE on datasets with longer RNAs (up to 400 nt) and
involving reverse transcription with primers complementary to the
middle of a long RNA; the HiTRACE procedure was readily applied
to these datasets (see Supplementary Material), and, encouragingly,
the time demand remained linear with the number of bands.

4 DISCUSSION
HiTRACE employs a series of automated techniques to control the
high level of variability in parameters of CE systems and to resolve a
key alignment bottleneck of modern nucleic acid structure mapping
experiments. Several algorithmic advances are responsible for
HiTRACE’s accuracy and speed, including dynamic programming
strategies that have not been been previously considered in the
field. Quantitative comparisons on large experimental datasets

Fig. 5. The average running time of HiTRACE on different datasets. The
time was measured on a personal computer system equipped with a 2.66 GHz
Core i5 processor (4 cores; multithreading enabled) with 4 GB RAM.

demonstrate the utility of a linear time-axis transformation used
in globally aligning profiles as well as the importance of a
non-linear alignment procedure for resolving further unavoidable
variations in elution rates along a capillary. In addition, an interactive
band annotation interface increases user convenience and provides
accurate starting positions for the subsequent quantification step.
These improvements have brought down the overall analysis time
of datasets with tens of thousands of electrophoretic bands from
days to minutes. The largest time savings of the method are on
experiments in which the same RNA sequence is probed under a
variety of solution conditions, chemical modifiers, kinetic timepoints
or mutations [see, e.g. (Das et al., 2010; Kladwang and Das,
2010; Kladwang et al., 2011; Mitra et al., 2008; Weeks, 2010;
Wilkinson et al., 2008)]. Now, the slow step in these and other
experiments is interactive band annotation, which takes minutes
(Fig. 5).As more automated band assignment methods are developed
(R.D., unpublished data; P.Pang, M.Elazar, J.S.Glenn, personal
communication), we plan to incorporate them into this interface.

Although we designed HiTRACE primarily for RNA chemical
structure mapping, the principles and premises that underlie
HiTRACE are general and can easily be modified for use in other
types of experimental assays. To enhance the adoption of this
tool, we have created a stand-alone version of HiTRACE with a
graphical user interface. We are also making the source code freely
available to encourage further innovation and incorporation of these
algorithms into other laboratories’ CE software suites. Beyond the
datasets discussed herein, HiTRACE is continuously being used for
other studies, totalling over 20 000 profiles (greater than 2 million
bands) at the time of submission (W.K., R.D., unpublished data; see
also http://rmdb.stanford.edu). Given its accuracy, robustness and
efficiency, we expect that HiTRACE will become a valuable tool
for nucleic acid experimentalists entering a high-throughput era of
structural analysis.
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