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Ribonucleic acid (RNA) design offers unique opportunities

for engineering genetic networks and nanostructures that

self-assemble within living cells. Recent years have seen the

creation of increasingly complex RNA devices, including proof-

of-concept applications for in vivo three-dimensional scaffolding,

imaging, computing, and control of biological behaviors. Expert

intuition and simple design rules — the stability of double helices,

the modularity of noncanonical RNA motifs, and geometric

closure — have enabled these successful applications. Going

beyond heuristics, emerging algorithms may enable automated

design of RNAs with nucleotide-level accuracy but, as illustrated

on a recent RNA square design, are not yet fully predictive.

Looking ahead, technological advances in RNA synthesis and

interrogation are poised to radically accelerate the discovery and

stringent testing of design methods.
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Ribonucleic acid (RNA) is, in many respects, an ideal

polymer for biomolecular design. Natural and designed

RNA chains can be exquisitely functional: they code for

genetic information, assemble into intricate three-dimen-

sional structures, catalyze chemical reactions, and engage in

nearly every essential biological process in living cells

(extensively reviewed in [1]). Most appealingly, these

RNA behaviors can be explained and designed by rules

that appear strikingly simple and, in favorable cases, are

quantitatively predictive. Indeed, our motivation for study-

ing RNA design puzzles is that they offer opportunities to

discover and rigorously test such predictive  rules, which

might, in turn, enable the modeling of any RNA ‘from

scratch’.

This review focuses on current and missing rules for RNA

design, starting with a description of three basic heuristics

in universal use. The three subsequent sections review
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recent work to expand each rule into predictive theories

and tools, highlighting current mismatches between

theory and practice. We conclude with a perspective

on trends that may radically accelerate the discovery of

new RNA design theories and devices.

Three heuristic design rules
All successful RNA designs to date have leveraged three

basic rules, many first explored in the interrogation of

natural RNA systems [3] and the design of DNA devices

[4]. We illustrate these ideas with an ‘RNA square’

(Figure 1a–g), recently assembled from eight strands as

a potential scaffold for nanoscale chemical reactions

(Figure 1a) and crystallized by the Hermann lab [2��].

Rule 1. Watson–Crick base pairs generate stable double helices.
Every RNA design made to date has taken advantage of

helical stems formed as RNA strands double back on

themselves or associate with other strands to form Wat-

son–Crick base pairs. For the RNA square, its edges are four

helices, each involving association of four strands

(Figure 1b).

Rule 2. RNA motifs can preserve their behavior when copied and
pasted into new contexts. Explorations of RNAs in living

systems and elegant in vitro selections have revealed a

plethora of natural RNA catalysts, sensors, and structures.

Many of these molecules’ functions are due to small (4–15

nucleotide) RNA motifs with non-canonical structure.

These motifs can be grafted into if care is taken to avoid

mispairings with flanking sequences. For example, the four

‘nanocorners’ of the RNA square (Figure 1c) are copies of a

five-nucleotide bulge motif, drawn from a right-angle-

forming structure in the Hepatitis C virus genome [5].

Rule 3. Geometric closure ensures correct three-dimensional struc-
ture. For 3D structures, the geometry of helical stems must

successfully interconnect with noncanonical motifs — a

stringent requirement for RNA designs that encompass

closed ‘ring’ topologies (Figure 1d). For the RNA square,

the choice of 10 base pairs for the edges leads to a well-

ordered square assembly with no detectable alternative

species. Extension to 11 base pairs precludes the closure

of the square and gives higher-order assemblies [2��].

Can these intuitive rules be explained and expanded into

quantitatively predictive theories for RNA design?

Expanding Rule 1: theories for RNA secondary
structure design
Physical theories underlying RNA secondary structure

formation are the most developed models in RNA science
n, Curr Opin Struct Biol (2012), http://dx.doi.org/10.1016/j.sbi.2012.06.003
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A square illustrates RNA design. (a) Sequences (inner and outer) determined ‘by hand’ by Hermann group [2��]; four copies of the two sequences form

the square. (b) Multi-strand secondary structure involves each inner and outer strand forming a nanocorner, and four nanocorners pairing through

three-nucleotide sticky ends. (c) Inspiration for the nanocorner, a 5-nt bulge that forms a 90 8C bend in the Hepatitis C virus internal ribosomal entry

site (crystallized in PDB ID 2PN4). (d) Crystallographic analysis for full RNA square (PDB ID 3P59). (e) Secondary structure predictions for square

design are inaccurate (NUPACK models shown [26]). (f) The ab initio modeling problem of rebuilding the nanocorner’s 5-nt bulge — even given the rest

of the coordinates — is not solvable at atomic resolution. (g) An RNA-Puzzle [70��]: blind prediction of the nanosquare conformation by Rosetta

methods is not atomically accurate, even when given the inner strand coordinates as a constraint.
and arguably amongst the most predictive theories avail-

able in biophysics. Several decades of melt experiments

on thousands of RNA sequences have been distilled into

models that parameterize canonical base pair formation

into two dozen ‘nearest-neighbor’ parameters, where the

thermodynamic stability of a given base pair depends on

adjacent base pairs and temperature [6,7]. Further mod-

eling and measurements have provided approximate

energetic rules (Figure 2a) for many hairpin loops, base

pair mismatches, and more complex inter-helical motifs
Please cite this article in press as: Bida JP, Das R. Squaring theory with practice in RNA desig
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such as three-way junctions [7–13]. Given such energetic

models, dynamic programming algorithms implemented

in packages such as mfold/UNAfold [14], RNAstructure

[15], and ViennaRNA [16] permit the comprehensive

statistical mechanical description of RNA secondary

structure ensembles for arbitrary sequences (Figure 2b)

with the ability to recover �70% of phylogenetically

determined base pairs [7]. Modeling methods for second-

ary structure formation kinetics are also under exploration

in packages such as Kinefold [17].
n, Curr Opin Struct Biol (2012), http://dx.doi.org/10.1016/j.sbi.2012.06.003
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Figure 2
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Theory and practice in RNA secondary structure design. (a) The free energy of a sequence in a given secondary structure conformation is calculated

by summing up the free energies of nearest neighbor terms derived from extensive empirical measurements (green) [6–13]. (b) Dynamic programming

algorithms can calculate the minimal free energy structure, base-pair probabilities, and partition function [14,15]. These methods recursively calculate
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Most relevant for RNA design are recent approaches for

predicting sequences that fold into given target secondary

structures, the ‘‘inverse’’ folding problem. Methods range

from simple Monte Carlo sequence searches (Inver-

seRNA [18]) to faster hierarchical schemes (RNA-SSD

[19] and INFO-RNA [20]) that attempt to solve the

design problem for substructures or with simplifying

assumptions before merging or optimizing solutions

(Figure 2c). Most efforts have focused on finding

sequences whose minimum free energy conformations

recover the desired structure or, in some cases, multiple

structures [16,21–23,24�]. The NUPACK software has

presented optimization algorithms for a novel and intui-

tive target metric, the ‘ensemble defect’, which parame-

terizes the fluctuations of each nucleotide away from its

desired configuration [25�,26]. Systematic experimental

benchmarks of these design algorithms on novel second-

ary structure targets, perhaps using chemical accessibility

mapping [27], would be valuable but are not yet available.

RNA secondary structure prediction and design algorithms

are being widely used to help develop novel molecules.

Design of RNA thermometers for temperature-controlled

gene expression has made use of the nearest neighbor rules

[28] (Figure 2d). Isambert, Schwalbe, and other labs have

designed model systems with appealing simplicity to study

cotranscriptional folding and two-state switching [29–32].

Carothers and colleagues have calculated the properties of

RNA devices taking into account the folding rates of

ribozymes and aptamers calculated in Kinefold [33]. Pierce

and colleagues have imported the ‘hybridization chain

reaction’ first developed in DNA engineering to create

multiplexed amplifiers for in situ hybridization to mRNA

targets in zebrafish embryos [34�] (Figure 2e and f) and to

induce apoptosis of cultured human cells in response to

cancer marker RNAs [35�].

While making use of RNA secondary structure modeling

algorithms, these successful design efforts have still

required significant insight from experts and would be

challenging to generate automatically. For example, the

RNA square, which was designed ‘by hand’ [2��], is a

problem case for current secondary structure calculation

methods, which predict alternative structures (Figure 1e).

The squares’ nanocorners are especially stable motif

sequences that form noncanonical hydrogen bonds and

specifically coordinate multivalent ions — features that

are not treated in current RNA thermodynamic models.

In principle, quantum chemical and molecular dynamics

approaches should enable the ab initio calculation of these

‘missing’ parameters in arbitrary solution conditions but
Please cite this article in press as: Bida JP, Das R. Squaring theory with practice in RNA desig

a substructure’s properties using a matrix to store the values for each smal

prediction programs [19,20,25]. (d) Free energy calculations were used to d

temperature [28]. (e) Hybridization chain reaction: metastable hairpins (green

amplify the fluorescent signal during in situ hybridization experiments [34�]. 

elavl3 (green), ntla (yellow), and sox10 (purple) [34�].
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are still under calibration [36–43]. Further, most second-

ary structure prediction packages do not yet model ring-

like or pseudoknot structures, although new extensions

are attempting to tackle this issue [44,45,46�].

Expanding Rule 2: new RNA motifs and new
combinations
A large arsenal of functional motifs is available for RNA

design (Figure 3a). Quite broadly, RNA sequences that

form specific three-dimensional structures, bind to small

molecules or proteins, or mediate cellular localization,

degradation, transcription termination, splicing, editing,

or other cellular RNA processing events are widely used

in biological inquiry (reviewed recently in [47,48,49]).

Several groups are compiling databases with sequences

and structures of existing motifs derived from natural

functional RNAs or in vitro selections [50–54].

RNA designs have demonstrated the power of utilizing

multiple interacting motifs, often coupled allosterically via

secondary structure switches or kissing loops. Motifs

embedded in such devices include small-molecule-bind-

ing ‘aptamers’ such as the theophylline-binding motif,

catalytic modules such as the hammerhead ribozyme

three-way junction, and protein-binding motifs [55–
57,58�,59]. The resulting devices have been expressed

in bacteria, yeast, and mammalian cells to create circuits

of growing complexity, including on/off switches [60,61]

(Figure 3a), RNA-based logic gates [56,62–64], cooperative

behaviors [56], and bacteria that swim toward and ingest

the herbicide atrazine [65]. Creative ways to discover and

select new functional motifs are also being pursued, for

example, through juxtaposition of randomized sequences

by tertiary scaffolds [66,67] (see also below). While all the

designs have leveraged the modularity of functional motifs,

many successes have required trial-and-error or selection in
vivo [57,65]. Presentation of failure cases and their in-depth

dissections, as are now carried out in the protein design

field [68,69], would be valuable.

Even with the growing database of known functional

motifs, there may always be components for RNA design

that are not naturally available, such as aptamers for

specific moieties in large macromolecules. A general

solution to such de novo design problems would be useful

but has not been demonstrated. Indeed, when the RNA

square crystallographic structure was offered as a blind

trial to RNA modelers, no algorithm reached atomic

accuracy predictions of the nanocorners even when given

the coordinates of four of the eight internal strands of the

motifs (Figure 1g) [70��]. Nevertheless, a recent
n, Curr Opin Struct Biol (2012), http://dx.doi.org/10.1016/j.sbi.2012.06.003

ler substructure. (c) Workflow adopted by many inverse RNA structure

esign RNA thermosensors that inhibit translation below a target

 and orange) polymerize in the presence of an initiation sequence (red) to

(f) Zebrafish cross section with targeting TG(flk1:egfp) (red), tpm3 (blue),
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Theory and practice in RNA tertiary structure design. (a) Cutting and pasting motifs: kissing loops, a theophylline aptamer, and the IS10 ncRNA were

rationally combined to engineer trans-acting ncRNAs that regulates gene translation that can be turned on or off with theophylline [57]. (b) New tertiary

motifs generated with Rosetta fixed backbone design for RNA, based on in silico energy minimization. The resulting designs for the most conserved

domain of the signal recognition particle RNA are distinct from natural RNAs and turn out to be more stable experimentally [75�]. (c) RNA tectonics:

combination of tertiary components and helices in three dimensions, optimized by hand or computationally [106]. (d) Nanoring assembled from RNAI/II

inverse kissing complexes, validated by atomic force microscopy (middle) and non-denaturing gel electrophoresis [88].
explosion of activity in RNA 3D classification [71–73] and

motif modeling [70��,74] (Figure 1f and g), with some

algorithms achieving atomic accuracy in favorable cases

[39,75�,76], suggests that de novo design may become a

reality. As an early step, we adapted the Rosetta design

method for fixed-backbone biopolymer design [77] to

successfully thermostabilize a non-canonical motif in
Please cite this article in press as: Bida JP, Das R. Squaring theory with practice in RNA desig
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the signal recognition particle RNA through mutations

previously unseen in Nature (Figure 3b) [75�].

Expanding Rule 3: theories for RNA tertiary
structure design
The successful design of highly complex 3D RNA struc-

tures continues to involve connecting RNA motifs and
n, Curr Opin Struct Biol (2012), http://dx.doi.org/10.1016/j.sbi.2012.06.003
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helical stems, typically with additional tertiary motifs and

cross-strand interactions that generate ring-like topolo-

gies (Figure 3d). This procedure, sometimes called RNA

‘tectonics’, is accomplished with manually directed pro-

grams such as NanoTiler [78] or Assemble [79] to put

together RNA components in silico.

Visually compelling examples of designed 3D RNA

structures have proliferated since the first ‘TectoRNA’,

an RNA dimer stabilized by docking of tetraloops and

their cognate receptors [80]. Several groups have

designed and validated RNA tiles [81,82��], multimers
Please cite this article in press as: Bida JP, Das R. Squaring theory with practice in RNA desig
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[83], cubes [24�], prisms [84], triangles [85], fabrics

[81,82��], fibrils [86,87], and rings (Figure 3d) [88,89],

often using different components (tetraloop/receptors,

kissing loops, tRNA-based junctions) to make similar

objects [90�].

Many of these designs echo work in DNA nanotechnol-

ogy [4], but RNA design permits, in principle, the deploy-

ment of nanostructures in living cells. Notably,

Delebecque and colleagues [82��] have demonstrated

self-assembly of nanofabrics in vivo and used the resulting

structures to accelerate hydrogen production in bacteria
n, Curr Opin Struct Biol (2012), http://dx.doi.org/10.1016/j.sbi.2012.06.003

(b)  On-chip oligo synthesis

(c) Pooled RNA transcription 

ely
NA 

ycle 
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f sequences (a) designed by experts, citizen scientists, and automated

 (b) [96,97], (figure adopted from LC sciences) transcribed into RNA (c),

hemical mapping (d) utilizing-next generation-sequencing methods [99].
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through the scaffolding of protein enzymes. Other appli-

cations include scaffolding gold particles for nanowires

[91], encaging other molecules [84], and protecting

duplexes intended for RNA silencing from degradation

[88,92].

Atomic-scale validation of 3D design — as was achieved

quite early for protein design [93,94] — has not yet been

demonstrated for RNA nanostructures. For example, the

crystallographic analysis of the four-fold sequence-sym-

metric RNA square showed the four nanocorners forming

different structures (Figure 1d). In addition to structure

modeling puzzles, an unaddressed challenge is to model

the thermodynamic stabilities of RNA tertiary folds with

accuracies comparable to the nearest-neighbor rules for

secondary structure energetics. Improving tools for

measuring helix and junction flexibility (see, e.g., [95])

should aid greatly in such efforts.

Perspective: an impending acceleration
In recent years, RNA designers have leveraged simple

rules for secondary structure formation, the modularity of

small RNA motifs, and three-dimensional closure to

produce devices and nanostructures of growing complex-

ity. It is particularly exciting to see these designs

deployed into biological systems, suggesting future routes

to biomedical devices that sense and perhaps correct

cellular dysfunction. Nevertheless, challenges remain,

particularly in attaining predictive theories for RNA

assembly at nucleotide resolution, much less atomic

resolution. Multi-strand topologies, non-canonical inter-

actions, and energies of 3D assemblies remain unsolved

challenges in RNA design theory. Both our physical

models and our ability to make predictions from these

models need improvement.

We are optimistic about the development of more quan-

titative and predictive theories for RNA structure design

and eventually RNA functional design due to the

explosion of RNA data expected in upcoming years.

The cycle of RNA design and testing can be short,

especially compared to protein engineering — arbitrary

RNA sequences up to hundreds of nucleotides in length

are experimentally straightforward to synthesize, purify,

interrogate, and evolve on the timescale of days. Current

technologies offer the parallel synthesis of thousands of

arbitrary DNA templates (Figure 4a and b) [96,97], which

can be transcribed into RNA in vitro and, in principle, in
vivo (Figure 4c). Further, multiplexed single-nucleotide-

resolution chemical mapping [98,99] and elegant selec-

tion strategies [100] can provide information-rich data on

all of these molecules’ structures and functions, using

deep-sequencing platforms with turn-around times of

hours (Figure 4d). The key challenges will then be to

distribute [101] and accurately analyze these data [102–
105], to update RNA modeling algorithms, and to feed

back these insights into the next rounds of synthesis and
Please cite this article in press as: Bida JP, Das R. Squaring theory with practice in RNA desig
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mapping. The result, a massively parallel design cycle,

would offer unprecedented opportunities for squaring

theory with practice in RNA design.
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