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ABSTRACT: For decades, dimethyl sulfate (DMS)
mapping has informed manual modeling of RNA structure
in vitro and in vivo. Here, we incorporate DMS data into
automated secondary structure inference using an energy
minimization framework developed for 2′-OH acylation
(SHAPE) mapping. On six noncoding RNAs with
crystallographic models, DMS-guided modeling achieves
overall false negative and false discovery rates of 9.5% and
11.6%, respectively, comparable to or better than those of
SHAPE-guided modeling, and bootstrapping provides
straightforward confidence estimates. Integrating DMS−
SHAPE data and including 1-cyclohexyl(2-morpholinoeth-
yl) carbodiimide metho-p-toluene sulfonate (CMCT)
reactivities provide small additional improvements. These
results establish DMS mapping, an already routine
technique, as a quantitative tool for unbiased RNA
secondary structure modeling.

Understanding the many biological functions of RNAs,
from genetic regulation to catalysis, requires accurate

portraits of the RNAs’ folds. Among biochemical tools available
for interrogating RNA structure, chemical mapping or “foot-
printing” uniquely permits rapid characterization of any RNA
or ribonucleoprotein system in solution at single-nucleotide
resolution (see, e.g., refs 1 and 2). Chemical mapping is being
advanced by several groups through new approaches for
chemical modification, coupling to high-throughput readouts,
rapid data processing, high-throughput mutagenesis, and
incorporation into structure prediction algorithms.3−7

Perhaps the most widely used RNA chemical probe is
dimethyl sulfate (DMS).8−11 DMS modification of the
Watson−Crick edge of adenosines or cytosines (at N1 or
N3, respectively) blocks reverse transcription, so that
reactivities can be obtained by primer extension at single-
nucleotide resolution. Nucleotides that appear to be most
strongly protected or reactive to DMS can be inferred to be
base-paired or unpaired, respectively. This qualitative or
“binary” information can be used for RNA structure modeling
by manual or automatic methods.10,12 More recently developed
methods, such as selective 2′-hydroxyl acylation with primer
extension (SHAPE),6 give reactivities that correlate with
Watson−Crick base pairing for all nucleotide types, providing
more data points than DMS. Indeed, when incorporated into
free energy minimization algorithms as energetic bonuses,
called pseudoenergies, SHAPE data can recover RNA

secondary structures with a high level of accuracy.11 Further,
nonparametric bootstrapping (repeating the algorithms on data
sets resampled with replacement) can identify regions with
poor confidence.13 Nevertheless, this pseudoenergy framework
has not been leveraged for prior chemical approaches such as
DMS mapping, despite the wide use of these data in in vitro, in
vivo, and in virio contexts.9,12,14,15

We present herein a benchmark of pseudoenergy-guided
secondary structure modeling based on DMS data for six
noncoding RNAs: unmodified Escherichia coli tRNAphe,16 the
P4−P6 domain of the Tetrahymena group I ribozyme,17 E. coli
5S rRNA,12 and three ligand-bound domains from bacterial
riboswitches (the Vibrio vulnif icus add adenine riboswitch,18 the
Vibrio cholerae cyclic di-GMP riboswitch,19 and the Fusobacte-
rium nucleatum glycine riboswitch20). In all cases, crystallo-
graphic data, confirmed by solution analyses with the two-
dimensional mutate-and-map approach,21 have provided “gold-
standard” secondary structures (Table S1 of the Supporting
Information) for evaluating the method’s accuracy. The
challenging nature of this benchmark is confirmed by the
poor accuracy of the RNAstructure algorithm without data
(Table 1). These models miss 38% of true helices [false
negative rate (FNR)], and 45% of the returned helices are
incorrect [false discovery rate (FDR)].
We measured DMS reactivities and estimated errors, inferred

from three to eight replicates for each of the six RNAs (Figures
S4−S9 and Table S1 of the Supporting Information).
Analogous to prior SHAPE studies,11,13 we incorporated
these DMS data into RNAstructure by transforming them into
pseudoenergies, giving favorable energies or penalties depend-
ing on whether paired nucleotides were DMS-protected or
reactive, respectively. We tested pseudoenergy frameworks
based on both a previous ad hoc formula and an empirically
derived statistical potential [inspired by techniques in three-
dimensional structure prediction (see Methods and Figure S1
of the Supporting Information)]. The two methods gave
consistent secondary structures. Because primer extension
primarily reads out DMS reactivity at adenosines and cytosines,
we excluded reactivities at other bases when performing
structure modeling. DMS-guided modeling of the six ncRNAs
gave an FNR of 9.5% and an FDR of 11.6% (Table 1 and
Figure 1; see also Table S2 of the Supporting Information),
more than 3-fold better than without the data. These error rates
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are lower than those previously achieved by SHAPE-directed
modeling (FNR of 17% and FDR of 21% on the same
RNAs13). Furthermore, the DMS-guided FNR and FDR values
are equal to and lower than, respectively, values for SHAPE-
based measurements in which primer extension was conducted
without deoxyinosine triphosphate (FNR of 9.6% and FDR of
13.6%) to avoid known artifacts.13

We were surprised that DMS mapping gave similar or better
information content, compared to SHAPE data, as the latter
provides reactivities at approximately twice the number of
nucleotides per RNA. [Indeed, restricting the algorithm to use
SHAPE data at adenines and cytosines gave worse models (see
Table S3 of the Supporting Information).] An explanation for
our results derives from distinct SHAPE and DMS signatures at
nucleotides that are not in Watson−Crick secondary structure
but that nevertheless form noncanonical interactions [see, e.g.,
A37 in the F. nucleatum glycine riboswitch (Figure 2A)]. These
nucleotides appear to be protected from the SHAPE reaction
and thus receive pseudoenergies that incorrectly reward their
pairings inside Watson−Crick secondary structure. However,
these same nucleotides can expose their Watson−Crick edges
to solvent and react strongly with DMS, signifying that they are
outside Watson−Crick helices. The DMS-guided modeling can
thus return the correct secondary structure in regions where the
SHAPE data cannot distinguish Watson−Crick from non-
Watson−Crick base pairs (compare panels B and C of Figure
2).
Reactivity histograms (Figure 2D,E) further support the

enhanced predictive power of DMS vis-a-̀vis SHAPE. DMS
mapping better distinguishes between nucleotides inside
Watson−Crick helices and nucleotides outside helices [see
also the receiver operating characteristic curve and quantitation
(Figure S2 of the Supporting Information)].
Like SHAPE-guided modeling, DMS-directed structure

inference still produces errors (Table 1), e.g., for the central
junction of the 5S rRNA (Figure 1). Some of these errors may
be resolved through better incorporation of the DMS-derived
pseudoenergies at, e.g., isolated, or “singlet”, base pairs.
Nevertheless, as with SHAPE modeling, these erroneous

regions can be pinpointed by estimating helix-by-helix
confidence values through nonparametric bootstrapping
(Methods of the Supporting Information and ref 13; see also
Figure S3 of the Supporting Information). For example, this
procedure gives a high degree of confidence (≥90%) at almost
all helices in the correctly recovered structure of the glycine
riboswitch but low levels of confidence (<50%) throughout the
imperfect 5S rRNA DMS model (Figure 1).
For many applications, DMS and SHAPE measurements can

be acquired in parallel, so we sought to determine if their
combination might improve automated secondary structure
inference. Application of both sets of pseudoenergies gave a
slight improvement in the algorithm’s accuracy (FNR of 7.1%
and FDR of 11.4%). In addition, we performed measurements
with a reagent that primarily modifies Waston−Crick edges of
guanosine and uracil, 1-cyclohexyl(2-morpholinoethyl) carbo-
diimide metho-p-toluene sulfonate (CMCT).22 Incorporation
of these data into RNAstructure gave poorer accuracy modeling
than the DMS- or SHAPE-guided modeling described above
[FNR of 14.3% and FDR or 18.2% (see Table S4 of the
Supporting Information)], consistent with weaker discrim-
ination between paired and unpaired residues (Figures S1 and

Table 1. Performance of Free Energy Minimization Guided
by Reactivity-Derived Pseudoenergies from DMS and
SHAPE Chemical Modificationsa

no data DMS SHAPE
DMS and
SHAPE

cryst. TP FP TP FP TP FP TP FP

tRNAphe 4 2 3 4 0 4 0 4 0
adenine
riboswitch

3 2 3 3 1 3 1 3 1

cdGMP
riboswitch

8 6 2 6 0 8 0 8 0

5S rRNA 7 1 9 6 3 6 3 6 3
P4−P6 RNA 11 10 1 10 1 9 1 9 1
glycine riboswitch 9 5 3 9 0 8 0 9 0
total 42 26 21 38 6 38 5 39 5
FNR 38.1% 9.5% 9.5% 7.1%
FDR 44.7% 11.6% 13.6% 11.4%
sensitivity 61.9% 90.5% 90.5% 92.9%
PPV 55.3% 88.4% 86.4% 88.6%
aAbbreviations: TP, true positives; FP, false positives; cryst., number
of helices in the crystallographic model; FNR, false negative rate (1 −
TP/total); FDR, false discovery rate [FP/(TP + FP)]; sensitivity, 1 −
FNR; PPV, positive predictive value (1 − FDR).

Figure 1. Pseudoenergy-guided secondary structure models using
DMS data on six noncoding RNAs. DMS data and secondary structure
models for E. coli tRNAphe, the P4−P6 domain of the Tetrahymena
group I ribozyme, E. coli 5S rRNA, the V. vulnif icus add adenine
riboswitch, the V. cholerae cyclic di-GMP riboswitch, and the F.
nucleatum glycine riboswitch. Missed base pairs are highlighted with
blue lines; mispredicted base pairs are denoted with orange lines. Helix
bootstrap confidence values are colored red. G and U nucleotides that
do not give DMS signals in primer extension and nucleotides with
unavailable reactivities are colored gray.
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S2 of the Supporting Information). Integrating CMCT with
DMS and/or SHAPE data did not improve accuracy (Table S2
of the Supporting Information). CMCT gives weak reactivities
in bases that are unpaired but still stacked (e.g., see ref 23),
reducing its information content for discriminating unpaired
and paired nucleotides.
The benchmark results presented here establish that

chemical mapping with DMS can achieve prediction accuracies
comparable to those of the SHAPE protocol using
pseudoenergies to guide free energy minimization. DMS has
been extensively used both in vitro and in vivo, for time-
resolved RNA folding, precise thermodynamic analysis, and
mapping RNA−protein interfaces.9,12,14,15,22 Sophisticated
techniques for optimizing the reaction rate and its quenching
have been developed.9,24 Applying automated structure
modeling, as demonstrated herein, will allow researchers to
better take advantage of this large body of previous work.
Furthermore, future studies may find it advantageous to
perform both DMS and SHAPE approaches in parallel. Along
with bootstrapping,13 comparison of separate DMS-guided
versus SHAPE-guided secondary structure models will permit
rapid assessment of systematic errors and thus provide more
accurate inferences.
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Figure 2. DMS vis-a-̀vis SHAPE for secondary structure inference. (A)
The P3 hairpin of the glycine riboswitch is correctly predicted by
DMS-guided modeling, but not by SHAPE. A37 (green) has its
Watson−Crick edge exposed, making its N1 atom (red sphere)
accessible to DMS modification that guides RNAstructure to the
correct helix (B). However, A37 (green arrow) is stabilized by local
interactions, protecting it from SHAPE modification, resulting in an
incorrect SHAPE-predicted helix (C). (D and E) Reactivity histograms
for DMS (D) and SHAPE (E) for all chemical mapping data on the six
noncoding RNAs.
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Supporting Methods 
 
Experimental setup 

Chemical mapping experiments were performed using in vitro transcribed RNAs from PCR-assembled 

DNA templates as previously described (1). All SHAPE, DMS, and CMCT measurements were 

performed at least in triplicate using three independent RNA preparations. DNA templates containing a 

T7 RNA  polymerase promoter sequence (TTCTAATACGACTCACTATA) followed by the sequence of 

interest and a reverse transcription primer binding site (AAAGAAACAACAACAACAAC) were PCR-

assembled from oligomers of up to 60 nucleotides in length (Integrated DNA Technologies) with a 

Phusion DNA polymerase (Finnzymes) and purified with AMPure magnetic beads (Agencourt, 

Beckman Coulter). Sample concentrations were calculated through UV absorbances on a Nanodrop 

100 spectrophotometer, and lengths were verified in 4% agarose gels. In vitro RNA transcription was 

performed as previously described using a T7 RNA polymerase (New England Biolabs) and purified 

with MagMax magnetic beads (Ambion) or an RNA clean kit (Zymo research); RNA from the two 

purification methods gave indistinguishable results. RNA concentrations were measured on a 

Nanodrop 100 spectrophotometer.  

 

Chemical modification was performed in volumes of 20 μL with 1.2 pmols of RNA in 50 mM Na-

HEPES (pH 8.0), 10 mM MgCl2 , ligand at the desired concentration for riboswitches (see Table S1) 

and 5 μL of modification reagent [1% dimethyl sulfate (DMS) prepared by mixing 10 μL DMS into 

90 μL ethanol, and then 900 μL water; 42 mg/mL 1-cyclohexyl-(2-morpholinoethyl) carbodiimide 

metho-p-toluene sulfonate (CMCT); or 24 mg/mL N-methylisatoic anhydride (NMIA)]. Modification 

reactions were incubated at 24 °C for 15 to 60 minutes depending on the length of the RNA to achieve 

overall modification rates of less than 30% and then quenched appropriately (adding 5 μL of 0.5 M Na-

MES, pH 6.0 for SHAPE and CMCT, or 5 μL of 2-mercaptoethanol for DMS). Quenches also included 

1μL of poly(dT) magnetic beads (Ambion) and 0.065 pmols of 5′-rhodamine-green-labeled primer 



3 
 

(AAAAAAAAAAAAAAAAAAAAGTTGTTGTTGTTGTTTCTTT) complementary to the 3′ end of the 

RNAs used for reverse transcription. The reaction mixtures were purified by magnetic separation, 

rinsed with 40 μL of 70% ethanol twice, and allowed to air-dry for 10 min while sitting in the magnetic 

post stand. The magnetic bead mixtures were resuspended in 2.5 μL of deionized water and reverse 

transcribed by adding a premix solution containing 0.2 μL of SuperScript III (Invitrogen), 1.0 μL of 5× 

SuperScript First Strand buffer (Invitrogen), 0.4 μL of dNTPs at 10 mM each (dATP, dCTP, dGTP, and 

dTTP; dITP was not used to reverse-transcribe these RNAs, as it generates signal artifacts in NMIA 

chemical mapping protocols (1)), 0.25 μL of 0.1 M dithiothreitol (DTT), and 0.65 μL of water and 

incubating at 42 °C for 30 min. RNA was hydrolyzed by adding 5 μL of 0.4 M NaOH and incubating at 

90 °C for 3 min. The solutions were neutralized by the addition of 5 μL of an acid quench (2 volumes 

of 5 M NaCl, 2 volumes of 2 M HCl, and 3 volumes of 3 M sodium acetate) and the resulting 

fluorescent DNA was purified by magnetic bead separation. The beads were washed with 40 μL of 

70% ethanol, air-dried for 5 minutes, and resuspended in 10 μL of a solution containing 0.125 mM Na-

EDTA (pH 8.0) and a Texas Red-labeled reference ladder, or in 10 μL of HiDi formamide containing a 

ROX 350 ladder (Applied Biosystems) spectrally distinct from the rhodamine-green chemical mapping 

signal. For verifying sequence assignments, reference ladders were created using an analogous 

protocol without chemical modification and including 2′,3′-dideoxy-GTP in an amount equimolar with 

dGTP during reverse transcription. The products were separated by capillary electrophoresis on an 

ABI 3100 or ABI 3700 DNA sequencer. 

 

Analysis of electropherogram traces and quantification of reactivities 

Electropherograms were analyzed with the HiTRACE software (2). Sequence assignments for bands 

were obtained by alignment to sequencing lanes with incorporated ddATP, ddCTP, ddGTP, or ddTTP 

nucleotides. Band intensities were fit as Gaussian peaks and processed through a likelihood-based 

framework for overmodification correction and background subtraction as defined previously through 

the overmod_and_background_correct_logL.m and get_average_standard_state.m HiTRACE scripts 

(1). For DMS or CMCT data, reactivities at guanines/uracils or adenines/cytosines, respectively, are 
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expected to be low. Therefore, when performing likelihood-based background substraction on data for 

those nucleotides, we used a distribution of the form 𝑝(𝑥) = exp⁡(𝐹(𝑥)) where 𝐹(𝑥) = 𝐹+(𝑥 − 𝑥0) if 

𝑥⁡ > ⁡ 𝑥0 and  𝐹(𝑥) = −𝐹−(𝑥 − 𝑥0) otherwise, with parameter values 𝐹− =⁡𝐹+ = 25, 𝑥0 = 0 (for details 

on this functional form see ref (1)). This distribution corresponds to positions with lower expected 

reactivities, thus attenuating the final reactivity values for those nucleotides. 

 

Final averaged data and errors have been made publicly available in the RNA Mapping Database 

(http://rmdb.stanford.edu). Accession IDs corresponding to each modifier are: 

 For NMIA (SHAPE) modified samples, entries TRNAPH_SHP_0003, TRP4P6_SHP_0004, 

5SRRNA_SHP_0003, ADDRSW_SHP_0004, CIDGMP_SHP_0003,  and 

GLYCFN_SHP_0006 were submitted. 

 For DMS modified samples, new entries TRNAPH_DMS_0001, TRP4P6_DMS_0001, 

5SRRNA_DMS_0001, ADDRSW_DMS_0001, CIDGMP_DMS_0001, and 

GLYCFN_DMS_0001 were submitted. 

 For CMCT modified samples, new entries TRNAPH_CMC_0001, TRP4P6_CMC_0001, 

5SRRNA_CMC_0001, ADDRSW_CMC_0001, CIDGMP_CMC_0001, and 

GLYCFN_CMC_0001 were submitted. 

Computational methods 

We tested the modeling accuracy of minimum free energy structure calculation with reactivity-derived 

pseudo-energies added to the scoring function (3). The Fold executable of the RNAstructure package  

(version 5.3) was used to infer pseudo-energy-directed secondary structure models. Pseudo-energies 

were applied once for each nucleotide that forms an edge base pair and twice for each nucleotide that 

forms an internal base pair. Additionally, non-parametric bootstrap analysis was performed to estimate 

helix-wise prediction confidence (1).  

 

http://rmdb.stanford.edu/
http://rmdb.stanford.edu/repository/detail/TRNAPH_SHP_0003
http://rmdb.stanford.edu/repository/detail/TRP4P6_SHP_0004
http://rmdb.stanford.edu/repository/detail/5SRRNA_SHP_0003
http://rmdb.stanford.edu/repository/detail/ADDRSW_SHP_0004
http://rmdb.stanford.edu/repository/detail/CIDGMP_SHP_0003
http://rmdb.stanford.edu/repository/detail/GLYCFN_SHP_0006
http://rmdb.stanford.edu/repository/detail/TRNAPH_DMS_0001
http://rmdb.stanford.edu/repository/detail/TRP4P6_DMS_0001
http://rmdb.stanford.edu/repository/detail/5SRRNA_DMS_0001
http://rmdb.stanford.edu/repository/detail/ADDRSW_DMS_0001
http://rmdb.stanford.edu/repository/detail/CIDGMP_DMS_0001
http://rmdb.stanford.edu/repository/detail/GLYCFN_DMS_0001
http://rmdb.stanford.edu/repository/detail/TRNAPH_CMC_0001
http://rmdb.stanford.edu/repository/detail/TRP4P6_CMC_0001
http://rmdb.stanford.edu/repository/detail/5SRRNA_CMC_0001
http://rmdb.stanford.edu/repository/detail/ADDRSW_CMC_0001
http://rmdb.stanford.edu/repository/detail/CIDGMP_CMC_0001
http://rmdb.stanford.edu/repository/detail/GLYCFN_CMC_0001
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Previous work used an energy-like functional form with two free parameters to calculate pseudo-

energies from experimental chemical mapping reactivities that are given as bonuses or penalties to 

the energy scoring function of a secondary structure prediction algorithm (ΔGi = m log(Si + 1) + b, Si is 

the reactivity value at position i; m and b are free parameters, see ref  (3)). We also tested a more 

direct way of expressing the pseudo-energy potential by taking the log-likelihood ratio of a base being 

unpaired versus paired given a chemical reactivity value:  

 

∆𝐺 = ⁡−𝑘𝐵𝑇⁡log (
𝑃(𝑆𝑖 ⁡|𝑖⁡is⁡paired)

𝑃(𝑆𝑖 ⁡|𝑖⁡is⁡unpaired)
) 

 

Here, T is the temperature and kB is the Boltzmann constant. The likelihoods for paired and unpaired 

reactivities were derived from a mixture of two gamma distributions to reactivities of paired and 

unpaired nucleotides in our non-coding RNA benchmark (see Figure S4). This probabilistic potential is 

akin to those found in forcefields that include knowledge-based terms, such as the ROSETTA 

framework for three-dimensional structure modeling (4–6). In the future, if different reactivity 

distributions are discovered for different features (e.g., apical loops and interior loops), this framework 

permits the facile incorporation of that information. 

We applied our probabilistic potential to calculate pseudo-energies to guide the free-energy 

minimization Fold program in the RNAstructure package. The performance of the algorithm using this 

probabilistic potential for SHAPE, DMS, and CMCT reactivities is given in Table S6 and is identical to 

results obtained for the standard potential with slope (m) and intercept (b) optimized through grid-

search. To test for over-fitting, we performed leave-one-out-validations for each RNA by fitting the 

probabilistic potential using the mapping data of the other RNAs and re-running the algorithm; 

validation results were identical to those when using the full data. RNAstructure was modified to allow 

the DMS and CMCT data to be input through the flags -dms and -cmct. These options are being made 

available in release 5.5 of RNAstructure. A structure prediction server that includes these options is 

available at http://rmdb.stanford.edu/structureserver.  

http://rmdb.stanford.edu/structureserver
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Assessment of accuracy 

We evaluated the predictions as defined previously in refs (1, 7): a crystallographic helix was 

considered correctly recovered if more than 50% of its base pairs were observed in a helix by the 

computational model; ±1 helix shifts were not considered correct. Modeling errors are expressed as 

false negative rates (FNR; fraction of crystallographic helices that were predicted to be single-

stranded) and false discovery rates (FDR; fraction of predicted helices that were not present in 

crystallographic models). We also report positive predictive values (PPV) and sensitivities of each 

approach, and all metrics at the level of individual base pairs rather than helices (see Table S6). 
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Table S1: RNA systems used in this study 
 

RNA,  
source 

Solution 
conditionsa 

Replicates Experiments Offsetb PDBc 

tRNAphe, 
E. coli 

Standard SHAPE: 6 
DMS: 5 
CMCT: 4 

SHAPE: 4 
DMS: 4 
CMCT: 3 

-15 3L0U 
1EHZ 

P4-P6 
domain, 
Tetrahymena 
ribozyme 

Standard SHAPE: 11 
DMS: 11 
CMCT: 4 

SHAPE: 5 
DMS: 5 
CMCT: 3 

89 1GID 
1L8V 
1HR2 
2R8S 

5S rRNA, 
E. coli 

Standard SHAPE: 5 
DMS: 5 
CMCT: 3 

SHAPE: 3 
DMS: 4 
CMCT: 3 

-20 3OFC 
3OAS 
3ORB 
2WWQ 
… 

Adenine 
riboswitch, 
V. vulnificus 
(add) 

Standard + 
5 mM 
adenine 

SHAPE: 4 
DMS: 3 
CMCT: 3 

SHAPE: 3 
DMS: 3 
CMCT: 3 

-8 1Y26 
1Y27 
2G9C 
3GO2 
… 

c-di-GMP 
riboswitch, 
V. cholerae 
(VC1722) 

Standard + 
10 μM cyclic 
di-guanosine 
monophosph
ate 

SHAPE: 5 
DMS: 3 
CMCT: 3 

SHAPE: 3 
DMS: 2 
CMCT: 3 

0 3MXH 
3IWN 
3MUV 
3MUT 
… 

Glycine 
riboswitch, 
F. nucleatum 

Standard + 
10 mM 
glycine 

SHAPE: 16 
DMS: 7 
CMCT: 9 

SHAPE: 4 
DMS: 3 
CMCT: 3 

-10 3P49 

a Standard conditions were: 10 mM MgCl2, 50 mM Na-HEPES, pH 8.0 at 24 °C. 
b Offset added to the original numbering scheme of the sequence from which this 
subsequence was taken from. 
c Boldfaced IDs correspond to the PDB entries from which the sequence for this study was 
taken. Additional PDB entries correspond to other studies of the same RNA system. 
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RNA, 
source 

Sequenced  Secondary Structuree 

tRNAphe, 
E. coli 

g g a a c a a a c a a a a c a G C G G A U U U A G C U C A G U U G G

G A G A G C G C C A G A C U G A A G A U C U G G A G G U C C U G U G

U U C G A U C C A C A G A A U U C G C A C C A a a a c c a a a g a a

a c a a c a a c a a c a a c  

. . . . . . . . . . . . . . . ( ( ( ( ( ( ( . . ( ( ( ( . . . . . . . . ) ) ) )

. ( ( ( ( . . . . . . . . . ) ) ) ) . . . . . ( ( ( ( ( . . . . . . . ) ) ) ) )

) ) ) ) ) ) ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

P4-P6 
domain, 
Tetrahymena 
ribozyme 

g g c c a a a a c a a c g G A A U U G C G G G A A A G G G G U C A A

C A G C C G U U C A G U A C C A A G U C U C A G G G G A A A C U U U

G A G A U G G C C U U G C A A A G G G U A U G G U A A U A A G C U G

A C G G A C A U G G U C C U A A C C A C G C A G C C A A G U C C U A

A G U C A A C A G A U C U U C U G U U G A U A U G G A U G C A G U U

C A a a a c c a a a c c a a a g a a a c a a c a a c a a c a a c  

. . . . . . . . . . . . . . . . . ( ( ( ( ( ( . . . ( ( ( ( ( ( . . . . . ( ( (

. ( ( ( ( . ( ( ( . . ( ( ( ( ( ( ( ( ( . . . . ) ) ) ) ) ) ) ) ) . . ( ( . . .

. . . . ) ) . . . . ) ) ) . . . . . . ) ) ) ) ) ) ) . . . . ) ) ) ) ) ) . . ) )

. ) ) ) ) ( ( . . . ( ( ( ( . . . ( ( ( ( ( ( ( ( ( . . . ) ) ) ) ) ) ) ) ) . .

) ) ) ) . . . ) ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .  

5S rRNA, 
E. coli 

g g a a a g g a a a g g g a a a g a a a U G C C U G G C G G C C G U

A G C G C G G U G G U C C C A C C U G A C C C C A U G C C G A A C U

C A G A A G U G A A A C G C C G U A G C G C C G A U G G U A G U G U

G G G G U C U C C C C A U G C G A G A G U A G G G A A C U G C C A G

G C A U a a a a c a a a a c a a a g a a a c a a c a a c a a c a a c  

. . . . . . . . . . . . . . . . . . . . . ( ( ( ( ( ( ( ( ( . . . . . ( ( ( ( (

( ( ( . . . . ( ( ( ( ( ( ( . . . . . . . . . . . . . ) ) ) ) . . ) ) ) . . . )

) ) ) ) ) . ) ) . ( ( . . . . . . . ( ( ( ( ( ( ( ( . . . ) ) ) ) ) ) ) ) . . .

. . . . ) ) . . . ) ) ) ) ) ) ) ) ) . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . .  

Adenine 
riboswitch, 
V. vulnificus 
(add) 

g g a a a g g a a a g g g a a a g a a a C G C U U C A U A U A A U C

C U A A U G A U A U G G U U U G G G A G U U U C U A C C A A G A G C

C U U A A A C U C U U G A U U A U G A A G U G a a a a c a a a a c a

a a g a a a c a a c a a c a a c a a c  

. . . . . . . . . . . . . . . . . . . . ( ( ( ( ( ( ( ( ( . . . ( ( ( ( ( ( . .

. . . . . . . ) ) ) ) ) ) . . . . . . . . ( ( ( ( ( ( . . . . . . . ) ) ) ) ) )

. . ) ) ) ) ) ) ) ) ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.  

c-di-GMP 
riboswitch, 
V. cholerae 
(VC1722) 

g g a a a a a u G U C A C G C A C A G G G C A A A C C A U U C G A A

A G A G U G G G A C G C A A A G C C U C C G G C C U A A A C C A G A

A G A C A U G G U A G G U A G C G G G G U U A C C G A U G G C A A A

A U G c a u a c a a a c c a a a g a a a c a a c a a c a a c a a c  

. . . . . . . . . . ( ( ( ( . . . . . . ( ( . . . ( ( ( ( ( ( . . . . ) ) ) ) )

) . . . ) ) . . . ( ( ( . ( ( ( ( ( ( ( ( . . ( ( . . . . . . . . . ) ) ) ) ) )

) . . ) ) ) ) ) ) . . . ) ) . ) ) . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .  

Glycine 
riboswitch, 
F. nucleatum 

g g a c a g a g a g G A U A U G A G G A G A G A U U U C A U U U U A

A U G A A A C A C C G A A G A A G U A A A U C U U U C A G G U A A A

A A G G A C U C A U A U U G G A C G A A C C U C U G G A G A G C U U

A U C U A A G A G A U A A C A C C G A A G G A G C A A A G C U A A U

U U U A G C C U A A A C U C U C A G G U A A A A G G A C G G A G a a

a a c a c a a c a a a g a a a c a a c a a c a a c a a c  

. . . . . . . . . . ( ( ( ( ( ( ( ( . . . . . . ( ( ( ( ( ( . . . . ) ) ) ) ) )

. ( ( ( . . . . ( ( ( . . . . . ) ) ) . . . ) ) ) . . . . . . . . ) ) ) ) ) ) )

) . . . . . . . . ( ( ( ( ( . . . . . . ( ( ( ( ( . . . . . ) ) ) ) ) . ( ( ( .

. . ( ( ( ( . . . . . ( ( ( . . . . ) ) ) . . . . . . ) ) ) ) . . ) ) ) . . . .

. . . ) ) ) ) ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

dLowercase subsequences are buffer sequences and primer binding sites used for 
transcription and reverse transcription. These additional sequences do not interfere with the 
RNAs’ structures according to ViennaRNA and RNAstructure predictions. 
eStructure is given in dot-bracket notation. A two-base pair helix for the adenine riboswitch 
that is not nested is not included in this dot-bracket representation. 
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Table S2: Base-pair-wise accuracy table for SHAPE and DMS 
 
 
 

 
Cryst. no data DMS SHAPE 

DMS + 
SHAPE 

  
TP FP TP FP TP FP TP FP 

tRNA
phe

 20 12 12 20 1 20 1 20 1 

adenine rbsw. 21 15 10 21 2 21 2 21 2 

cyclic di-GMP rbsw. 25 21 5 21 1 25 2 25 1 

5S rRNA 34 9 31 32 6 32 6 32 6 

P4-P6 RNA 48 44 9 45 6 44 6 44 5 

glycine rbsw. 40 23 18 40 2 37 6 40 2 

Total 188 124 85 179 18 179 23 182 17 

 
FNR 34% 4.8% 4.8% 3.2% 

 
FDR 40.7% 9.1% 11.4% 8.5% 

 
Sensitivity 66% 95.2% 95.2% 96.8% 

 
PPV 59.3% 91% 88.6% 91.5% 

 
 
 
 
 
 
Table S3: Using only SHAPE reactivities in adenines and cytosines does not improve 
structure modeling – To test if the quality of the models given by DMS could be explained  
by selectively applying pseudo-energies only to adenines and cytosines, we re-ran the Fold 
program only with SHAPE reactivities that fell in adenines and cytosines. The resulting 
models have worse FDR and FNR than those derived from using DMS or full SHAPE data, 
confirming that the DMS results could not be explained by applying pseudo-energies to a 
subset of positions in the RNA. The reported accuracies are helix-wise. 
 

 
Cryst. no data 

SHAPE As 
and Us 

SHAPE Gs 
and Us SHAPE 

  
TP FP TP FP TP FP TP FP 

tRNA
phe

 4 2 3 4 0 4 0 4 0 

adenine rbsw. 3 2 3 3 0 3 0 3 1 

cyclic di-GMP rbsw. 8 6 2 5 2 6 1 8 0 

5S rRNA 7 1 9 1 7 2 5 6 3 

P4-P6 RNA 11 10 1 9 1 8 2 9 1 

glycine rbsw. 9 5 3 8 1 8 1 8 1 

Total 42 26 21 30 11 31 9 38 6 

 
FNR 38.1% 28.6% 26.2% 9.5% 

 
FDR 44.7% 26.8% 22.5% 13.6% 

 
Sensitivity 61.9% 71% 73.8% 90.5% 

 
PPV 55.3% 73.2% 77.5% 86.4% 

 
 
Table S4: Helix-wise accuracies for inclusion of CMCT data in structure modeling.  
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Cryst. no data CMCT 

CMCT + 
DMS 

CMCT + 
SHAPE 

CMCT + 
DMS + 
SHAPE 

  
TP FP TP FP TP FP TP FP TP FP 

tRNA
phe

 4 2 3 4 0 4 0 4 0 4 0 

adenine rbsw. 3 2 3 3 1 3 1 3 1 3 1 

cyclic di-GMP rbsw. 8 6 2 5 2 6 0 6 2 8 0 

5S rRNA 7 1 9 6 3 6 3 6 3 6 3 

P4-P6 RNA 11 10 1 10 1 10 1 9 1 9 1 

glycine rbsw. 9 5 3 8 1 9 0 8 1 9 0 

Total 42 26 21 36 8 38 5 36 8 39 5 

 
FNR 38.1% 14.3% 9.5% 14.3% 7.1% 

 
FDR 44.7% 18.2% 11.6% 18.2% 11.4% 

 
Sensitivity 61.9% 85.7% 90.5% 85.7% 92.9% 

 
PPV 55.3% 81.8% 88.4% 81.8% 88.6% 
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Figure S1. A probabilistic potential for pseudoenergy bonuses. (A) Normalized 
histograms for paired and unpaired reactivities (as defined by the crystallographic model) are 
retrieved from chemical mapping data. (B) Gamma mixture distributions with two components 
fitted to the data (dashed lines). The pseudo-energies are calculated as a function of the log-
likelihood ratio of paired and unpaired distributions [∆Gi = ─kβT log(P(Si  | i is paired)/P(Si  | i 
is unpaired) ) for every Si reactivity at nucleotide i]; error estimates are calculated by a smooth 
bootstrap procedure.  
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Figure S2. Predictive power of DMS, SHAPE, and CMCT. Receiver operating characteristic 
curves for predicting unpaired nucleotides given a reactivity threshold. Area under the curve 
for DMS is 0.86, for SHAPE, 0.83, and for CMCT, 0.74. 
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Figure S3. Helix-wise, bootsrap confidence value histograms for DMS, SHAPE, and 
CMCT models. – Blue histograms are for correctly predicted helices (true positives), red 
histograms are for incorrectly predicted helices (false positives). 
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Figure S4. DMS, SHAPE, and CMCT data and pseudo-energy guided models for the add 
adenine riboswitch – DMS and CMCT data at guanines and uracils, and adenines and 
cytosines, respectively, are marked in gray. Missed base pairs are highlighted in blue lines; 
mis-predicted base pairs are indicated by orange lines. Helix bootstrap confidence values are 
shown in red. Secondary structure figures were prepared in VARNA (8). 
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Figure S5. DMS, SHAPE, and CMCT data and pseudo-energy guided models for 
tRNAphe  – DMS and CMCT data at guanines and uracils, and adenines and cytosines, 
respectively, are marked in gray. Missed base pairs are highlighted in blue lines; mis-
predicted base pairs are indicated by orange lines. Helix bootstrap confidence values are 
shown in red. Secondary structure figures were prepared in VARNA (8). 
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Figure S6. DMS, SHAPE, and CMCT data and pseudo-energy guided models for cyclic 
di-GMP riboswitch  – DMS and CMCT data at guanines and uracils, and adenines and 
cytosines, respectively, are marked in gray. Missed base pairs are highlighted in blue lines; 
mis-predicted base pairs are indicated by orange lines. Helix bootstrap confidence values are 
shown in red. Secondary structure figures were prepared in VARNA (8). 
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Figure S7. DMS, SHAPE, and CMCT data and pseudo-energy guided models for the 5S 
rRNA  – DMS and CMCT data at guanines and uracils, and adenines and cytosines, 
respectively, are marked in gray. Missed base pairs are highlighted in blue lines; mis-
predicted base pairs are indicated by orange lines. Helix bootstrap confidence values are 
shown in red. Secondary structure figures were prepared in VARNA (8). 
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Figure S8. DMS, SHAPE, and CMCT data and pseudo-energy guided models for the P4-
P6 domain of the Tetrahymena group I ribozyme– DMS and CMCT data at guanines and 
uracils, and adenines and cytosines, respectively, are marked in gray. Missed base pairs are 
highlighted in blue lines; mis-predicted base pairs are indicated by orange lines. Helix 
bootstrap confidence values are shown in red. Secondary structure figures were prepared in 
VARNA (8). 
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Figure S9. DMS, SHAPE, and CMCT data and pseudo-energy guided models for the F. 
nucleatum glycine riboswitch– DMS and CMCT data at guanines and uracils, and adenines 
and cytosines, respectively, are marked in gray. Missed base pairs are highlighted in blue 
lines; mis-predicted base pairs are indicated by orange lines. Helix bootstrap confidence 
values are shown in red. Secondary structure figures were prepared in VARNA (8). 
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