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ABSTRACT

We report the results of a first, collective, blind experiment in RNA three-dimensional (3D) structure prediction, encom-
passing three prediction puzzles. The goals are to assess the leading edge of RNA structure prediction techniques; compare
existing methods and tools; and evaluate their relative strengths, weaknesses, and limitations in terms of sequence length and
structural complexity. The results should give potential users insight into the suitability of available methods for different
applications and facilitate efforts in the RNA structure prediction community in ongoing efforts to improve prediction tools.
We also report the creation of an automated evaluation pipeline to facilitate the analysis of future RNA structure prediction
exercises.
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INTRODUCTION

The determination of the atomic structure of any biological
macromolecule, RNA molecules being no exception, con-
tributes regularly toward the understanding of the molecular

basis of the underlying biological process. Each of the current
experimental methods for determining the three-dimensional
(3D) structures of RNA molecules—X-ray crystallography,
NMR, and cryo-electron microscopy—requires great exper-
tise and substantial technical resources. Therefore, the ability
to reliably predict accurate RNA 3D structures based solely
on their sequences, or in concert with efficiently obtained
biochemical information, is an important problem and
constitutes a major intellectual challenge (Tinoco and
Bustamante 1999). Recent decades have seen several
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significant theoretical advances toward this goal that
include:

1. The development of predictive models for RNA second-
ary structure, pioneered by the seminal work of Tinoco
and coworkers (Tinoco et al. 1973) and made commonly
available in a number of tools that perform reasonably
well for sequences of moderate size (Hofacker et al. 1994;
Zuker 2003; Reuter and Mathews 2010);

2. The ability to meaningfully deduce RNA structures
through comparative sequence analysis (Woese et al.
1980; Michel and Westhof 1990);

3. The systematization of the knowledge about RNA archi-
tecture and interactions (Leontis and Westhof 2001) to
gain a handle on the rapid increase in the number and
size of RNA molecules with published structures available
in public databases (Berman et al. 2000);

4. The availability of comprehensive sequence alignments
(Gardner et al. 2009) permitting the study of the relation-
ship between structure and sequence;

5. The development of improved molecular dynamics force
fields and techniques (Ditzler et al. 2010);

6. Finally, the increasing availability of inexpensive comput-
ing power and data storage allows for extensive compu-
tational searches.

As a consequence, exciting developments in the field of de
novo structure prediction have occurred in the last few
years: computer-assisted modeling tools (Martinez et al.
2008; Jossinet et al. 2010); conformational space search
(Parisien and Major 2008); discrete molecular dynamics
(Ding et al. 2008a); knowledge-based, coarse-grained re-
finement (Jonikas et al. 2009); template-based (Flores and
Altman 2010; Rother et al. 2011b); and force-field-based
approaches (Das et al. 2010) inspired by proven protein-
folding techniques adapted to the RNA field (for review, see
Rother et al. 2011a). All these new approaches are pushing
the limits of automatic RNA structure prediction from short
sequences of a few nucleotides to medium-sized molecules
with several dozens. Assuming continuing, steady progress,
one can expect that in the near-to-medium future, de
novo prediction of RNA 3D structures will become as
common and useful as RNA secondary structure pre-
diction is today.

These promising results and the increasing number of
available tools raise the need for objective evaluation and
comparison. Indeed, the establishment of a benchmark for
RNA structure prediction has become essential in order to
optimize and improve the current methods and tools for
structural prediction. Here, we present the results of a blind
exercise in RNA structure prediction. Sequences of RNA
structures solved by crystallographers were provided, before
publication, to active research groups that develop new
methods and perform RNA 3D structure prediction. Com-
parisons between predicted and experimental X-ray struc-

tures were undertaken once the structures were published.
The resulting benchmarks function as a snapshot of the
current status of this field. On the basis of this successful first
round, we would like to extend to RNA the idea established
by the protein structure prediction community (Moult
2006) and to propose a continuous, open, and collective
structure prediction experiment, with the essential, active
participation of experimentalists.

RNA-PUZZLES

RNA-Puzzles is a collective blind experiment for evaluation
of de novo RNA structure prediction. With this initiative,
we hope to (1) assess the cutting edge of RNA structure
prediction techniques; (2) compare the different methods
and tools, elucidating their relative strengths and weak-
nesses and clarifying their limits in terms of sequence
length and structure complexity; (3) determine what has still
to be done to achieve an ultimate solution to the structure
prediction problem; (4) promote the available methods and
guide potential users in the choice of suitable tools for
different problems; and (5) encourage the RNA structure
prediction community in their efforts to improve the
current tools.

The procedure that governs RNA-Puzzles is straightfor-
ward. Based on the successful first round, we propose the
following steps:

d Complete nucleotide sequences will be periodically re-
leased to interested groups who agree to keep sequence
information confidential. These target sequences corre-
spond to experimentally determined crystallographic or
NMR structures, kindly provided by experimental groups,
and not yet published in any form. Confidentiality of RNA
sequence information is essential to protect the target
selection and molecular engineering strategies of par-
ticipating experimental groups.

d The interested groups will have a specified length of time
(usually 4–6 wk) to submit their predicted models to
a website in a standard pdb format that respects atom
naming and nomenclature conventions.

d The predicted models will be evaluated with regard to
stereochemical correctness, topology, and geometrical
similarity, relative to the experimental structure.

d After publication of the original experimental structures,
all predicted models, experimental results, and compar-
ative data will be made publicly available.

To set up and automate these steps, the RNA-Puzzles
team has put together a public website for announcing new
experiments and publishing results of completed experiments.
The website also provides a processing pipeline to carry out
model evaluation. The RNA-Puzzles site is publicly available at
http://paradise-ibmc.u-strasbg.fr/rnapuzzles/.
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STRUCTURE ANALYSIS AND COMPARISON

The evaluation of the biological value of a structural model
raises many questions. How do you determine if a given
model is a meaningful prediction? What is, in fact, a bi-
ologically meaningful prediction? Which questions should
a structural model answer? Clearly, addressing some ques-
tions requires very high precision (1–2 Å or below); whereas,
in other cases, important insights may be obtained with
residue-level or domain-level precision.

To evaluate the predictive success of the proposed
models, we established two general criteria:

1. The predicted model must be geometrically and to-
pologically as close as possible to the experimen-
tally determined structure, used as the reference. It is
assumed that the crystal structure or NMR structure
is correct within the limitations of the experimental
methods.

2. The predicted model must be stereochemically correct
(with bond distances and intermolecular contacts close
to the experimentally observed values).

To geometrically compare predicted models with the exper-
imental structures, we used the Root Mean Square Deviation
(RMSD) measure and the Deformation Index (DI) (Parisien
et al. 2009). The RMSD is the usual measure of distance
between two superimposed structures defined by the
formula:

RMSD A;Bð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
n

i = 1

ai � bið Þ2

n
;

vuuut
in which A and B are the modeled and experimental
structures and (ai � bi) represents the distance between
the i-th atoms of the two structures. The DI is given by:

DI A;Bð Þ=
RMSD A;Bð Þ
MCC A;Bð Þ ;

in which MCC is the Matthews Correlation Coefficient
(Matthews 1975) computed on the individual base-pair and
base-stacking predictions. The reason for this choice is that
the RMSD, as a measure of similarity, does not account for
specific RNA features such as the correctness of base-pair
and stacking interactions. The DI score complements the
RMSD values by introducing those specific features in the
metric. Using the DI value, the quality of two models with
close RMSDs can be discriminated according to the accuracy
of their predictions of the base-pairing and stacking in-
teractions of the experimental structure. As we observed in
the first experiments, the ranking of the models is sensitive
to the chosen metric (see Tables 1–3). Such observations
were also made during the CASP competitions of protein

structure prediction (see Marti-Renom et al. 2002). Use of
diverse, complementary metrics should contribute to the
design of improved metrics and an understanding of their
relative strengths and limitations.

In a recent work (Hajdin et al. 2010), Weeks, Dokholyan,
and coworkers showed that when sampling the conforma-
tional space of an RNA molecule using discrete molecular
dynamics, the RMSD values are distributed normally with
a mean related to the length of the molecule by the power law:

< RMSD > = a 3 N0:41 � b

Here, N is the number of nucleotides, and a and b are
constants that depend on whether secondary structure
information is provided as input to the molecular dynamic
simulation. From this observation, it is possible to compute
the significance level (P-value) of a prediction with a given
RMSD with respect to an accepted structure. This P-value
corresponds to the probability that a given structure pre-
diction is better than that expected by chance (Hajdin et al.
2010). Structure models with P-values <0.01 represent, in
general, successful predictions of a global RNA fold. The
P-value is sensitive to the amount of preexisting infor-
mation available for a given structure prediction problem,
especially whether the pattern of base-pairing is known in
advance. For most structure prediction problems, much
or all of the secondary structure is known and is used as
a constraint during structure prediction and refinement. In
this round of RNA-Puzzles, P-value analysis was appropriate
for Puzzle 3 (below).

The stereochemical correctness of the predicted models
was evaluated with MolProbity (Davis et al. 2007), which
provides quality validation for 3D structures of nucleic
acids. MolProbity performs several automatic analyses,
from checking the lengths of H-bonds present in the model
to validating the compliance with the rotameric nature of
the RNA backbone (Murray et al. 2003). The reduce-build
script of MolProbity was used for adding hydrogen atoms
to the heavy atoms of the models. As a single measure of
stereochemical correctness, we chose the clash score, i.e., the
number of steric clashes per thousand residues (Word et al.
1999).

All of the computed values are shown in a comparison
summary page, which ranks the submitted models accord-
ing to each of the computed metrics. In addition to the
comparison summary, we provide a report for each of the
predicted models. The report presents the structural su-
perposition between predicted model and experimental
structure, the analysis of the predicted base pairs—correctly
predicted (true positives), incorrectly predicted (false pos-
itives), and missed (false negatives)—and a complete De-
formation Profile matrix (DP) (Parisien et al. 2009), which
provides an evaluation of the predictive quality of a model
at multiple scales.

Evaluation of RNA 3D structure prediction
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THE PROBLEMS

Two crystallography laboratories sent coordinates for the
prediction contest: the laboratories of Thomas Hermann
at UC San Diego and of Dinshaw Patel and Alexander
Serganov at the Memorial Sloan-Kettering Cancer Center.
The three trial experiments were the following.

Problem 1: Dimer

Predict the structure of the following sequence:

50-CCGCCGCGCCAUGCCUGUGGCGG-30;

knowing that the crystal structure shows a homodimer that
contains two strands of the sequence that hybridize with
blunt ends (C-G closing base pairs). The solution structure
corresponds to the regulatory element from human thy-
midylate synthase mRNA (Dibrov et al. 2011a), which, in
the crystal, forms a dimer with two asymmetrical internal
loops, despite perfect sequence symmetry (Fig. 1A,B). The
crystal structure was resolved to 1.97 Å resolution. A total
of 14 predicted models were submitted with an RMSD
ranging from 3.41 Å to 6.94 Å (mean RMSD of 4.7 Å)
(Table 1).

Problem 2: Square

The crystal structure, which was resolved to 2.2 Å resolu-
tion, shows a 100-nt square of double-stranded RNA that
self-assembles from four identical inner and four identical
outer strands (Dibrov et al. 2011b). The secondary structure

shown was used for the design of the square. Actual base-
pairing in the crystal may deviate. 3D coordinates of the
nucleotides in the inner strands (B, D, F, H) were provided.
What are the structures of the outer strands (A, C, E, G)?

The square is formed by four helices connected by four
single-stranded loops. All of the helices are identical at the
sequence level, and so are all the loops (Fig. 2).

Problem 3: A riboswitch domain

A riboswitch domain was crystallized. The sequence is the
following:

50-CUCUGGAGAGAACCGUUUAAUCGGUCGCCGAAG

GAGCAAGCUCUGCGCAUAUGCAGAGUGAAACU

CUCAGGCAAAAGGACAGAG-30

The crystallized sequence was slightly different (an apical
loop was replaced by a GAAA loop), but this detail of RNA
crystal engineering was not disclosed to modelers to protect
the crystallographers (Fig. 3A,B; Huang et al. 2010).

RESULTS

Eight research groups participated in the RNA-Puzzles
experiments. The Bujnicki group used a hybrid strategy
previously developed for protein modeling in the course of
the CASP experiment (Kosinski et al. 2003). The Chen lab
used a multi-scale, free energy landscape–based RNA folding
model (Vfold model) (Chen 2008; Cao and Chen 2011). The
Das group used the stepwise assembly (SWA) method for

FIGURE 1. Problem 1—An RNA dimer. (A) Secondary structure of the reference RNA molecule. Note that the structure is symmetric on the
sequence level but is asymmetric in the crystal, indicating that crystal-packing forces played a significant role in the conformation of this RNA.
The interaction (in magenta) was detected with the RNAView (Yang et al. 2003) annotation program but not with MC-Annotated (Gendron et al.
2001). (Thick gray band) Coaxial stacking between helices. X-ray structures of the reference RNA molecule (green) and the lowest RMSD
predicted models (blue) for the complete Das model 3 (B), details of loop L1 of Das model 1 (C), and details of loop L2 of Das model 3 (D).
(E) Deformation Profile values for each of the five domains of the homodimer. (Colored lines) The DP values for the two predicted models with
lowest RMSD, Das model 3 (dark red), and Das model 1 (dark green), and for the predicted model with highest RMSD, Dokholyan model 1 (dark
blue). (Radial red lines) The minimum, maximum, and mean DP values for each domain.
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recursively constructing atomic-detail biomolecular struc-
tures in small building steps (Sripakdeevong et al. 2011). The
Dokholyan group adopted a multi-scale molecular dynamics
approach (Ding and Dokholyan 2012). The Flores group
used the RNABuilder program, a computer-assisted RNA
modeling tool (Flores and Altman 2010). The Major group
applied the fully automated MC-Fold and MC-Sym pipeline
they developed (Parisien and Major 2008). The Santalucia
group also applied their own program.

The amount of time required to produce the models and
the degree of automation varied as a function of approach.
One point should be emphasized. Compared with CASP
protein targets, an RNA puzzle typically involves multiple
‘‘mini-puzzles’’ such as separate tertiary modules and
specific non-Watson-Crick pairs. There are several exam-
ples of this from this first round, for example, the four corners
and the four helices of the nanosquare. Thus, a single RNA
puzzle can provide multiple challenges for testing modeling
methods.

Problem 1: Dimer

Fourteen predicted models were submitted. The RMSDs
range from 3.41 Å to 6.94 Å (with a mean of 4.67 Å). The
base-pair interactions were correctly predicted in almost all

models with >85% of WC base pairs correctly predicted in
all but two models and >75% of stacking interaction
predicted in all but one model. Contrary to the X-ray
structure, most of the proposed models present a symmetric
structure. The only exceptions were the models from the
Das laboratory (see Table 1). From the analysis of the
Deformation Profile values (Fig. 1E), it is clear that the
internal loops were the domains most difficult to predict
(Fig. 1C,D) and that helix H2, probably because of its
location between the loops, presents a particularly large
interval of DP values. Several models present high values
for the Clash Score, which could reflect the need for
updated dictionaries of distances and angles or stronger
constraints toward the dictionary values.

Problem 2: Square

Thirteen predicted models were submitted with RMSDs
ranging from 2.3 Å to 3.65 Å (mean RMSD of 2.9 Å) (see
Table 2). The RMSDs of solutions to this problem are the
lowest of all three problems, which is expected because one-
half of each base pair was provided in the initial puzzle
description. As expected, the helical regions are better
predicted than loops, with mean DP values between 5
and 10 for all loops and <5 for three of the helices (Fig. 2C–E),

TABLE 1. Summary of the results for Puzzle 1

Problem 1
Groupa Numberb RMSDc Rankd DI alle Rankd INF allf Rankd INF wcg Rankd INF stackh Rankd Clash Scorei Rankd L1j

Das 3 3.41 1 3.66 1 0.93 1 0.95 2 0.92 1 0.00 5 x
Das 1 3.58 2 3.89 2 0.92 3 0.95 1 0.91 2 0.00 3 x
Das 4 3.91 3 4.31 3 0.91 4 0.91 8 0.91 4 0.00 4
Major 1 4.06 4 4.57 4 0.89 5 0.95 6 0.87 5 66.40 11
Chen 1 4.11 5 5.01 6 0.82 9 0.87 11 0.80 8 0.68 6
Das 2 4.34 6 4.70 5 0.92 2 0.95 4 0.91 3 1.36 7 x
Das 5 4.56 7 5.36 7 0.85 7 0.88 10 0.84 7 0.00 2
Bujnicki 3 4.66 8 5.75 9 0.81 11 0.95 3 0.74 14 54.73 10 x
Bujnicki 4 4.74 9 6.59 11 0.72 14 0.65 14 0.75 13 83.33 14
Bujnicki 5 4.89 10 6.26 10 0.78 13 0.78 13 0.80 9 81.98 13
Bujnicki 1 5.07 11 5.75 8 0.88 6 0.93 7 0.86 6 0.00 1 x
Bujnicki 2 5.43 12 6.75 12 0.80 12 0.90 9 0.77 12 71.57 12 x
Santalucia 1 5.69 13 6.75 13 0.84 8 0.95 5 0.79 11 39.86 9
Dokholyan 1 6.94 14 8.55 14 0.81 10 0.86 12 0.79 10 31.74 8
Mean 4.67 5.56 0.85 0.89 0.83
Standard deviation 0.93 1.34 0.06 N 0.09 0.07

X-Ray Model 1.35

Values in each row correspond to a predicted model.
aName of the research group that submitted the model.
bNumber of the model among all models from the same group.
cRMSD of the model compared with the accepted structure.
dColumns indicate the rank of the model with respect to the left-hand column metric.
eDIall is the Deformation Index taking into account all interactions (stacking, Watson-Crick, and non-Watson-Crick).
fINFall is the Interaction Network Fidelity taking into account all interactions.
gINFwc is the Interaction Network Fidelity taking into account only Watson-Crick interactions.
hINFstack is the Interaction Network Fidelity taking into account only stacking interactions.
iClash Score as computed by the MolProbity suite (Davis et al. 2007).
jAn ‘‘x’’ in this column indicates models that correctly predict base-pair interactions in loop L1. No model correctly predicted all interactions in
loop L2.

Evaluation of RNA 3D structure prediction

www.rnajournal.org 5

 Cold Spring Harbor Laboratory Press on March 6, 2012 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


with the exception of helix 1, in which the three base pairs
close to loop 4 deviate slightly from the canonical Watson-
Crick geometry. As for Problem 1, the base-pairing and
stacking were generally well predicted, but, again, there are
a couple of very high Clash Scores values, with most models
giving values below that of the X-ray structure.

Problem 3: A riboswitch domain

This problem posed the most intricate tertiary structure
and was the most complex to model. Twelve predicted
models were submitted with RMSDs ranging from 7.24 Å
to 22.99 Å (mean RMSD of 14.4 Å) (Table 3). The P-values
are correspondingly high (except maybe for the first model).
The overall molecular architecture was reasonably well pre-
dicted by the two models with the lowest RMSD values. The
interdomain DP values for the 10 pairwise helix–helix
predictions (Fig. 3D) show that the Chen model presents

the lowest DP for the three-way junction (P1–P2, P1–P3,
and P2–P3) and a consistently lower than average DP for
the coaxial stacking of P2–P3–P3a–P3b. This coaxial stack-
ing was also predicted reasonably well (DP < 15) by five of
the models (Table 4). Finally, the ligand-binding cleft active
site, corresponding in a 13-nt internal loop between domains
P3 and P3a, was predicted with an RMSD < 6 Å in all
models except one (Fig. 3C; Table 5). Non-Watson-Crick
base pairs, however, were not well predicted.

DISCUSSION

Here we have presented RNA-Puzzles, a collective blind
experiment for de novo RNA structure prediction evalua-
tion. We hope that this initiative will function as an open
forum where members of the RNA modeling community
can compare their methods, tools, and results and where
newcomers to the field can get a head start. The success of

FIGURE 2. Problem 2—An RNA square. (A) Secondary structure of the reference RNA molecule. X-ray structures of the reference RNA
molecules (green) and the predicted models with lowest RMSDs (blue) for the full molecule and Bujnicki model 2 (B); details of helices H1, H2,
and H4 of Das model 1 and helix H3 of Bujnicki model 2 (C); and details of loops L1 and L2 of Santalucia model 1, loop L3 of Dokholyan model
1, and loop L4 of Bujnicki model 3 (D). (E) Deformation Profile values for the three predicted models with lowest RMSD: Bujnicki model 2 (dark
red), Bujnicki model 3 (dark green), and Das model 1 (dark blue). (Radial red lines) The minimum, maximum, and mean DP values for each
domain.
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RNA-Puzzles will depend critically on engagement by the
prediction community and the generosity of the experimen-
tal community. Most importantly, this work will, hopefully,
convince additional structural biology groups to offer
problems to the modeling community in the future.

This first contest had clear limitations, and several im-
provements have already been planned. (1) As estab-
lished for CASP, in the future, modelers will be asked to
predict the deviations of their own models from the
unknown native structure, at the level of individual residues
or atoms (in angstroms). These values could, for example, be

compactly encoded in the B-factor field
of PDB atom records. The number of
submissions should be limited and mul-
tiple submissions ranked by the authors.
(2) In addition, it will be worthwhile to
improve model scoring and ranking so
as to produce an absolute ranking of
all models, taking into account local and
global model quality. (3) Because the
RNA structure database continues to
grow, template-based methods are be-
coming increasingly important, and,
consequently, future RNA puzzles should
also include structures of homologs of
existing folds (for example, a riboswitch
with an alternative ligand or mutation).
(4) Finally, we plan to extend the contest
to include structures of RNA–protein
complexes.

The assessment of model accuracy
requires reliable and meaningful met-
rics for comparisons between the models
and the experimentally determined struc-
tures used as the accepted structure. In
addition to the metrics currently used
(generic to all macromolecules or spe-
cific for RNA), it may be worthwhile to
include metrics that have been shown to
perform very well at both global and
local levels for assessing the very wide
range of model qualities (from very in-
accurate to very accurate) (Zemla 2003;
Zhang and Skolnick 2004), as have been
generally accepted in the protein struc-
ture prediction field and are used by
assessors in the CASP challenges. We are
hopeful that, with extensive commu-
nity support, this round of RNA-Puz-
zles is the first of what will become
a vigorous and ongoing discussion of
the frontiers of RNA structure predic-
tion and refinement.

MATERIALS AND METHODS

The following provides a brief description of the methodology
used by the modeling groups, together with comments.

Bujnicki group

The Bujnicki group used a hybrid strategy previously developed for
protein modeling in the course of the CASP experiment (Kosinski
et al. 2003). Briefly, initial models were constructed by template-
based modeling and fragment assembly, with constraints on second-
ary structure, using the comparative RNA modeling tool ModeRNA
(Rother et al. 2011b). For RNA Puzzle Problem 2, the secondary

FIGURE 3. Problem 3—A riboswitch domain. (A) Secondary structure of the reference RNA
molecule. (B) X-ray structure of the reference RNA molecule (P1 [red]; P2 [orange]; P3, P3a,
P3b [yellow]; active site [green]) and the predicted model of the lowest RMSD Chen model 1
(blue). (C) Detail of the ligand binding pocket for the X-ray structure (green) and the lowest
RMSD Chen model 1 (blue). (D) Deformation Profile values of the pairwise helical interdomain
regions (P1, P2, P3, P3a, and P3b) for the three models with lowest RMSDs: Chen model 1 (dark
red), Dokholyan model 2 (dark green), and Das model 5 (dark blue). (Radial red lines) The
minimum, maximum, and mean DP values for each interdomain pair.

Evaluation of RNA 3D structure prediction
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structure was provided by the organizers, while for Problem 3, it
was calculated as a consensus of more than 20 methods using the
RNA metaserver (http://genesilico.pl/rnametaserver/). The initial
models were expected to possess approximately correct Watson-
Crick base-pairing and stacking interactions within individual
structural elements, but their mutual orientations and tertiary
contacts required optimization.

The initial models were subjected to global refinement using
SimRNA, a de novo RNA folding method (Rother et al. 2012), which
was inspired by the REFINER method for protein folding (Boniecki
et al. 2003). SimRNA uses a coarse-grained representation, with only
three centers of interaction per nucleotide residue. The backbone
is represented by atoms P of the phosphate group and C49 of the
ribose moiety, whereas the base is represented by just one nitrogen
atom of the glycosidic bond (N9 for purines or N1 for pyrimidines).
The remaining atoms are neglected. This simplified representation
allows reproducing the main characteristics of the RNA molecule
such as base-pairing and stacking, and the backbone in helix, while
significantly lowering the computational cost for conformational
transitions and energy calculations. As an ‘‘energy’’ function,
SimRNA uses a statistical potential derived from frequency distri-
butions of geometrical properties observed in experimentally
determined RNA structures. Terms of the SimRNA energy
function (for the virtual bond lengths, flat and torsion angles,
pairwise interactions between the three atom types) were
generated using reverse Boltzmann statistics. For searching the
conformational space, SimRNA uses Monte Carlo dynamics

controlled by an asymmetric Metropolis method (Metropolis and
Ulam 1949) that accepts or rejects new conformations depending
on the energy change associated with the conformational change,
with the probability of acceptance depending on the temperature
of the system. Simulations can be run in the isothermal or energy
minimization (simulated annealing) mode, or in conformation
space search mode (replica exchange). While SimRNA allows for
simulations that use only the sequence information, starting
from an extended structure, it can accept user-defined starting
structures and restraints that specify distances or allowed
distance ranges for user-defined atom pairs. For RNA-Puzzles,
the Bujnicki group used restraints on secondary structure that
allowed the predicted base pairs to be maintained. Following
a series of simulations, lowest-energy structures were selected for
the final refinement.

The final models were built by first reconstructing the full-atom
representation using RebuildRNA (P Lukasz, M Boniecki, and JM
Bujnicki, unpubl.) and then optimizing atomic detail of selected
residues with SCULPT (Surles et al. 1994) and HyperChem 8.0
(Hypercube Inc.). For Problem 2, the known coordinates of four
strands were used as provided by the organizers and ‘‘frozen’’ at the
optimization stage.

The computer calculation time (on a single processor) was as
follows: ModeRNA: <2 h; SimRNA and RebuildRNA: z150 h;
SCULPT <1 h; HyperChem: z12 h.

In the case of the Bujnicki group, the ratio of human to
computer time was relatively large (approximately equal), because

TABLE 2. Summary of the results for Puzzle 2

Problem 2

Groupa Numberb RMSDc Rankd
DI
alle Rankd

INF
allf Rankd

INF
wcg Rankd

INF
nwch Rankd

INF
stacki Rankd

Clash
Scorej Rankd

Bujnicki 2 2.3 1 2.83 1 0.81 8 0.92 9 0 13 0.79 7 14.54 2
Bujnicki 3 2.33 2 2.9 3 0.8 10 0.91 10 0 2 0.77 9 0.62 1
Das 1 2.5 3 2.9 2 0.86 2 0.96 5 0 8 0.85 2 19.8 5
Dokholyan 1 2.54 4 3.09 5 0.82 6 0.9 11 0 1 0.8 5 19.85 6
Bujnicki 1 2.65 5 2.99 4 0.89 1 0.96 4 0 3 0.86 1 15.47 3
Chen 1 2.83 6 3.74 9 0.76 13 0.9 12 0 9 0.69 13 18.66 4
Das 4 2.83 7 3.46 6 0.82 7 0.97 3 0 12 0.78 8 23.82 8
Major 1 2.98 8 3.82 10 0.78 12 0.95 7 0 10 0.71 12 134.26 12
Das 3 3.03 9 3.67 7 0.83 5 0.97 1 0 6 0.8 6 25.37 10
Das 2 3.05 10 3.69 8 0.83 4 0.97 2 0 7 0.81 3 23.51 7
Das 5 3.46 11 4.18 11 0.83 3 0.96 6 0 11 0.81 4 24.75 9
Flores 1 3.48 12 4.4 12 0.79 11 0.89 13 0 5 0.77 10 165.57 13
Santalucia 1 3.65 13 4.54 13 0.81 9 0.92 8 0 4 0.75 11 25.73 11
Mean 2.90 3.55 0.82 0.94 0.00 0.78
Standard

deviation
0.44 0.59 0.03 0.03 0.00 0.05

X-Ray Model 36.10

Values in each row correspond to a predicted model.
aName of the research group that submitted the model.
bNumber of the model among all models from the same group.
cRMSD of the model compared with the accepted structure.
dColumns indicate the rank of the model with respect to the left-hand column metric.
eDIall is the Deformation Index taking into account all interactions (stacking, Watson-Crick, and non-Watson-Crick).
fINFall is the Interaction Network Fidelity taking into account all interactions.
gINFwc is the Interaction Network Fidelity taking into account only Watson-Crick interactions.
hINFnwc is the Interaction Network Fidelity taking into account only non-Watson-Crick interactions.
iINFstack is the Interaction Network Fidelity taking into account only stacking interactions.
jClash Score as computed by the MolProbity suite (Davis et al. 2007).
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the RNA-Puzzles experiment was taken as an opportunity for
training in the use of various modeling methods, in a spirit very
similar to the collective work of that group during the CASP5
modeling season (Kosinski et al. 2003). Consequently, a large
fraction of human time involved discussions and communication
between the two parts of the team physically located in two
different cities (Poznan and Warsaw). The human time devoted
to interactions with software (preparation of input files, setting
up simulations, analyses of output files, and manual refinement

using the graphical user interfaces of SCULPT and HyperChem)
was z30 h, with the majority of time devoted to Problems 2
and 3.

Chen group

The Chen group used a multi-scale approach to predict the RNA
3D structure from the sequence (Cao and Chen 2011). For a given
RNA sequence, they first predict the 2D structure from the free

TABLE 3. Summary of the results for Puzzle 3

Problem 3

Groupa Numberb RMSDc Rankd
DI
alle Rankd

INF
allf Rankd

INF
wcg Rankd

INF
nwch Rankd

INF
stacki Rankd Clash Scorej Rankd P-valuek Rankd

Chen 1 7.24 1 9.84 1 0.74 2 0.86 5 0 6 0.73 1 1.1 3 2.01E-05 1
Dokholyan 2 11.46 2 16.1 2 0.71 6 0.82 9 0 9 0.71 6 41.21 10 3.90E-02 2
Das 5 11.97 3 16.42 3 0.73 5 0.9 1 0.36 5 0.71 3 1.1 4 6.92E-02 3
Bujnicki 1 12.19 4 17.49 5 0.7 7 0.82 10 0 10 0.7 7 14.72 8 8.71E-02 4
Das 2 12.2 5 16.6 4 0.74 3 0.86 6 0.4 2 0.73 2 0.74 2 8.83E-02 5
Major 2 13.7 6 23.33 10 0.59 11 0.67 11 0 8 0.61 10 93.52 12 3.03E-01 6
Bujnicki 2 14.06 7 22.51 7 0.62 10 0.83 8 0 7 0.59 11 5.15 7 3.75E-01 7
Das 1 15.48 8 20.9 6 0.74 1 0.87 4 0.57 1 0.71 5 0 1 6.81E-01 8
Dokholyan 1 15.92 9 23.28 9 0.68 9 0.9 2 0 12 0.66 9 39.37 9 7.629E-01 9
Das 3 16.95 10 23.17 8 0.73 4 0.89 3 0.4 3 0.71 4 1.47 5 9.02E-01 10
Das 4 18.3 11 26.55 11 0.69 8 0.85 7 0.38 4 0.67 8 2.21 6 9.79E-01 11
Major 1 22.99 12 45.27 12 0.51 12 0.39 12 0 11 0.59 12 75.11 11 1.00E+00 12
Mean 14.37 21.79 0.68 0.80 0.18 0.68
Standard

deviation
3.99 8.69 0.07 0.14 0.22 0.05

X-Ray Model 1.83

Values in each row correspond to a predicted model.
aName of the research group that submitted the model.
bNumber of the model among all models from the same group.
cRMSD of the model compared with the accepted structure.
dColumns indicate the rank of the model with respect to the left-hand column metric.
eDIall is the Deformation Index taking into account all interactions (stacking, Watson-Crick, and non-Watson-Crick).
fINFall is the Interaction Network Fidelity taking into account all interactions.
gINFwc is the Interaction Network Fidelity taking into account only Watson-Crick interactions.
hINFnwc is the Interaction Network Fidelity taking into account only non-Watson-Crick interactions.
iINFstack is the Interaction Network Fidelity taking into account only stacking interactions.
jClash Score as computed by the MolProbity suite (Davis et al. 2007).
kSignificance of the predicted model, assuming that base-pairing was input as a structural constraint (Hajdin et al. 2010).

TABLE 4. Pairwise interdomain Deformation Profile values for the helical domains P1, P2, P3, P3a, and P3b from Puzzle 3

P1xP2 P1xP3 P1xP3a P1xP3b P2xP3 P2xP3a P2xP3b P3xP3a P3xP3b P3axP3b

3_bujnicki_1.dat 19.8 22.5 37.6 46.2 7.0 22.2 41.2 11.2 27.2 17.7
3_bujnicki_2.dat 27.3 37.3 49.4 68.2 20.1 32.3 47.4 8.1 21.5 16.0
3_chen_1.dat 11.3 8.7 26.0 28.3 5.1 18.6 26.8 12.0 14.6 14.8
3_das_1.dat 31.7 36.6 48.9 71.2 18.3 35.6 65.1 11.9 30.1 18.9
3_das_2.dat 30.7 32.9 34.1 34.0 24.9 32.9 27.0 10.4 12.6 13.4
3_das_3.dat 29.9 33.7 43.9 59.1 23.2 35.9 45.1 13.3 21.9 13.5
3_das_4.dat 33.1 36.5 54.0 71.3 13.1 22.9 37.9 9.1 13.6 10.8
3_das_5.dat 30.4 34.2 39.1 45.6 25.9 35.1 43.4 8.9 13.5 11.8
3_dokholyan_1.dat 34.9 21.5 32.9 59.4 12.1 28.3 32.9 14.7 26.8 25.9
3_dokholyan_2.dat 29.0 16.8 21.2 45.5 13.8 24.8 35.0 10.1 20.9 23.8
3_major_1.dat 23.0 40.3 44.4 46.4 27.5 43.3 56.5 27.9 53.4 48.2
3_major_2.dat 27.6 26.8 44.2 66.1 9.6 25.1 37.9 10.4 19.4 18.5

All DP values <15 are in boldface.
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energy landscape using the Vfold model (Cao and Chen 2005,
2006a,b, 2009; Chen 2008). The Vfold model allows for the com-
putation of the free energies for the different RNA secondary
structures and pseudoknotted structures, from which the (low-
free energy) folds can be predicted. Distinguished from other
existing models, the Vfold model is based on a virtual bond
(coarse-grained) structural model that enables direct evaluation
of the entropy parameters for different RNA motifs, including
pseudoknotted structures.

The Vfold-based approach to the evaluation of the entropy and
the free energy may lead to more reliable 2D structure prediction.
For the calculation of 2D structures, the base-stacking energies are
adopted from the Turner energy rules (Serra et al. 1994). For the
loops, the model enumerates all the possible intraloop mis-
matched base stacks and evaluates the free energy for each
structure. Intraloop base stacks cause large entropic decrease. The
parameters for such entropic decrease can be estimated by a theory
such as the Vfold model. Next, a 3D coarse-grained scaffold is
constructed, based on the predicted 2D structure. In the coarse-
grained structure, three atoms (P, C4, N1 or N9) are used to re-
present each nucleotide. To construct a 3D scaffold, the predicted
helix stems are modeled by A-form helices. For the loops/junctions,
3D fragments from the known PDB database were used. Specifi-
cally, a structural template database was built by classifying the
structures according to the different motifs such as hairpin loops
and internal/bulge loops, three-way junctions, four-way junctions,
pseudoknots, etc. Then the optimal structural templates for the
predicted loops/junctions were searched from the structural tem-
plate database. The structural templates may partly account for the
tertiary contacts ignored in the 2D structure prediction. Third, the
Chen group build the all-atom model from the coarse-grained
scaffold by adding the bases to the virtual bond backbone. In the
final step, they refine the all-atom structure by using AMBER
energy minimization. Two thousand steps of minimization were
run, applying 500.0 kcal/mol restraints to all the residues, followed
by another 2000 steps of minimization without restraints. The final
structure after minimization is the one submitted for evaluation in
the structure prediction test.

In summary, the computation involves two steps: (a) the
prediction of the 2D structure and the construction of the
coarse-grained 3D structure and (b) AMBER energy minimiza-
tion. The computer times (Ta, Tb) for the two steps are (<1 min,

53 min), (<1 min, 81 min), and (26 min, 143 min), for the
predictions of the dimer, the square, and the riboswitch domain,
respectively. The first step calculation was performed on a desk-
top PC with Intel Core 2 Duo CPU E8400 at 3.00 GHz, and the
second step computation was performed on a Dell EM64T
cluster (Intel Xeon 5150 at 2.66 GHz).

For predicting the dimer and the riboswitch structure (Problems
1 and 3), the Chen group only relied on the sequence information,
and the 3D structures were generated by computer, with no human
interference in the process. For the prediction of the square
structure (Problem 2), they used the experimentally determined
structure for one strand to refine the other strand. The loops and
the secondary structure of the square were computer-predicted
using the Vfold model (Cao and Chen 2011).

Das group

The Das group used a newly developed ab initio method called
stepwise assembly (SWA) for recursively constructing atomic-
detail biomolecular structures in small building steps. Each step
involved enumerating several million conformations for each
monomer, and all step-by-step build-up paths were covered in
polynomial computational time. The method is implemented in
Rosetta and uses the physically realistic, Rosetta all-atom energy
function (Das and Baker 2008; Das et al. 2010). The Das group
has recently benchmarked SWA on small RNA loop-modeling
problems (Sripakdeevong et al. 2011). They also applied de novo
fragment assembly with full-atom refinement (FARFAR, also
implemented in Rosetta), but did not submit those solutions
because they either agreed with the SWA models (Problem 1;
parts of Problems 2 and 3) or did not give converged solutions
(other parts of Problems 2 and 3) (Das et al. 2010).

Due to the deterministic and enumerative nature of SWA, the
computational expense is high relative to stochastic and knowl-
edge-based methods. The computational expense ranged from
20,000 (Problem 1) to 50,000 CPU-hours (Problems 2 and 3).
Also, because the code was developed ‘‘on-the-fly,’’ there was no
time to fully optimize the run-time, which is being done now.

The SWA modeling runs were fully automated. Manual input
was used near the beginning to set up the runs, and near the
end to ensure that models presented a diversity of base-pairing
patterns—both of these steps could be easily automated, but the
Stepwise Assembly method was still under development during the
course of this community-wide, blind RNA prediction experiment.

The lessons learned from the three models are the following.

Problem 1

SWA models 1 and 3 (out of five submitted) performed rea-
sonably well on the 46-nt homodimer, especially at the 9-nt L1
region (see Fig. 1C). Both models correctly predicted the non-
canonical cis WC/WC C9–C37 base pair and the extrahelical bulge
at U39. This accuracy was aided by a strategy that gave entropic
bonuses to bulged nucleotides that make no other interactions;
the bulges are ‘‘virtualized’’ within Rosetta (Sripakdeevong et al.
2011). In this L1 region, both models gave 1.0 Å all-heavy-atom
RMSD to the crystallographic model, excluding the U39 extra-
helical bulge. In contrast, none of the five SWA models achieved
atomic accuracy in the sequence-identical 9-nt L2 loop (see Fig.
1D; >3.0 Å RMSD). Model 3 did correctly predict C14 to be an

TABLE 5. The RMSD values for the ligand binding site of each
predicted model from Puzzle 3, relative to the crystal structure

Problem 3

3_das_5 2.842888
3_das_4 2.928573
3_bujnicki_2 3.042605
3_chen_1 3.703777
3_das_2 3.915769
3_dokholyan_2 4.138209
3_bujnicki_1 4.253633
3_major_2 4.447882
3_das_1 4.554707
3_das_3 4.681876
3_dokholyan_1 5.821877
3_major_1 17.289223
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extrahelical bulge and C15 and C32 to be base-paired. However,
the exact geometry of the predicted C15–C32 base pair and an
additional U16–G31 base pair were incorrect. In the crystallo-
graphic model, the base of U16 bulged out and its phosphate
formed hydrogen-bonding interactions with the base of G31; in
the Das group implementation at the time, they ‘‘virtualized’’ the
phosphates of any bulged nucleotides along with their bases.
Partial virtualization of bulged bases and more rigorous modeling
of conformational entropy are under investigation.

Problem 2

The SWA models performed well in the regions of the 100-nt
‘‘self-assembling RNA square’’ within putatively regular secondary
structure. The Das group did not assume these to be ideal A-form
helices but modeled them from scratch. These regions are com-
posed mainly of Watson-Crick base pairs but also included a non-
canonical cis WC/WC base pair at corner E/F (see Fig. 2C) that
SWA model 1 correctly predicted. In contrast, the SWA models did
not reach atomic accuracy for any of the 5-nt loops at each of the
four corners of the square RNA. This was partly expected because
the ‘‘corners’’ of the nanosquare originated from a 5-nt bulge in
HCV IRES domain IIa (PDB number: 2PN4) (Zhao et al. 2008),
which happened to be part of our comprehensive SWA benchmark
(Sripakdeevong et al. 2011). There, it was possible to sample the
crystallographic loop conformation but not to select it as the
lowest-energy structure; the loop forms direct hydrogen bonds to
metal ions, and these interactions are not yet modeled in Rosetta.

With this result in mind, after the nanosquare crystal structure
was released, it was compared with the full ensemble of models
generated by SWA. Loops in corners C/D and G/H were engaged
in significant crystal contacts; but loops A/B and E/F should have
been amenable to high-accuracy modeling. Indeed, for both of
these loops, SWA sampled the crystallographic conformation of these
loop regions with a <1.0 Å RMSD, but these models had significantly
worse Rosetta energy than the submitted ones. Again, these corners
(and indeed all four corners) involved the binding of either divalent
metal ions or cobalt hexamine (III). The lesson learned (or verified)
from this puzzle is that approximations in the Rosetta all-atom
energy function, especially with regard to metal ions, still remain
too inaccurate to permit atomic-resolution RNA modeling on
a consistent basis. This puzzle has inspired us to develop approaches
to include metal ions during the de novo buildup of models.

Problem 3

The Das group’s recent research has focused on the prediction
of high-resolution motifs as stepping stones to modeling larger
RNAs. This glycine riboswitch puzzle was thus currently out of
range—its core three-way junction and glycine binding site form
an intricate noncanonical pairing network involving more than
a dozen residues. Furthermore, interactions across a dimer in-
terface appear crucial for stabilizing the riboswitch conformation,
but this information was not available. The group’s models were
based on generating low-energy Rosetta SWA models for in-
dividual loops, two-way junctions, and three-way junctions, and
then connecting them with ideal helices. Surprisingly, this basic
approach, ignorant of higher-order interactions, gave the best
base-pair recoveries (INF all, INF wc, INF nwc; see Models 1 and 2
in Table 3) among submitted models. Other submitted models
(Models 4 and 5) gave the best RMSDs for the glycine-binding

site. However, these were very far from atomic accuracy (2.8 Å
and 2.9 Å). Most critically, the global structure of the RNA was
not recapitulated (RMSD and DI) (Table 3). The helices formed
the correct tuning-fork-like rearrangement but were twisted relative
to the crystallographic model (Tables 4, 5). Globally correct
solutions require global optimization, and this puzzle has motivated
the group to develop iterative hybrid high-resolution/low-resolu-
tion approaches to RNA modeling, analogous to the rebuild-and-
refine method used in Rosetta template-based modeling (Qian et al.
2007). As a final note, in the article describing this puzzle’s crystal
structure, a striking structural similarity of the glycine riboswitch
core to a previously solved SAM-I riboswitch (Montange and Batey
2006) was noted. If such similarities could be inferred from
sequence or multiple sequence alignments (analogous to fold
recognition methods in protein modeling), we expect that sub-
stantially more accurate models could be built. We are therefore
hopeful about further development of RNA structural bioinfor-
matics approaches such as Rmdetect (Cruz and Westhof 2011) and
FR3D (Sarver et al. 2008).

Dokholyan group

The Dokholyan group adopted a multi-scale, molecular dynamics
approach (Ding and Dokholyan 2012). Briefly, coarse-grained
discrete molecular dynamics (DMD) simulations are used to
sample the vast conformational space of RNA molecules. The
representative structures are selected from the coarse-grained
simulations based on energies and/or additional filters such as
the radius of gyration or other experimentally known parame-
ters. RNA nucleotides are represented in coarse-grained simula-
tions by three pseudo-atoms corresponding to the base, sugar,
and phosphate groups (Ding et al. 2008b). The neighboring
beads along the sequence are constrained to reflect RNA chain
connectivity and local geometry, including covalent bonds, bond
angles, and dihedral angles. The parameters for bonded interactions
are derived from high-resolution RNA structures. Nonbonded
interactions include base-pairing, base-stacking, short-range phos-
phate–phosphate repulsion, and hydrophobic interactions. These
interaction parameters are derived from the sequence-dependent
free energy parameters of the individual nearest-neighbor hydrogen
bond model (INN-HB) (Mathews et al. 1999). Given an initial
coarse-grained RNA model, the corresponding all-atom model is
reconstructed and further optimized with all-atom DMD simulations
(data not shown). The all-atom DMD RNA modeling approach is
an extension of all-atom DMD protein modeling (Ding et al. 2008b).
In DMD simulations, the structural information of a given RNA,
such as base pairs and distances between specific nucleotides, can
be incorporated as constraints to guide RNA folding (Gherghe
et al. 2009; Lavender et al. 2010).

The CPU time for DMD simulations depends on RNA length.
For the coarse-grained simulations, previous benchmarks sug-
gested a near-linear dependence on RNA length (Ding et al.
2008a). For example, for an RNA of z80 nt (such as Puzzle 3), the
total computational time for the coarse-grained DMD simulation
is z12 h. The procedure to identify representative structures using
the clustering algorithm usually requires <1 h. The CPU time of
the all-atom DMD simulation also depends on RNA length n,
with the computational complexity of order zn ln(n). For the 84-
nt RNA (Problem 3), the CPU time was z18 h; and the CPU time
for 100-nt RNA (Problem 2) was z24 h.
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In the current three RNA puzzles, base pairs derived either
from previous knowledge (input from the experimentalists in
Puzzle 2; RNA secondary structure prediction combined with
biochemical validation in Puzzle 3) or from biochemical intuition
(Puzzle 1) were included. Once the structural information is
gathered and prepared for the refinement simulations, the compu-
tational effort is then fully automated.

The Dokholyan group’s DMD approach has been designed for
fold refinement of relatively large RNAs with complex 3D archi-
tectures. It was especially successful with Puzzle 3, where the models
recapitulated the global fold well. In an independent structure-
prediction exercise, the Dokholyan group also recently predicted
a structure for the pseudoknot domain of the hepatitis C virus
internal ribosome entry site (Lavender et al. 2010). The struc-
ture of a closely related RNA construct was subsequently deter-
mined by crystallography (Berry et al. 2011). Their prediction
for the HCV pseudoknot domain shows good agreement with
the global fold of the experimental structure (RMSD � 11 Å and
P-value 5 3 10�3), although some local interactions were missed.

For the simpler RNAs in Puzzles 1 and 2, the learned lesson
is that inclusion of as much experimentally validated structural
information as possible improves predictions, but it is important
to avoid over-constraining the simulation. Instead, the DMD
simulations should be allowed to sample the favorable confor-
mational space, where constraints are unclear. For example, in
their solution to Puzzle 1, the Dokholyan group overestimated
the internal base-pairing in the middle of the monomer sequence
based on misinterpreting the statement in the puzzle that ‘‘The
strands hybridize with blunt ends (C–G closing base pairs).’’ As
a result, their prediction for Puzzle 1 had the highest RMSD among
the predictions. In a post priori simulation, in which only the G–C
pairs at the ends were constrained to form base pairs, the predicted
model structure had a much smaller RMSD (4.3 Å) and would have
ranked among the top third of models.

Flores group

For 3D structure prediction, the Flores group used RNABuilder
(named MMB in a subsequent release), an internal coordinate-
mechanics code that allows the user to specify the flexibility, forces,
constraints, and full or partial structural coordinates to model the
structure and/or dynamics of an RNA molecule (Flores and Altman
2010; Flores et al. 2011). Working in internal coordinates has the
advantage that regions of known structure in a model can be
rigidified, thus eliminating the cost associated with solving the
equations of motion for internal rearrangements of that region
(Flores and Altman 2011). Steric exclusion can be accounted for
economically using collision-detecting spheres that are applied to
a subset of atoms in user-specified residues. Any canonical or
noncanonical base-pairing interaction catalogued in Leontis
et al. (2002), plus stacking and a ‘‘Superimpose’’ threading force
can be enforced between any and all pairs of residues specified by
the user. These features have been used for RNA threading
(Flores et al. 2010) and for generating an all-atoms trajectory of
ribosomal hybridization using structural and biochemical in-
formation (Flores and Altman 2011).

The processing time on a single core of a 3.0 GHz Intel
processor was z94 min. Notice that this run was not optimized
for speed, and also that a newer version of RNABuilder (named
MMB) is at least twice as fast due to improvements in the

underlying Simbody internal coordinate dynamics engine (Sherman
et al. 2011).

RNABuilder is intended to be easy to use, and this goal is
supported by the use of a single, free-format command file that is
prepared using a relatively intuitive syntax comprising terms
recognizable by any biologist. However, the package is also
designed to provide the user control over the flexibility, forces,
and parameters of the model, in order to be useful for a wide
variety of applications; hence, it is not automated. The human
time required for preparing a run is thus dependent on the
experience of the user and the complexity of the task. RNA-
Builder is designed to enable fast runtimes; most tasks un-
dertaken require minutes to hours, depending on the task. A
trained user can also reduce the degrees of freedom and structure
the problem to allow larger integration time steps for greater
efficiency. Also, most users in practice will do multiple calcula-
tions before coming to a biological conclusion. In this group’s
experience, the human/computer time ratio is typically much
greater than unity.

Major group

This CASP-like contest was an opportunity for the Major group
to test their fully automated MC-Fold and MC-Sym pipeline
(Parisien and Major 2008). Two students in the laboratory,
Véronique Lisi (PhD student in molecular biology) and Marc-
Frédérick Blanchet (PhD student in computer science), who did
not participate in the development of the pipeline were selected to
participate. Lisi solved the Homodimer and Square problems, and
Blanchet solved the Riboswitch Domain problem. Except for the
Riboswitch Domain, no human intervention or numerical re-
finement was applied to the structures that were submitted to the
contest, or in other words, the structures that were submitted were
taken directly from the output of the MC-Sym program. This
explains their high Clash Scores.

Homodimer

Lisi concatenated two copies of the given sequence into one that
was submitted to MC-Fold using the default parameters, i.e., not
considering pseudoknots; best 20 structures; and, explored the
best 15% suboptimal structures. The structure predicted with the
highest probability (i.e., minimum free energy) was then sub-
mitted to MC-Sym. The first 3D structure generated by MC-Sym
was submitted to the contest (atomic clashes 1.5 Å all-atoms but
hydrogens; backtrack probabilist, width limit 25%, height limit
33%; backbone method estimate, threshold 2.0 Å; maximum of
1000 models, CPU time limit 180 min, seed 3210, RMSD min 3.0
Å side chain only).

Square

Lisi directly used the 2D structure provided as the input to MC-
Sym. The first structure generated by MC-Sym was submitted to
the contest (using the same parameters as for the Homodimer).

Riboswitch domain

Maria Abella, a MSc student in bioinformatics, suspected that
this sequence was a riboswitch. She checked its matching DNA
sequence in GenBank and determined that it was from Vibrio
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cholerae. Then, using BLAST, she found that the sequence was
z100 bp away from the sodium/glycine symporter GlyP gene in
Bacillus subtilis, which was previously reported to be controlled by
a riboswitch (Mandal et al. 2004). The sequence of the B. subtilis
riboswitch is the same except for one nucleotide as that for Problem
3. Its 2D structure supported by chemical probing data was also
published by Mandal et al. (2004).

Suspecting the riboswitch, Blanchet decided to submit two
structures. He first predicted 2D structures using MC-Fold (not
considering pseudoknots; best 1000 structures; explore the best
15% suboptimal structures). Generating the set of 1000 sub-
optimal structures took <2 min on an Intel i7 @ 2.67 GHz. He
noted that the 2D structure published by Mandal et al. (2004) was
absent in the set. He grouped the 1000 structures according to
their topologies. Among the topologies, he kept a cloverleaf (four-
way junction; the most frequent with 796 structures among the
1000) and a Y-shape (three-way junction), which corresponded
to the same topology of the structure published by Mandal et al.
(2004). However, the base-pairing pattern of the predicted
structure differed much from that published. He then generated
decoys of 3D structures using MC-Sym for the best-scoring 2D
structure in each chosen topology (atomic clashes 1.5 Å all-atoms
but hydrogens; backtrack probabilist, width limit 25%, height
limit 33%; backbone method ccm, pucker = C39-endo, threshold
2.0 Å; maximum of 9999 models, CPU time limit 12 h, seed 3210,
RMSD min 1.0 Å side chain only). He edited the MC-Sym input
scripts to explore independently and more of the conformational
space of each stem in the same allowed time. The structures of
the individual stems were merged in complete structures for
an additional 12 h. For each topology (5685 Y-shape and 9999
cloverleaf structures), Blanchet selected the centroid model of the
20 best scoring models (according to the P-Score described at the
MC-Sym command page; the centroid structure had a P-Score of
�61.44). A ‘‘Relieve’’ minimization (see the MC-Sym command
page) was applied to both selected models. This operation corrects
the major steric conflicts in the backbone but does not refine the
overall structure. This is reflected by the high Clash Score in the
submitted models.

Lesson for the Major group

Obviously, in Problem 3, the minimum free energy structure
predicted by MC-Fold differs from that of the crystal. Worst, it is
not even predicted among the 1000 suboptimals. Just for P3, the
2D structure corresponding to the crystal is evaluated at �39.7
kcal/mol (minimum free energy structure for P3 = �47.9 kcal/
mol) and ranks near 50th only. It is not possible to see at this time
how this structure could be selected by the program unless more
information than the sequence is provided. It would be interesting
to see the precision of 3D structures that would have been
generated by MC-Sym, given that the crystal 2D structure could
have been selected. Thus, a decoy of 3D structures using an input
script was generated from the correct 2D dot-bracket (from Fig.
3A without the G29:C83:A11 triple), and after applying the
‘‘Relieve’’ minimization, the structures ranged between 7 and 21
Å of RMSD with the crystal structure (data not shown) (best
RMSD = 6.8 Å; P-Score = �25.38). However, selecting this best
RMSD structure using our P-Scores is not possible, because the
best P-Score structure, �53.84, has an RMSD of 10.3 Å with the
crystal structure.

SantaLucia group

The SantaLucia group submitted models for Problems 1 and 2.
Both models were generated using the de novo modeling module
within the RNA123 software suite (Sijenyi et al. 2012). Below is
a brief description of the methodology.

Problem 1

The first step was to predict the secondary structure of the
submitted sequence. To accomplish this, the sequence 59-CCGCC
GCGCCAUGCCUGUGGCGGUUCGCCGCCGCGCCAUGCCUG
UGGCGG-39 was submitted to a secondary structure–folding
algorithm. The UUCG hairpin was added in order to make
a continuous chain of RNA, because RNA123 folds a single
chain of RNA. The UUCG hairpin was later manually removed
once the tertiary structure was predicted. The secondary structure
was predicted using a thermodynamics-based dynamic program-
ming algorithm within RNA123 that produced 10 optimal and
suboptimal secondary structure folds. A tertiary structure model
was computed only for the optimal secondary structures by decom-
posing the secondary structure into constituent motifs such as
internal loops, helixes, and hairpins. The 3D structure was then
assembled using a motif library. The motif library was generated
from RNA structures previously deposited in the PDB (Protein
Data Bank). The selection and assembly of the motifs are automated
within the RNA123 via an algorithm called BUILDER (Sijenyi et al.
2012), which uses an energy function to score and assemble the 3D
model. The manual effort in performing the prediction for Problem
1 was minor, notably in removing the UUCG hairpin after the
models were generated.

Comments

After the results for the prediction of Problem 1 were released, the
group discovered that they had submitted a model generated from
the wrong sequence. Specifically, residue 15 was a C instead of
a U, and residue 18 was a U instead of a C. This meant that the
dimer ended up with four incorrect residues and thereby compro-
mised the quality of their prediction. It is important to note that
this error was later fixed and produced a model that scores better
against the crystal structure.

Problem 2

This problem was solved by a combined effort of both manual and
automated steps. The given secondary structure was decomposed
into four identical ‘‘L’’-shaped secondary structures with daggling
ends on the 59 end (CCGG) and 39 end (GGCC). The idea was to
generate four identical tertiary structures and then base-pair the
daggling ends so that a perfect square (Fig. 2A) can be assembled
from the four ‘‘L’’-shaped structures. Using the de novo modeling
module in RNA123, a 3D model with the lowest energy was
computed. Fortunately, this model happened to have an ‘‘L’’-
shaped tertiary structure. Four copies of this structure were then
created and superimposed onto the provided coordinates of the
inner strand from Problem 3, forming an initial coarse model
consistent with the ‘‘square’’ secondary structure. This coarse
model had distorted base pairs between the 59 and 39 dangling
ends of each of the preceding fragments, and therefore we subjected
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the entire model to the energy optimization algorithm in RNA123.
This algorithm, named DSTA (Discrete Sampling of Torsion
Angles), uses a multi-dimensional search and a novel method for
modeling the local potential energy surface and finding an
analytical minimum (Sijenyi et al. 2012).

An estimate of the time required to produce the models

The computer calculation time (on a laptop with Intel Core 2 Duo
CPU P8600 @ 2.4 GHz processor) was as follows:

Problem 1. It took z25 min to predict a single tertiary structure
using the de novo prediction platform in RNA123.

Problem 2. It took z20 min to predict and generate four ‘‘L’’-
shaped tertiary structures using the de novo prediction platform
in RNA123. Manual assembly and running of the DSTA optimi-
zation algorithm took z1 h.

An estimate of the proportion human effort/machine effort

Problem 1. Twenty-five minutes of machine effort, negligible
human effort.

Problem 2. Twenty minutes of machine effort, 1 h of human
effort.

PDB file normalization

Both files for the accepted experimental structures and predicted
model files, submitted in PDB format, were normalized to comply
with a common standard. Only the first model present in the file
was considered. All records except for the ATOM and TER
records were ignored. Only the four nucleotides A, C, U, and G
were considered. Modified nucleotides were treated as unmod-
ified bases, and extra atoms were discarded (e.g., a 5-bromoura-
cil is treated as a normal uracil and the extra bromine atom is
discarded). The only atoms kept are those for the bases (C2, C4,
C6, C8, N1, N2, N3, N4, N6, N7, N9, O2, O4, and O6) and for
the sugar-phosphate backbone (C19, C29, C39, C49, C59, O29,
O39, O49, O59, OP1, OP2, and P).

Stereochemical evaluation

The stereochemical evaluation was performed using the MolProbity
(Davis et al. 2007) tool. In a first step, hydrogen atoms were added
to the model using the ‘‘reduce-build’’ command line utility, and
the Clash Score value was computed using the ‘‘oneline-analysis
-nocbeta -norota -norama’’ command.

RMSD computation

The RMSD is computed using the ‘‘Superimposer’’ class from the
‘‘Bio.PDB’’ package (Hamelryck 2003). The ‘‘Superimposer’’ class
translates and rotates the comparing model to minimize its RMSD
in respect to the reference model. It uses a singular value
decomposition algorithm as described in Golub and Van Loan
(1989).

Deformation Index and Deformation Profile
computations

The base–base interactions (BBI) of both solution and predicted
models are extracted using the MC-Annotate (Gendron et al. 2001)
tool. The Interaction Network Fidelity (INF) value is computed as:

INF =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP

TP + FP

� �
3

TP

TP + FN

� �s
;

where TP is the number of correctly predicted BBI, FP is the number
of predicted BBI with no correspondence in the solution model, and
FN is the number of BBI in the solution model not present in the
predicted model. The Deformation Index is then computed as:

DI =
RMSD

INF
:

Several partial INF (and respective DI) can be computed if
one considers only the Watson-Crick (WC) base pairs (INFWC),
the non-Watson-Crick (NWC) base pairs (INFNWC), both WC
and NWC base pairs (INFBPS), or the stacking interactions
(INFSTACK).

The Deformation Profile is a distance matrix computed as the
average RMSD between the individual bases of the predicted and
the reference models while superimposing each nucleotide of the
predicted model over the corresponding nucleotide of the refer-
ence model one at a time. It is computed using the ‘‘dp.py’’
command from the ‘‘SIMINDEX’’ package (Parisien et al. 2009).

P-value computation

The P-value is computed as described (Hajdin et al. 2010) using:

P � value =
1 + erf RMSD�< RMSD >ð Þ=1:8ffiffi

2
p

� �
2

;with

< RMSD > = a 3 N0:41 � b:

the constants a and b depend on whether the secondary structure
base-pairing information is provided (a = 5.1 and b = 15.8) or not
(a = 6.4 and b = 12.7). This metric is only valid for RNAs with
true higher-order 3D folds and thus only applies to Problem 3
(with base-pairing as an assumed constraint).

Graphics

Interactive molecular module images in the RNA-Puzzles website
are produced with Jmol (http://www.jmol.org) and the secondary
structures with VARNA (Darty et al. 2009).
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