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Abstract

ReliablemodelingofRNA tertiary structures is key tobothunderstanding these structures’
roles in complex biologicalmachines and to eventually facilitating their design formolec-
ular computing and robotics. In recent years, a concerted effort to improve computa-
tional prediction of RNA structure through the RNA-Puzzles blind prediction trials has
accelerated advances in the field. Among other approaches, the versatile and expanding
Rosetta molecular modeling software now permits modeling of RNAs in the 100–300
nucleotide size range at consistent subhelical (!1 nm) resolution. Our laboratory's cur-
rent state-of-the-art methods for RNAs in this size range involve Fragment Assembly
of RNA with Full-Atom Refinement (FARFAR), which optimizes RNA conformations in
the context of a physically realistic energy function, as well as hybrid techniques that
leverage experimental data to inform computational modeling. In this chapter, we give
a practical guide to our currentworkflow formodeling RNA three-dimensional structures
using FARFAR, including strategies for using data frommultidimensional chemical map-
ping experiments to focus sampling and select accurate conformations.
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1. INTRODUCTION

Computational modeling of RNA structures is advancing rapidly,

with recent developments improving prediction and design of both second-

ary and tertiary structures of RNA. Continuing improvements to secondary

structure prediction algorithms (Tinoco et al., 1973), classification of RNA

structural motifs (Petrov, Zirbel, & Leontis, 2013), molecular dynamics and

quantum mechanical techniques (Ditzler, Otyepka, Sponer, & Walter,

2010), conformational sampling with energy scoring (Das, Karanicolas, &

Baker, 2010), atomic-scale loop and motif modeling (Sripakdeevong,

Kladwang, & Das, 2011), integration with conventional crystallographic

(Chou, Sripakdeevong, Dibrov, Hermann, & Das, 2013) and NMR

approaches (Sripakdeevong et al., 2014), and connections with recent

single-molecule (Chou, Lipfert, & Das, 2014) and internet-scale videogame

(Lee et al., 2014) technologies hold promise for eventually attaining confi-

dent 3D modeling and design of RNAs with high spatial resolution. An

important driver of recent innovation has been the establishment of blind

prediction trials, proposed during a community-wide collation of 3D

RNA modeling methods in 2010 (Sripakdeevong, Beauchamp, & Das,

2012) and begun soon thereafter. The RNA-Puzzles trials (Cruz et al.,

2012), modeled after the 20-year-old CASP trials in protein structure pre-

diction, challenge participating groups to create accurate 3D models of

RNAs from sequence alone; the submitted models are compared to

unreleased crystallographic structures of the targets to assess the methods’

predictive power. These trials provide a rigorous testing ground for current

computational as well as hybrid experimental/computational structure pre-

diction methods on RNA domains that are of strong biological interest.

This chapter describes methods from our laboratory of medium compu-

tational and experimental expense that achieve subhelix-resolution accuracy

for 3D models of 100- to 300-nucleotide RNAs, a typical size range for

many riboswitch and ribozyme domains and representative of RNA-Puzzles

target sizes. Subhelical resolution, while not the ultimate achievable, has still

been useful in guiding mutational experiments in vitro and in vivo, detecting

partial structure in riboswitches without their ligands, and in revealing or

illustrating evolutionary connections that are not obvious from sequence

comparisons alone. The primary tools for this approach are constraints from

chemical mapping experiments, which we discuss briefly here and will be

described in more detail elsewhere, and computational modeling to inte-

grate chemical mapping data into 3D portraits.
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Our laboratory is developing several tools that seek to advance 3D mac-

romolecule modeling at multiple length scales. For small RNA motifs, we

leverage algorithms based on a “stepwise ansatz,” which enable modeling of

RNA loops and motifs with near-atomic accuracy (better than 2 Å RMSD),

particularly if limited NMR or crystallographic data are available (Chou

et al., 2013; Sripakdeevong et al., 2014, 2011). Unfortunately, the compu-

tational expense of those high-resolution tools is currently prohibitive for de

novo modeling of large RNAs. Instead, our practical tools for large RNAs

have largely been built on Fragment Assembly of RNA with Full-Atom

Refinement (FARFAR) in the Rosetta framework, which was first intro-

duced to model small motifs of RNAs in 2007 (Das & Baker, 2007) and

was initially based on Rosetta protein structure prediction methods that

we had helped in advance. Since that time, FARFAR has been progressively

developed to allow for nucleotide-resolution building of not just individual

RNAmotifs but also more complex RNA folds involving dozens of helices.

This chapter is intended to offer a practical guide to getting started with

Rosetta using an up-to-date workflow from our laboratory, laid out in

Fig. 1. We will illustrate this workflow below using the ligand-binding

region of a tandem glycine-binding riboswitch from F. nucleatum, which

forms a complex pseudosymmetric fold stabilized by A-minor interactions

between two glycine-binding subdomains. A homolog of this domain

was posed as an RNA-Puzzles challenge (Cruz et al., 2012), and crystallo-

graphic and biochemical work on this system by several RNA laboratories

(Butler, Xiong, Wang, & Strobel, 2011; Cordero, Kladwang, VanLang, &

Das, 2012; Erion & Strobel, 2011; Kladwang, VanLang, Cordero, & Das,

2011) have made this RNA a useful model system for calibrating and illus-

trating experimental and computational methodologies.

2. SETTING THE STAGE FOR 3D MODELING USING
EXPERIMENTAL DATA

Several pieces of information can provide powerful constraints to help

construct accurate 3Dmodels of RNA. Themost fundamental of these is the

RNA’s secondary structure. If phylogenetic inference of secondary structure is

precludedby the lackof sequencehomologs, difficulties in sequence alignment,

or targeting of “alternative” states of the RNA (e.g., without ligands or in

misfolded conformations), chemicalmapping techniques provide useful guides

to computational secondary structure prediction (Cordero, Kladwang,

VanLang, & Das, 2014; Hajdin et al., 2013; Kladwang et al., 2011). In tradi-

tional “one-dimensional” (1D) chemical mapping experiments, solution-state
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RNAs are exposed to chemical modifiers which form adducts to the backbone

or nucleobases depending on backbone flexibility or base-pairing status

(Fig. 2A). These modifications are traditionally detected by reverse transcrip-

tion, which stops at the modified location, followed by gel or capillary

electrophoresis or, more recently, deep sequencing to identify the sequence

position of each modification. The reactivity of each nucleotide position to

the chemical modifier can be quantified using several publically available soft-

ware suites, withHiTRACE (Kim,Cordero,Das, &Yoon, 2013; Yoon et al.,

2011) (https://github.com/hitrace/hitrace) and MAPseeker (Seetin et al.,

2014) (https://github.com/DasLab/map_seeker) particularly optimized

for high-throughput analysis of capillary electrophoresis and deep-

sequencing data, respectively. Secondary structure prediction servers such as

RNAstructure (Reuter & Mathews, 2010) (http://rna.urmc.rochester.edu/

Figure 1 Workflow for modeling RNA structures in the Rosetta framework guided by
experimental data. One-dimensional chemical mapping and mutate-and-map methods
guide confident secondary structure prediction. To save computational expense during
global modeling, secondary structure elements are separately preassembled. These
ensembles of preassembled helices, along with experimental proximity mapping data
from MOHCA-seq, are the inputs to global modeling by Fragment Assembly of RNA
(FARNA), which generates low-resolution models. A fraction of the low-resolution
models with the lowest Rosetta energy scores are then minimized using the Rosetta
all-atom energy function (FARNA with Full-Atom Refinement, FARFAR) to resolve cha-
inbreaks and unreasonable local geometries that can arise from fragment insertion.
Finally, the minimized models are clustered using an RMSD threshold to collect 0.5%
of the total low-resolution models in the largest cluster; this step identifies representa-
tive conformations sampled by the algorithm.
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Figure 2 Rapidly acquired chemical mapping data for modeling a complex RNA fold.
(A) One-dimensional SHAPE chemical mapping data for the F. nucleatum glycine
riboswitch double ligand-binding domain in the presence of 10 mM glycine. Reactivities
are normalized to reference hairpins (not shown) (Kladwang et al., 2014). Data are avail-
able at the RNA Mapping Database (RMDB, http://rmdb.stanford.edu) under accession
code GLYCFN_1M7_0005. (B) Mutate-and-map (M2) chemical mapping data for the gly-
cine riboswitch in the presence of 10 mM glycine. Data are available at the RMDB under
accession code GLYCFN_SHP_0002. (C) M2-derived secondary structure model of
the glycine riboswitch in the presence of 10 mM glycine, from Kladwang et al.
(2011). Blue lines indicate Watson–Crick base pairs predicted in the model but not pre-
sent in the crystallographic secondary structure. Red percentage values for each helix
indicate confidence estimates from bootstrapping two-dimensional SHAPE chemical

(Continued)
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RNAstructureWeb) and the RNA mapping database structure server

(Cordero, Lucks, & Das, 2012) (http://rmdb.stanford.edu/structureserver)

can accept reactivities from chemical mapping experiments, providing addi-

tional scoring terms to guide the predictions. Nonparametric bootstrapping

(Kladwang et al., 2011) can provide confidence estimates for these models.

While 1D chemical mapping experiments can provide reactivity values

for every nucleotide in anRNA, the data do not directly reveal which nucle-

otides are base paired with which other nucleotides in the sequence, which

generally limits the accuracy of the resulting models. Higher confidence sec-

ondary structures can be derived from multidimensional expansions of con-

ventional chemical mapping. For example, the “mutate-and-map” (M2)

approach (Cordero et al., 2014) (Fig. 2B) involves systematic mutagenesis

of every residue in the RNA; the suite of mutated RNAs are chemically

mapped inparallel.Themutations disrupt individualWatson–Crick andnon-

canonical base pairs, causing the base-pairing partners of themutated residues

to increase in reactivity to the chemical modifier. Thus, M2 can identify the

base-pairing interactions throughout RNAs, which provide powerful

restraints for secondary structure prediction and, in some cases, can reveal base

interaction-mediated tertiary contacts (Kladwang, Chou, & Das, 2012). For

the glycine riboswitch domain,M2was able to automatically and blindly pre-

dict the secondary structureof thedomain, recovering all helices correctly and

with confidence, as assessed by bootstrapping. In all cases tested to date,

including blind RNA-Puzzles test cases, M2 models achieve such accuracy;

all residual errors involve helix edge base pairs (Fig. 2C). High-throughput

mutation-rescue experiments read out by chemical mapping now offer the

prospect of testing secondary structures at base pair resolution, and we

Figure 2—Cont'd mapping data. Nucleotides are colored according to SHAPE reacti-
vity. (D) MOHCA-seq proximity map of the glycine riboswitch in the presence of 10 mM
glycine, from Cheng et al. (2014). The y-axis represents positions that were cleaved
by hydroxyl radicals, while the x-axis represents the locations of the radical sources
from which the radicals originated. Pairwise positions are colored according to
two-point correlation calculated by MAPseeker analysis (Seetin, Kladwang, Bida, &
Das, 2014). Data are available at the RMDB under accession code GLYCFN_MCA_0000.
(E) Pseudoenergy potential applied during modeling in Rosetta to constrain pairs of
residues indicated to be in proximity by MOHCA-seq experimental data. Residue pairs
showing strong MOHCA-seq signal are constrained with the blue potential and those
with weaker signal are constrained with the red potential (1/5 of the blue potential).
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recommend compensatory rescue tests for problems that require particularly

high confidence (Tian, Cordero, Kladwang, & Das, 2014).

Another form of information that can be critical for selecting an RNA’s

correct 3D fold involves pairwise proximities, which reflect the topology of

the tertiary structure. An experimental pipeline, Multiplexed hydroxyl rad-

ical (!OH)Cleavage Analysis by paired-end sequencing (MOHCA-seq), has

been developed that can collect such pairwise proximity information, inde-

pendent of traditional 3D structure determination techniques such as X-ray

crystallography, cryo-EM, and NMR. In MOHCA-seq, sources of

hydroxyl radicals are randomly incorporated into the RNA backbone dur-

ing transcription (Cheng et al., 2014; Das et al., 2008). Activation of the

sources produces localized hydroxyl radicals that diffuse outward, causing

strand breaks at positions that are far away in sequence from the radical

source but are brought into proximity by the 3D fold. In order to identify

the locations of cleavage events and the radical sources that caused them, a

DNA tail is ligated to the 30-end of the fragmented RNAs, and reverse tran-

scription primed on this tail stops at the radical source location. Sequencing

of these complementary DNA fragments and analysis using the MAPseeker

software (Seetin et al., 2014) produces pairwise proximity maps of the

RNA’s tertiary structure (Fig. 2D). MOHCA-seq data can be incorporated

into 3D modeling via pseudoenergy terms (Cheng et al., 2014; Das et al.,

2008) (Fig. 2E), as is described in further detail below.

3. MAKING MODELS OF RNA TERTIARY FOLDS

Our overall modeling pipeline still requires somemanual setup of steps

and has not been fully automated, mainly because it is under rapid develop-

ment but also because particular steps depend on the computer cluster on

which the code is tested or executed (see later). Nevertheless, it is currently

fully functional without expert inspection. The following is a procedure

optimized to make use of constraints from chemical mapping experiments.

3.1. Installing software and accessing computation resources
The principal framework for RNA computational modeling using our

workflow is Rosetta, a collaboratively developed software suite for structure

prediction and engineering of a wide range of macromolecules (https://

www.rosettacommons.org/) (Leaver-Fay et al., 2011). Documentation

for Rosetta can be found online (https://www.rosettacommons.org/docs/
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latest/) and the modular design of the software has been described in detail

(Leaver-Fay et al., 2011). Noncommercial users can install Rosetta by

requesting a free license from RosettaCommons Web site, and then down-

loading and installing the software from the same site. Users can select which

build of Rosetta to compile; we recommend that Mac users compile the

build_mac_graphics version, which provides real-time visualization of con-

formational sampling and Linux users to compile the build_release version.

General installation instructions are provided in Rosetta/main/source/

cmake/README (see also: https://www.rosettacommons.org/docs/latest/Build-

Documentation.html). Rosetta is consistently updated with weekly build

releases, and the command lines referenced later in the text and given in

theAppendix have been tested using a recentweekly build (weekly_releases/

2014_35_57232). Beyond the coreRosetta installation, we are also develop-

ing an additional set of tools for RNA modeling, which are required for the

workflow described in this chapter. The RNA tools collection is located in

Rosetta/tools/rna_tools/bin, and documentation for setting upRNA tools

is available on RosettaCommons (https://www.rosettacommons.org/docs/

latest/RNA-tools.html).

The PyMOL open-source molecular visualization tool is helpful for

inspecting and evaluating structural models (http://www.PyMOL.org/)

(Schrodinger, 2010). Free educational subscriptions to PyMOL are available

at the Web site; there is a fee for other users. Our laboratory’s tools for easy

visualization of RNA models in PyMOL are freely available on GitHub

(https://github.com/DasLab/PyMOL_daslab). These scripts include com-

mands to render RNAs with various levels of molecular detail, as well as

to superimpose models and to color models by chemical mapping

reactivities.

Most of the modeling protocols in Rosetta cannot be completed on sin-

gle laptops but can be easily run on UNIX computer clusters. Sufficient

computing power can be obtained from some freely available resources.

For example, the Extreme Science and Engineering Discovery Environ-

ment (XSEDE, https://www.xsede.org/home) provides free startup alloca-

tions for high-performance computation. At the time of writing, 20,000

CPU hours can be acquired by research laboratories within a short time

of submitting an allocation request, and this amount is more than enough

to carry out several calculations. We typically carry out trial runs on local

Macintosh machines and then transfer files to XSEDE or other resources

for parts of the calculation that require large-scale runs.

42 Clarence Yu Cheng et al.

ARTICLE IN PRESS



We note that modeling of submotifs (up to 30 nucleotides) of a large

RNA can also be carried out freely through the Rosetta Online Server that

Includes Everyone (ROSIE, http://rosie.rosettacommons.org) (Lyskov

et al., 2013), and, if desired, these submodels can be integrated into larger

models (see Section 3.6). Runs on ROSIE may be useful to groups who

wish to explore these tools before compiling and executing Rosetta

RNA modeling on their own resources or on XSEDE.

3.2. Preassembling helices
An important principle in efficient macromolecular modeling is to not

expend computation on regions of already known structure. ForRNA,most

helices form canonical A-form conformations. Therefore, to reduce compu-

tational expense, we preassemble the helices from high-confidence second-

ary structures that were predicted using chemical mapping (e.g., M2) data.

First, we make a directory in which modeling of the target RNA will be

performed. In this directory, we create a FASTA-formatted file with the

name and sequence of the target RNA and a file with the secondary structure

of the RNA in dot–parenthesis notation. Pseudoknots may be expressed in

square brackets instead of parentheses. For example, FASTA files, secondary

structure files, and UNIX command lines can be found in the Appendix and

will be referenced in the text. Examples of initial FASTA and secondary

structure files are given as files [F1] and [F2] in the Appendix, respectively.

To generate files containing the command lines for de novo RNA helix

modeling in Rosetta, we run the helix_preassemble_setup.py script with

the secondary structure and FASTA files as inputs (Appendix, command line

[1]). The helix_preassemble_setup.py script will generate parameter and

FASTA files for each helix detected in the input secondary structure, as well

as a .RUN file that contains the command line for rna_denovo, the program

that performs de novo RNA modeling in Rosetta. The files will be named

according to order of helices in the secondary structure (e.g., helix0.

params, helix0.fasta, helix0.RUN, helix1.params). The content of a

helix0.RUN file should resemble command line [2] in the Appendix. This

.RUN file can be run on a local machine in 10–20 min using source

helix0.RUN (Appendix, command line [3]) and generates 100 FARFAR

models for each helical region. The resulting models are output in com-

pressed format (called “silent files” in Rosetta, for historical reasons) with

names like helix0.out, etc. These files will be used as inputs for global

modeling of the entire RNA. The helix models can be visualized, if desired,
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using the extract_lowscore_decoys.py script (see also below). The pre-

assembled helices are generally nearly identical except for small variations

near the ends (Fig. 3). Sampling the helices in the target RNA from these

models instead of from the database of RNA fragments used for global sam-

pling allows a greater portion of the computational effort to be spent on non-

helical regions.

3.3. Defining the global fold using fragment assembly of RNA
With experimental constraints and preassembled helices in hand, the global

fold of the target RNA can be tackled. At this stage, we create a set of low-

resolution models using Fragment Assembly of RNA (FARNA) (Das &

Baker, 2007). In FARNA, models are assembled using small RNA frag-

ments sampled from a crystallographic database using a Monte Carlo algo-

rithm. This heuristic allows the models to take on RNA-like conformations

Figure 3 Preassembled helices for F. nucleatum double glycine riboswitch ligand-
binding domain. The secondary structure is shown at center with the residues used
for helix preassembly highlighted in color. Ensembles of 10 models of each helix gen-
erated by the helix preassembly protocol in Rosetta are shown at the periphery, labeled
with the aptamer and helix number (e.g., Apt1 P1 for the P1 helix of aptamer 1). The
magnified view of the Apt1 P1 helix highlights the slight differences in conformation
between the preassembled helix models.
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because the fragments are drawn from RNAs of known structure. This

low-resolution modeling step does not include any refinement at the atomic

level, because the all-atom energy landscape is too “rugged”; that is, it con-

tains many energy minima that can trap the nascent model from exploring

alternative conformations, and strategies for searching this landscape

(Sripakdeevong et al., 2011) are currently too computationally expensive

for RNA domains above 10–20 nucleotides.

For the following steps, if a comparison to a crystallographic or other ref-

erence model is desired, inputting the reference during the modeling runs

will allow root mean square deviation (RMSD) values to be reported in

the output silent files. To properly calculate RMSDs, reference models

must have the same sequence as the construct being modeled. The

make_rna_rosetta_ready.py command reformats PDB files with the correct

sequence to be used as reference models (Appendix, command line [4]). For

the glycine riboswitch example described in this chapter, the crystallo-

graphic structure includes a protein-binding loop that is not present in

the construct used for experiments and modeling. To prepare the crystallo-

graphic structure for use as a reference model, we replace the protein-

binding loop with a UUUA tetraloop to match the target sequence

(Appendix, command lines [5] through [14]). These commands can also

be used for more extensive remodeling of models and are described in detail

in Section 3.6. We note that including a reference model is not required for

the modeling workflow but can allow for easy visualization of modeling

results through energy versus RMSD plots, such as those shown in Fig. 4.

As with the helix assembly runs above, a series of text files will record the

command lines used for setup and modeling. To set up a FARNA run, we

create a file called README_SETUP, which calls a script called

rna_denovo_setup.py to generate the command line for low-resolution

modeling. Command line [15] in the Appendix shows an example

README_SETUP file. Special tags can be used to specify advanced options for

the modeling run, including specific noncanonical base pairs (Appendix),

segments of the RNA that are thought to form a tertiary contact, or soft con-

straints from MOHCA-seq experiments. For example, to incorporate the

MOHCA-seq data into computational modeling in Rosetta, a smooth

pseudoenergy potential is applied between pairs of nucleotides showing

strong MOHCA-seq signal, which indicates that they are proximal in the

3D fold. Two separate pseudoenergy potential functions are used, one for

strong and one for weak MOHCA-seq hits (Fig. 2E); these potentials differ
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only in the amplitude of the energy penalty applied for residues that are too

close or too far apart. These potentials are specified in text-formatted files in

Rosetta’s “constraint file” format (example in Appendix, file [F3]) and can

be input to rna_denovo_setup.py. The command source README_SETUP

(Appendix, command line [16]) generates a file containing a command line

for rna_denovo with the tags given in README_SETUP, called README_FARFAR

(Appendix, command line [17]), as well as parameter and FASTA files.

It is a good idea to test the run locally before submitting it as a job to a

cluster, in case the run is stopped by an error. To test the run, we use source

README_FARFAR (Appendix, command line [18]) to begin a single job on a

local computer and wait until sampling begins successfully (command line

output similar to “Picked Fragment Library for sequence u and sec. struct

Figure 4 Low-resolution modeling and full-atom refinement using FARNA and FARFAR.
(A) Rosetta energy score versus RMSD plot after low-resolution modeling using FARNA.
(B) Overlaid 10 lowest-energy models after low-resolution modeling using FARNA.
Chain breaks are visible in many models (arrows), and residues commonly adopt unre-
alistic geometries. (C) Rosetta energy score versus RMSD plot after minimization using
the FARFAR algorithm. (D) Overlaid 10 lowest-energy models after minimization using
the FARFAR algorithm. The models do not show any chain breaks, and poor residue
geometries are greatly reduced.
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H . . . found 2308 potential fragments”) before canceling the run. Then per-

form modeling on a computer cluster by first using the rosetta_submit.py

script to generate submission files (Appendix, command line [19]) and then

using source on the submission file appropriate for the cluster’s queuing sys-

tem (e.g., Condor, LSF, PBS, etc.). For FARNA runs, it is best to generate

around 10,000–15,000 low-resolution models, from which a subset will

later be minimized. The models generated by rna_denovo are by default

placed in a folder named out, which is created in the modeling folder.

The out folder contains individual folders for each run with a silent .out file

in each that describes all of the models from that run. To collect all of the

models into a single silent file, we use the easy_cat.py script (Appendix,

command line [20]). This creates a single concatenated .out file with the

name tag initially provided in README_SETUP.

If a reference (native) model was input during FARNA modeling, the

RMSDs of the FARNA models to the reference can be compared to their

Rosetta energy scores, which are all recorded in the concatenated silent file,

to assess the quality of the low-resolution models. An example energy versus

RMSD plot is shown in Fig. 4A. Additionally, it may be helpful to visualize

the low-resolution models with the lowest—that is, most favorable—

Rosetta energy scores. To do this, we extract the lowest-scoring models

from the concatenated .out file using extract_lowscore_models.py

(Appendix, command line [21]). These PDB-formatted models can then

be loaded in PyMOL for comparison (Fig. 4B). Note that the FARNA

models may contain discontinuities in the RNA backbone, which are visible

in PyMOL. These chainbreaks occur because crystallographic fragments that

are sampled and built into the model first may prevent a continuous back-

bone from being built in other regions of the RNA. Chainbreaks are not a

cause for concern, however, because the following all-atom minimization

step typically resolves them.

3.4. Producing and selecting models with reasonable
stereochemistry using refinement

Asmentioned earlier, the low-resolutionmodels generated by FARNAmay

contain chainbreaks and unrealistic atomic-level geometries due to the

method of sampling rigid fragments of crystallographic RNA structures.

To achieve more realistic models of the RNAs, we use the rna_minimize

program in Rosetta to refine the lowest-energy 1/6 of the low-resolution

models (e.g., if 12,000 FARNA models were generated, minimize 2000

of them). This FARNA with Full-Atom Refinement (FARFAR) strategy

47Modeling Complex RNA Tertiary Folds with Rosetta

ARTICLE IN PRESS



optimizes the low-resolution models based on the Rosetta full-atom energy

function, which accounts for physical and chemical features such as van der

Waals forces, hydrogen bonding, desolvation penalties for polar groups, and

RNA backbone torsion angles (Das et al., 2010; Sripakdeevong et al., 2011).

To set up refinement of the FARNA models, we create a MINIMIZE file

similar to command line [22] in the Appendix. Running source MINIMIZE

(Appendix, command line [23]) calls the parallel_min_setup.py script to

generate the command lines for refinement in an output script specified

in MINIMIZE (by default, min_cmdline). Each line in min_cmdline is one

minimization command, and the number of lines in min_cmdline is the num-

ber of processors specified in MINIMIZE. As for FARNA runs, it is best to

test the minimization before submitting the jobs to the cluster; here, we

copy the first line from the min_cmdline file starting with rna_minimize

and run it locally (Appendix, command line [24]), waiting for the output

“protocols.rna.RNA_Minimizer: Minimizing. . .round¼ 1” before canceling

the run. After confirming that the run proceeds without errors, we create

submission files by running rosetta_submit.py on min_cmdline

(Appendix, command line [25]), then using source to submit the jobs.

For refinement runs, the jobs will automatically terminate after all of the

specified models are minimized, which usually takes a few hours with

100 processors on a cluster. The silent files for minimized models outputted

by rna_minimize are collected in individual folders in a folder called min_out,

similar to the output of rna_denovo. Again, we use easy_cat.py to collect all

of the minimized models into a single silent file with the tag given in MIN-

IMIZE (Appendix, command line [26]).

Refinement using FARFAR improves low-resolution models by

relaxing them into more realistic conformations. This generally results in

better RMSDs to input reference models, as seen by energy versus RMSD

plots (Fig. 4C), and more realistic models, which can be visualized using

PyMOL in the same way as earlier (Fig. 4D). More base pairs are correctly

formed, chainbreaks that were present in FARNA models are typically

fixed, and constraints from chemical mapping and MOHCA-seq tend to

be better satisfied in minimized models.

3.5. Clustering to generate final set of models
The set of refined FARFAR models often contains subsets of models that

adopt similar folds to within helical resolution, especially if modeling was

performed in the context of chemical mapping and MOHCA-seq data.
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To select a representative set of 3D models that is likely to reflect the native

fold of the RNA, we collect the largest and lowest-energy subsets of models

that fall within a certain RMSD threshold of each other as described later.

Such clustering suggests that the fold adopted by those models is both

energetically favorable and comparatively likely to be sampled (Shortle,

Simons, & Baker, 1998), and the RMSD threshold value (see later) provides

an estimate of modeling precision.

First, we use the script silent_file_sort_and_select.py to sort the

models in the silent file output by FARFAR and select the desired number

of lowest-energy models, normally equal to 0.5% of the total unrefined

(FARNA) models (Appendix, command line [27]). This script generates

a new silent file containing only the selected lowest-energy models, usually

50–75 if 10,000–15,000 models were built by FARNA. Then, we perform

clustering locally using the cluster application in Rosetta, which uses an

RMSD threshold input by the user to sort the models in the silent file into

groups that fall within the threshold (Appendix, command line [28]). Each

clustering run normally takes less than a minute. The output of running

cluster is a silent file containing the clustered models, as well as a screen

output that reports how many clusters were generated and how many

models were sorted into each cluster. Our standard practice is to choose

an RMSD threshold that results in 1/6 of the clustered models being sorted

into the largest cluster, by adjusting the input RMSD threshold over mul-

tiple clustering runs. Finally, we isolate the models in the top cluster, which

is referred to as cluster0 in the output of the cluster application (Appendix,

command line [29]). This can be done using a text editor by copying the

clustered silent file, selecting the lines of the silent file comprising the clus-

ter0 models (labeled in the silent file with c.0.*, where * is the number of

the model in the cluster), and deleting the remainder. Then, we use

extract_lowscore_decoys.py to collect these final models as PDB-formatted

files (Appendix, command line [30]).

The RMSD threshold used in clustering represents an estimate of the

“precision” of the final subset of FARFAR models. Because the precision

captures the variation between the models, it also sets a lower bound on

the accuracy of the modeling, although individual models within the cluster

may have RMSDs to crystallographic models that are lower. When both

chemical mapping and MOHCA-seq data are included in our pipeline,

we find that the top cluster typically reflects the native fold of the target

RNA, as compared to a previously or subsequently released crystal structure,

to 7–15 Å RMSD (Cheng et al., 2014) (Fig. 5).
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3.6. Advanced strategies: Building subpieces into existing
models

In some cases, it may be beneficial to improve predictions of RNA structures

by remodeling sections of the structure or adding additional regions to the

structure. As an example, the tandem glycine-binding riboswitch, which

binds two molecules of glycine using two sequentially arranged glycine

aptamers, is thought to act as a cooperative sensor of glycine. However,

recent studies showed that inclusion of a leader sequence abolishes cooper-

ativity of the riboswitch, at least for the isolated ligand-binding domain.

Sequence–structure alignment indicated that it likely forms a kink-turn

motif (Kladwang et al., 2012; Rahrig, Petrov, Leontis, & Zirbel, 2013;

Sarver, Zirbel, Stombaugh,Mokdad, & Leontis, 2008). The leader sequence

was not included in prior models or crystallographic structures of the RNA

(Butler et al., 2011), but modeling in Rosetta was able to automatically

model the structure formed by the leader sequence when incorporated into

the crystal structure (Kladwang et al., 2012) and gave support for a kink-turn

conformation. Here, we will discuss how to perform this type of addition

and remodeling in Rosetta.

In order to remodel a region of an RNA for which a piece is already

available, e.g., in a crystallographic template, it may first be necessary to

excise the desired piece from the template. This excision can be accom-

plished using the pdbslice.py command, which creates a new PDB file that

contains a user-specified subset of the residues in the input PDB file

(Appendix, command line [31]). In the example of the glycine riboswitch,

Figure 5 Clustering of minimized models to select representative models. Comparison
of models generated by the experimental/computational pipeline. The crystal structure
(PDB ID 3P49) is shown at left. At right, four representative models are overlaid for each
of the top three model clusters. The cluster center model of cluster0 has a 7.9 Å RMSD to
the crystal structure.
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the first nucleotide must be excised, as well as the residues comprising the

linker between the two aptamers of the ligand-binding domain, which base

pair with the leader sequence. The sliced model will be used as an input to

FARFAR modeling so that only the nucleotides that are not present in

the model will be sampled. Here, because a 50-leader sequence must also

be added to the RNA, we must also revise the FASTA and secondary struc-

ture files and renumber the input PDB, so that the sequence numbers and

identities are fully consistent. The revised FASTA and secondary structure

files are given as files [F4] and [F5] in the Appendix. To renumber the input

PDB, we use the renumber_pdb_in_place.py script, providing it with the

PDB to be renumbered and the desired final sequence position ranges

(Appendix, command line [32]). Then, we create a new README_SETUP file

that reads the revised FASTA and secondary structure files and includes a

flag to input the sliced and renumbered input model (Appendix, command

line [33]). Finally, we run the modeling as before. If only a small region of

the RNA is being remodeled, fewer processors or less computational time

may be necessary to reach convergence, so adjust these parameters

accordingly.

In cases where sequence analysis or other prediction algorithms suggest

the presence of an RNA motif or fold of known structure, one strategy to

save computational time is to use an instance of the known structure as a

template for modeling the sequence of interest—this method is called

“threading.” Threaded fragments of structures, such as kink-turn motifs

or loops, can in turn be used as input PDBs for global modeling or remo-

deling of RNAs and can help to focus sampling on regions of entirely

unknown structure. See command line [34] in the Appendix; further doc-

umentation is also available at RosettaCommons (https://www.

rosettacommons.org/docs/latest/rna-thread.html).

4. EVALUATION

The pipeline we have described in the preceding text achieves de novo

models of RNAs with subhelical (!10 Å) resolution, based on benchmark

and blind prediction studies. Independent validation or falsification of

models at this resolution can be challenging, because available chemical

mapping and MOHCA-seq constraints are usually included in the model-

ing. We recommend two strategies to test the final models. First, check
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whether tertiary features of the RNA can be reconstituted without some of

the available constraints; e.g., if mutate-and-map experiments identify

tertiary contacts in the RNA, then exclude MOHCA-seq proximity

constraints from the modeling and check for agreement of the final

models with MOHCA-seq data. Recovery of proximities indicated by

MOHCA-seq independent of modeling with those constraints lends sup-

port to those tertiary features. Second, one can perform mutational analysis

to verify new tertiary contacts suggested by the modeling by using

chemical mapping or MOHCA-seq experiments to assess the effects of

mutations predicted to disrupt those new contacts or mutations that

may rescue the structure through formation of compensatory base pairs

(Tian et al., 2014; Xue et al., 2014).

5. CONCLUSION

Three-dimensional modeling of RNAs has improved greatly in

recent years, aided by advances in both experimental methods and compu-

tational strategies for predicting secondary and tertiary structures. In

this chapter, we have described a general workflow for modeling RNA

3D folds using the Rosetta framework for macromolecular modeling,

guided by data from solution-state chemical mapping experiments. These

experiments, particularly the two-dimensional M2 and MOHCA-seq mea-

surements, provide constraints for modeling by defining an RNA’s second-

ary structure elements and identifying tertiary proximities within its

fold. This experimental/ computational pipeline has allowed us to recover

the tertiary folds of RNA-Puzzles challenges and continues to reveal ave-

nues for exploring biological questions through in vitro and in vivo

experiments.

The ultimate goal of prediction and design of RNA structures at consis-

tent atomic accuracy has not yet been achieved, but continuing develop-

ments in computational and hybrid methods hold promise for making

strides toward this goal. In particular, interfacing current methods for recov-

ering RNA folds at medium resolution with new strategies for modeling

small RNA motifs at near-atomic-accuracy; incorporating insights about

local RNA tertiary conformations fromNMR constraints or chemical map-

ping reagents into global modeling; and improving methods for classifying,

sampling, and constructing RNA motifs are likely to have strong impacts in

RNA structure modeling in the coming years.
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APPENDIX. EXAMPLE COMMAND LINES AND FILES
FOR RNA MODELING IN ROSETTA

Command lines, input files, and example output files can be found in

the Rosetta/demos/public/mohca_seq folder, which is included in the

released Rosetta software package.

Documentation for setting up Rosetta and RNA tools:

https://www.rosettacommons.org/docs/latest/Build-Documentation.

html

https://www.rosettacommons.org/docs/latest/RNA-tools.html

[F1] Example FASTA file:

>3P49_RNA.pdb

ggauaugaggagagauuucauuuuaaugaaacaccgaagaaguaaaucuuucagguaa

aaaggacucauauuggacgaaccucuggagagcuuaucuaagagauaacaccgaagga

gcaaagcuaauuuuagccuaaacucucagguaaaaggacggag

The RNA sequence must be lowercase.

[F2] Example secondary structure file:

.((((((((......((((((....)))))).(((. . .((((.....))))..)))

........))))))))........(((((......((((((. . .)))))).(((. . .

((((....((((....)))).....))))..))).......)))))

[1] Generate command lines for helix preassembly:

helix_preassemble_setup.py –secstruct [secondary struc-

ture file] –fasta [FASTA file]

[2] Example command line for helix preassembly:

rna_denovo -nstruct 100-params_filehelix0.params -fasta

helix0.fasta -out:file:silent helix0.out -include_

neighbor_base_stacks-minimize_rnatrue-rna::corrected_geo

-score:rna_torsion_potential RNA11_based_new -chemical::

enlarge_H_lj -score:weights stepwise/rna/rna_helix -cycles

1000 -output_res_num 2-9 65-72
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[3] Run command lines for helix preassembly (local):

source CMDLINES

[4] Prepare native/reference structure for Rosetta, if available:

make_rna_rosetta_ready.py 3P49.pdb

Outputs reformatted native model as “3p49_RNA.pdb,” to

be input to README_SETUP. In the glycine riboswitch

example presented here, the 3P49 crystal structure includes a

protein-binding loop that is not part of the construct used for

de novo modeling. Command lines [5] through [14] show

how to replace the extraneous residues with a tetraloop

matching the experimentally probed construct using a short

FARFAR modeling run.

[5] Cut out a segment of a model:

pdbslice.py[3p49_RNA.pdb]-subset[1-2136-169][slice_]

The first input is the model from which you want to excise

regions of interest. The second input is the range of nucleotides

that you want to keep in your model. The third input is the pre-

fix that will be added to the beginning of the input model’s

filename. Here, the protein-binding loop is excised by specify-

ing the range of residues given in the command line.

[6] Renumber a PDB:

renumber_pdb_in_place.py [slice_3p49_RNA.pdb] [1-21

26-159]

The first input is the PDB file to be renumbered and the sec-

ond input is the desired final ranges of sequence positions. Gaps

may be intentionally left in the final sequence range to allow for

remodeling in the middle of the RNA. Here, a UUUA tetraloop

will be built in place of the excised protein-binding loop.

[7] Example README_SETUP for de novo remodeling with a

sliced input PDB:

rna_denovo_setup.py -fasta fasta -secstruct_file sec-

struct \

-tag native \

-working_res 1-159 \

-s slice_3p49_RNA.pdb \

-cycles 20000 \

-ignore_zero_occupancy false \
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Options:

-fasta [fasta] Input FASTA file

-secstruct_file [secstruct] Input secondary structure file

-tag Name for output files

-working_res Specify range of residues to model

-s slice_3p49_RNA.pdb See below

-ignore_zero_occupancy false

The “-s” flag allows users to input a list of PDB files to use

in the modeling; the residues that are part of the input PDB

files will not be moved relative to each other, though if

multiple PDB files are input, the orientations of the residues

in the separate files may change. In this example, the full-atom

refinement algorithm will be applied in the same run as frag-

ment assembly.

[8] Generate command line for FARFAR modeling:

source README_SETUP

[9] Example README_FARFAR:

rna_denovo -nstruct 500-params_filenative.params -fasta

native.fasta-out:file:silentnative.out-include_neighbor_

base_stacks-minimize_rnatrue-sslice_3p49_RNA.pdb-input_res

1-21 26-159 -cycles 20000 -ignore_zero_occupancy false -output_

res_num 1-159

[10] Test command line for FARFAR modeling:

source README_FARFAR

This command runs a single local job on your computer.

Wait until sampling begins successfully (command line output

similar to “Picked Fragment Library for sequence u and sec.

struct H . . . found 2308 potential fragments”), then cancel the

run and submit the job to the cluster.

[11] Submit jobs to the cluster:

rosetta_submit.py README_FARFAR out [16] [1]

The first number states how many processors to use for the

run, while the second number states the maximum time each
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job will be allowed to run (walltime, in hours). Note that certain

supercomputers only allow requests specific multiples of proces-

sors (e.g., the Stampede cluster requires a multiple of 16). Start

the run with the appropriate command listed by the output

above (e.g., source qsubMPI for the Stampede cluster).

[12] Concatenate all models from the out folder:

easy_cat.py out

Also outputs the number of models in the final silent file to

the screen.

[13] Extract lowest-energy models to .pdb files for viewing in

PyMOL:

extract_lowscore_decoys.py native.out [1]

Input the number of lowest-scoring models to extract from

the silent file. Here, extract the single lowest-scoring model to

use as the nativemodel input for comparison to the de novomodels.

[14] Rename lowest-score model for use as reference model:

mv native.out.1.pdb 3p49_native_RNA.pdb

[F3] Example pseudoenergy constraint file:

[atompairs]

O20 2 C40 38 FADE 0 30 15 !4.00 4.00

O20 2 C40 38 FADE !99 60 30 !36.00 36.00

O20 1 C40 44 FADE 0 30 15 !4.00 4.00

O20 1 C40 44 FADE !99 60 30 !36.00 36.00

O20 5 C40 60 FADE 0 30 15 !4.00 4.00

O20 5 C40 60 FADE !99 60 30 !36.00 36.00

O20 2 C40 64 FADE 0 30 15 !4.00 4.00

O20 2 C40 64 FADE !99 60 30 !36.00 36.00

O20 25 C40 54 FADE 0 30 15 !4.00 4.00

O20 25 C40 54 FADE !99 60 30 !36.00 36.00

O20 45 C40 64 FADE 0 30 15 !4.00 4.00

O20 45 C40 64 FADE !99 60 30 !36.00 36.00

O20 45 C40 75 FADE 0 30 15 !4.00 4.00

O20 45 C40 75 FADE !99 60 30 !36.00 36.00

O20 32 C40 88 FADE 0 30 15 !4.00 4.00

O20 32 C40 88 FADE -99 60 30 !36.00 36.00

O20 42 C40 84 FADE 0 30 15 !4.00 4.00

O20 42 C40 84 FADE !99 60 30 !36.00 36.00
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O20 48 C40 84 FADE 0 30 15 !4.00 4.00

O20 48 C40 84 FADE !99 60 30 !36.00 36.00

O20 55 C40 88 FADE 0 30 15 !4.00 4.00

O20 55 C40 88 FADE !99 60 30 !36.00 36.00

O20 55 C40 108 FADE 0 30 15 !4.00 4.00

O20 55 C40 108 FADE !99 60 30 !36.00 36.00

O20 58 C40 118 FADE 0 30 15 !4.00 4.00

O20 58 C40 118 FADE !99 60 30 !36.00 36.00

O20 67 C40 119 FADE 0 30 15 !4.00 4.00

O20 67 C40 119 FADE !99 60 30 !36.00 36.00

O20 67 C40 121 FADE 0 30 15 !4.00 4.00

O20 67 C40 121 FADE !99 60 30 !36.00 36.00

O20 78 C40 113 FADE 0 30 15 !4.00 4.00

O20 78 C40 113 FADE !99 60 30 !36.00 36.00

O20 78 C40 135 FADE 0 30 15 !4.00 4.00

O20 78 C40 135 FADE !99 60 30 !36.00 36.00

O20 42 C40 157 FADE 0 30 15 !4.00 4.00

O20 42 C40 157 FADE !99 60 30 !36.00 36.00

O20 74 C40 156 FADE 0 30 15 !4.00 4.00

O20 74 C40 156 FADE !99 60 30 !36.00 36.00

O20 100 C40 148 FADE 0 30 15 !4.00 4.00

O20 100 C40 148 FADE !99 60 30 !36.00 36.00

O20 100 C40 145 FADE 0 30 15 !4.00 4.00

O20 100 C40 145 FADE !99 60 30 !36.00 36.00

O20 113 C40 153 FADE 0 30 15 !4.00 4.00

O20 113 C40 153 FADE !99 60 30 !36.00 36.00

O20 135 C40 154 FADE 0 30 15 !4.00 4.00

O20 135 C40 154 FADE !99 60 30 !36.00 36.00

O20 5 C40 119 FADE 0 30 15 !4.00 4.00

O20 5 C40 119 FADE !99 60 30 !36.00 36.00

O20 25 C40 88 FADE 0 30 15 !0.80 0.80

O20 25 C40 88 FADE !99 60 30 !7.20 7.20

O20 37 C40 62 FADE 0 30 15 !0.80 0.80

O20 37 C40 62 FADE !99 60 30 !7.20 7.20

O20 79 C40 103 FADE 0 30 15 !0.80 0.80

O20 79 C40 103 FADE !99 60 30 !7.20 7.20

O20 15 C40 88 FADE 0 30 15 !0.80 0.80

O20 15 C40 88 FADE !99 60 30 !7.20 7.20

O20 32 C40 108 FADE 0 30 15 !0.80 0.80
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O20 32 C40 108 FADE !99 60 30 !7.20 7.20

O20 9 C40 138 FADE 0 30 15 !0.80 0.80

O20 9 C40 138 FADE !99 60 30 !7.20 7.20

O20 25 C40 118 FADE 0 30 15 !0.80 0.80

O20 25 C40 118 FADE !99 60 30 !7.20 7.20

[15] Example README_SETUP:

rna_denovo_setup.py -fasta fasta -secstruct_file sec-

struct \

-fixed_stems \

-no_minimize \

-tag glycine_riboswitch \

-working_res 1-159 \

-native 3p49_native_RNA.pdb \

-cst_file constraints \

-staged_constraints \

-cycles 20000 \

-ignore_zero_occupancy false \

-silent helix0.out helix1.out helix2.out helix3.out

helix4.out helix5.out helix6.out helix7.out \

-input_silent_res 2-9 65-72 16-21 26-31 33-35 54-56

39-42 48-51 81-85 155-159 92-97 101-106 108-110 145-147

114-117 139-142 \

Options:

-fasta [fasta] Input FASTA file

-secstruct_file [secstruct] Input secondary structure file

-fixed_stems Specify whether helices should be fixed

-no_minimize Specify not to perform full-atom refinement;
minimization will be performed in the next stage of
modeling

-tag Name for output files

-working_res Specify range of residues to model

-native [native.pdb] Input reference or native model; used for
benchmarking cases and will return rms
calculations for all models (see command line [5])

-cst_file [constraints] Input file with pseudoenergy constraints

-staged_constraints Apply constraints
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-ignore_zero_occupancy false

-silent [helix0.out helix1.out
. . .]

Input silent files with preassembled helices

-input_silent_res [2–9 65–72
16–21 26–31 . . .]

Specify position ranges of helices in silent files

[16] Generate command line for FARFAR modeling:

source README_SETUP

[17] Example README_FARFAR:

rna_denovo-nstruct500-params_fileglycine_riboswitch.

params-fastaglycine_riboswitch.fasta-out:file:silent

glycine_riboswitch.out -include_neighbor_base_stacks

-minimize_rna false -native glycine_riboswitch_3p49_

native_RNA.pdb -in:file:silent helix0.out helix1.out

helix2.out helix3.out helix4.out helix5.out helix6.out

helix7.out -input_res 2-9 65-72 16-21 26-31 33-35 54-56

39-42 48-51 81-85 155-159 92-97 101-106 108-110 145-147

114-117 139-142 -cst_file glycine_riboswitch_

constraints-staged_constraints -cycles 20000 -ignore_

zero_occupancy false -output_res_num 1-159

[18] Test command line for FARFAR modeling:

source README_FARFAR

[19] Submit jobs to the cluster:

rosetta_submit.py README_FARFAR out [96] [16]

[20] Concatenate all models from the out folder:

easy_cat.py out

[21] Extract lowest-energy models to .pdb files for viewing in

PyMOL:

extract_lowscore_decoys.py glycine_riboswitch.out

[15]

[22] Example MINIMIZE:

parallel_min_setup.py -silent glycine_riboswitch.out

-tag glycine_riboswitch_min -proc [96] -nstruct [2000] -

out_folder min_out -out_script min_cmdline "-native

glycine_riboswitch_3p49_native_RNA.pdb -cst_fa_file
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glycine_riboswitch_constraints -params_file glycine_

riboswitch.params-ignore_zero_occupancy false -skip_

coord_constraints"

The first number states how many processors to use for the

run, while the second number is 1/6 the total number of

previously generated FARNA models. If you are running

on a supercomputer that only allows specific multiples of

processors, use an appropriate number for the first input.

[23] Generate command lines for full-atom refinement:

source MINIMIZE

[24] Example command line from min_cmdline to run as test:

rna_minimize -native glycine_riboswitch_3p49_native_RNA.pdb

-cst_fa_fileglycine_riboswitch_constraint-params_fileglycine_

riboswitch.params -ignore_zero_occupancy false -skip_coord_

constraints -in:file:silentmin_out/0/0.silent -out:file:silent

min_out/0/glycine_riboswitch_min.out

[25] Submit jobs to the cluster:

rosetta_submit.py min_cmdline min_out [1] [16]

The first number states how many processors to use for

each line in min_cmdline. Here, enter 1 for the first input

so that the total number of processors used will be equal to

the number of processors entered with the “-proc” flag in

command line [12], above. The second number states the

maximum time each job will be allowed to run (walltime).

Start the run with the appropriate command listed by the out-

put above (e.g., source qsubMPI for the Stampede cluster).

[26] Concatenate all models from the min_out folder:

easy_cat.py min_out

[27] Sortmodels byRosetta energy and select a subset for clustering:

silent_file_sort_and_select.py [glycine_riboswitch_

min.out]-select [1-60]-o [glycine_riboswitch_min_sort.

out]

The range of models under the -select tag includes 0.5%

of the total number of FARNA models generated previously.

Outputs a new silent file containing selected number of

lowest-energy models.
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[28] Cluster models:

cluster -in:file:silent glycine_riboswitch_min_sort.

out -in:file:fullatom -out:file:silent_struct_type

binary -export_only_low false -out:file:silent clus-

ter.out -cluster:radius [radius]

Select a radius so that 1/6 of the models in the input sorted

silent file are in the largest cluster (cluster0) of models.

[29] Copy clustered .out file to a new file to isolate cluster0:

cp cluster.out cluster0.out

[30] Extract lowest-energy models to .pdb files for viewing in

PyMOL:

extract_lowscore_decoys.py cluster0.out [15]–no_

replace_names

Input the number of models in cluster0. The -no_replace_

names tag preserves the filenames of the cluster members to

reflect their order in the cluster, rather than renaming them

in order of Rosetta energy score.

[31] Cut out a segment of a model:

pdbslice.py [3p49_native_RNA.pdb] -subset [2-72

81-159] [slice_kinkturn_]

Here, the 3P49 crystal structure includes an additional G at

position 0, which must be excised to allow the leader sequence

to be added to the 50-end, and the internal linker that forms the

kink-turn motif with the leader sequence is also excised to

allow remodeling.

[32] Renumber a PDB:

renumber_pdb_in_place.py [slice_kinkturn_3P49_native_

RNA.pdb] [10-80 89-167]

Here, the PDB is renumbered to allow the leader sequence

to be added at the 50-end.

[F4] Example revised FASTA file:

>3P49_RNA_kinkturn.pdb

ucggaugaagauaugaggagagauuucauuuuaaugaaacaccgaagaaguaaaucuu

ucagguaaaaaggacucauauuggacgaaccucuggagagcuuaucuaagagauaaca

ccgaaggagcaaagcuaauuuuagccuaaacucucagguaaaaggacggag
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[F5] Example revised secondary structure file:

(((......((((((((......((((((....)))))).(((. . .((((.....))

))..)))........)))))))). . .)))..(((((......((((((. . .)))))).

(((. . .((((....((((....)))).....))))..))).......)))))

[33] Example README_SETUP for de novo remodeling with a

sliced input PDB:

rna_denovo_setup.py -fasta fasta2 -secstruct_file sec-

struct2 \

-fixed_stems \

-tag glycine_rbsw_kinkturn \

-working_res 1-167 \

-s slice_kinkturn_3P49_native_RNA.pdb \

-cycles 20000 \

-ignore_zero_occupancy false \

[34] Thread an RNA sequence into a template structure:

rna_thread –in:file:fasta [fasta] -in:file:s [template

PDB] –o [output PDB]

The first input is a FASTA file containing two RNA

sequences: (1) the sequence of interest, onto which the structure

of the template sequence will be threaded and (2) the template

sequence. The template sequence should be truncated to the

regions into which the sequence of interest will be threaded;

use hyphens (“-”) to align the template sequence with the

target sequence in the FASTA file. The second input, the

template structure in PDB format, should be similarly trun-

cated, using pdbslice.py if necessary. If the template PDB is

not correctly formatted for Rosetta modeling, use make_rna_

rosetta_ready.py to reformat it. The last input is the name

of the output PDB.

Further documentation for RNA threading in Rosetta

can be found at the RosettaCommons (https://www.

rosettacommons.org/docs/latest/rna-thread.html).

REFERENCES
Butler, E. B., Xiong, Y., Wang, J., & Strobel, S. A. (2011). Structural basis of cooperative

ligand binding by the glycine riboswitch.Chemistry & Biology, 18(3), 293–298. http://dx.
doi.org/10.1016/j.chembiol.2011.01.013.

Cheng, C., Chou, F.-C., Kladwang,W., Tian, S., Cordero, P., &Das, R. (2014). MOHCA-
seq: RNA 3Dmodels from single multiplexed proximity-mapping experiments. bioRxiv.
http://dx.doi.org/10.1101/004556.

62 Clarence Yu Cheng et al.

ARTICLE IN PRESS



Chou, F. C., Lipfert, J., & Das, R. (2014). Blind predictions of DNA and RNA tweezers
experiments with force and torque. PLoS Computational Biology, 10(8), e1003756.
http://dx.doi.org/10.1371/journal.pcbi.1003756.

Chou, F. C., Sripakdeevong, P., Dibrov, S. M., Hermann, T., & Das, R. (2013). Correcting
pervasive errors in RNA crystallography through enumerative structure prediction.
Nature Methods, 10(1), 74–76. http://dx.doi.org/10.1038/nmeth.2262.

Cordero, P., Kladwang, W., VanLang, C. C., & Das, R. (2012). Quantitative dimethyl sul-
fate mapping for automated RNA secondary structure inference. Biochemistry, 51(36),
7037–7039. http://dx.doi.org/10.1021/bi3008802.

Cordero, P., Kladwang, W., VanLang, C. C., & Das, R. (2014). The mutate-and-map pro-
tocol for inferring base pairs in structured RNA. Methods in Molecular Biology, 1086,
53–77. http://dx.doi.org/10.1007/978-1-62703-667-2_4.

Cordero, P., Lucks, J. B., & Das, R. (2012). An RNA mapping database for curating RNA
structure mapping experiments. Bioinformatics, 28(22), 3006–3008. http://dx.doi.org/
10.1093/bioinformatics/bts554.

Cruz, J. A., Blanchet, M. F., Boniecki, M., Bujnicki, J. M., Chen, S. J., Cao, S., et al. (2012).
RNA-Puzzles: A CASP-like evaluation of RNA three-dimensional structure prediction.
RNA, 18(4), 610–625. http://dx.doi.org/10.1261/rna.031054.111.

Das, R., & Baker, D. (2007). Automated de novo prediction of native-like RNA tertiary
structures. Proceedings of the National Academy of Sciences of the United States of America,
104(37), 14664–14669. http://dx.doi.org/10.1073/pnas.0703836104.

Das, R., Karanicolas, J., & Baker, D. (2010). Atomic accuracy in predicting and designing
noncanonical RNA structure. Nature Methods, 7(4), 291–294. http://dx.doi.org/
10.1038/nmeth.1433.

Das, R., Kudaravalli, M., Jonikas, M., Laederach, A., Fong, R., Schwans, J. P., et al. (2008).
Structural inference of native and partially folded RNA by high-throughput contact
mapping. Proceedings of the National Academy of Sciences of the United States of America,
105(11), 4144–4149. http://dx.doi.org/10.1073/pnas.0709032105.

Ditzler, M. A., Otyepka, M., Sponer, J., & Walter, N. G. (2010). Molecular dynamics
and quantum mechanics of RNA: Conformational and chemical change we can believe
in. Accounts of Chemical Research, 43(1), 40–47. http://dx.doi.org/10.1021/ar900093g.

Erion, T. V., & Strobel, S. A. (2011). Identification of a tertiary interaction important for
cooperative ligand binding by the glycine riboswitch. RNA, 17(1), 74–84. http://dx.
doi.org/10.1261/rna.2271511.

Hajdin, C. E., Bellaousov, S., Huggins, W., Leonard, C. W., Mathews, D. H., &
Weeks, K. M. (2013). Accurate SHAPE-directed RNA secondary structure
modeling, including pseudoknots. Proceedings of the National Academy of Sciences of the
United States of America, 110(14), 5498–5503. http://dx.doi.org/10.1073/pnas.
1219988110.

Kim, H., Cordero, P., Das, R., & Yoon, S. (2013). HiTRACE-Web: An online tool for
robust analysis of high-throughput capillary electrophoresis. Nucleic Acids Research,
41(Web Server issue), W492–W498. http://dx.doi.org/10.1093/nar/gkt501.

Kladwang, W., Chou, F. C., & Das, R. (2012). Automated RNA structure prediction
uncovers a kink-turn linker in double glycine riboswitches. Journal of the American Chem-
ical Society, 134(3), 1404–1407. http://dx.doi.org/10.1021/ja2093508.

Kladwang, W., Mann, T. H., Becka, A., Tian, S., Kim, H., Yoon, S., et al. (2014). Standard-
ization of RNA chemical mapping experiments. Biochemistry, 53(19), 3063–3065. http://
dx.doi.org/10.1021/bi5003426.

Kladwang, W., VanLang, C. C., Cordero, P., & Das, R. (2011). A two-dimensional mutate-
and-map strategy for non-coding RNA structure. Nature Chemistry, 3(12), 954–962.
http://dx.doi.org/10.1038/nchem.1176.

Leaver-Fay, A., Tyka, M., Lewis, S. M., Lange, O. F., Thompson, J., Jacak, R., et al. (2011).
ROSETTA3: An object-oriented software suite for the simulation and design of

63Modeling Complex RNA Tertiary Folds with Rosetta

ARTICLE IN PRESS



macromolecules. Methods in Enzymology, 487, 545–574. http://dx.doi.org/10.1016/
B978-0-12-381270-4.00019-6.

Lee, J., Kladwang, W., Lee, M., Cantu, D., Azizyan, M., Kim, H., et al. (2014). RNA design
rules from a massive open laboratory. Proceedings of the National Academy of Sciences
of the United States of America, 111(6), 2122–2127. http://dx.doi.org/10.1073/
pnas.1313039111.

Lyskov, S., Chou, F. C., Conchuir, S. O., Der, B. S., Drew, K., Kuroda, D., et al. (2013).
Serverification of molecular modeling applications: The Rosetta online server
that includes everyone (ROSIE). PLoS One, 8(5), e63906. http://dx.doi.org/
10.1371/journal.pone.0063906.

Petrov, A. I., Zirbel, C. L., & Leontis, N. B. (2013). Automated classification of RNA 3D
motifs and the RNA 3D Motif Atlas. RNA, 19(10), 1327–1340. http://dx.doi.org/
10.1261/rna.039438.113.

Rahrig, R. R., Petrov, A. I., Leontis, N. B., & Zirbel, C. L. (2013). R3D align web server for
global nucleotide to nucleotide alignments of RNA 3D structures.Nucleic Acids Research,
41(Web Server issue), W15–W21. http://dx.doi.org/10.1093/nar/gkt417.

Reuter, J. S., &Mathews, D. H. (2010). RNAstructure: Software for RNA secondary struc-
ture prediction and analysis. BMC Bioinformatics, 11, 129. http://dx.doi.org/
10.1186/1471-2105-11-129.

Sarver,M.,Zirbel,C. L., Stombaugh, J.,Mokdad,A.,&Leontis,N.B. (2008). FR3D:Finding
local and composite recurrent structuralmotifs inRNA3D structures. Journal ofMathemat-
ical Biology, 56(1–2), 215–252. http://dx.doi.org/10.1007/s00285-007-0110-x.

Schrodinger, LLC (2010). The PyMOL Molecular Graphics System, version 1.3r1.
Seetin,M. G., Kladwang,W., Bida, J. P., &Das, R. (2014).Massively parallel RNA chemical

mapping with a reduced bias MAP-seq protocol. Methods in Molecular Biology, 1086,
95–117. http://dx.doi.org/10.1007/978-1-62703-667-2_6.

Shortle, D., Simons, K. T., & Baker, D. (1998). Clustering of low-energy conformations near
the native structures of small proteins. Proceedings of the National Academy of Sciences of the
United States of America, 95(19), 11158–11162.

Sripakdeevong, P., Beauchamp, K., & Das, R. (2012). Why can’t we predict RNA structure
at atomic resolution? In N. B. Leontis & E.Westhof (Eds.),RNA 3D structure analysis and
prediction.Heidelberg, New York: Springer, 400 p.

Sripakdeevong, P., Cevec, M., Chang, A. T., Erat, M. C., Ziegeler, M., Zhao, Q., et al.
(2014). Structure determination of noncanonical RNA motifs guided by (1)H NMR
chemical shifts. Nature Methods, 11(4), 413–416. http://dx.doi.org/10.1038/
nmeth.2876.

Sripakdeevong, P., Kladwang,W., &Das, R. (2011). An enumerative stepwise ansatz enables
atomic-accuracy RNA loop modeling. Proceedings of the National Academy of Sciences
of the United States of America, 108(51), 20573–20578. http://dx.doi.org/10.1073/
pnas.1106516108.

Tian, S., Cordero, P., Kladwang, W., & Das, R. (2014). High-throughput mutate-map-
rescue evaluates SHAPE-directed RNA structure and uncovers excited states. RNA,
20(11), 1815–1826. http://dx.doi.org/10.1261/rna.044321.114.

Tinoco, I., Jr., Borer, P. N., Dengler, B., Levin, M. D., Uhlenbeck, O. C., Crothers, D. M.,
et al. (1973). Improved estimation of secondary structure in ribonucleic acids. Nature:
New Biology, 246(150), 40–41.

Xue, S., Tian, S., Fujii, K., Kladwang, W., Das, R., & Barna, M. (2014). RNA regulons in
Hox 5’ UTRs confer ribosome specificity to gene regulation.Nature. http://dx.doi.org/
10.1038/nature14010.

Yoon, S., Kim, J., Hum, J., Kim, H., Park, S., Kladwang, W., et al. (2011). HiTRACE:
High-throughput robust analysis for capillary electrophoresis. Bioinformatics, 27(13),
1798–1805. http://dx.doi.org/10.1093/bioinformatics/btr277.

64 Clarence Yu Cheng et al.

ARTICLE IN PRESS


