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Abstract

Motivation: Capillary electrophoresis (CE) is a powerful approach for structural analysis of nucleic

acids, with recent high-throughput variants enabling three-dimensional RNA modeling and the dis-

covery of new rules for RNA structure design. Among the steps composing CE analysis, the pro-

cess of finding each band in an electrophoretic trace and mapping it to a position in the nucleic

acid sequence has required significant manual inspection and remains the most time-consuming

and error-prone step. The few available tools seeking to automate this band annotation have

achieved limited accuracy and have not taken advantage of information across dozens of profiles

routinely acquired in high-throughput measurements.

Results: We present a dynamic-programming-based approach to automate band annotation for

high-throughput capillary electrophoresis. The approach is uniquely able to define and optimize a

robust target function that takes into account multiple CE profiles (sequencing ladders, different

chemical probes, different mutants) collected for the RNA. Over a large benchmark of multi-profile

datasets for biological RNAs and designed RNAs from the EteRNA project, the method outper-

forms prior tools (QuSHAPE and FAST) significantly in terms of accuracy compared with gold-

standard manual annotations. The amount of computation required is reasonable at a few seconds

per dataset. We also introduce an ‘E-score’ metric to automatically assess the reliability of the band

annotation and show it to be practically useful in flagging uncertainties in band annotation for fur-

ther inspection.

Availability and implementation: The implementation of the proposed algorithm is included in the

HiTRACE software, freely available as an online server and for download at http://hitrace.stanford.edu.

Contact: sryoon@snu.ac.kr or rhiju@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

RNA molecules play diverse roles in encoding and regulating genetic

information, and much of this versatility can be traced to the forma-

tion of intricate RNA structures. To this end, chemical probing

methodologies provide a general and rapid means to mapping RNA

secondary and tertiary structure at single-nucleotide resolution

(Weeks, 2010).

There exist many chemical probing techniques, most of which

have common experimental procedures, as follows. Given an RNA

of interest folded in solution, a chemical reagent modifies the RNA,

either cleaving it or forming a covalent adduct with it at a rate corre-

lated with the accessibility of particular moieties at each nucleotide

or the frequency at which each nucleotide fluctuates into a conform-

ation activated for chemical reaction. Examples of such chemical

reagents, all with distinct mechanisms, include hydroxyl radicals,

20-OH acylating chemicals (SHAPE), dimethyl sulfate (DMS) and 1-

cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluenesul-

fonate (CMCT) (Weeks, 2010). Subsequent reverse transcription de-

tects the modification sites as stops to primer extension at

nucleotide resolution. The resulting complementary DNA fragments

are resolved in sequencing gels followed by individually quantifying

band intensities. Prior to the mid-2000 s, the bottlenecks were the

final steps (gel running and band quantification).

To resolve fragments in a more high-throughput fashion, capil-

lary electrophoresis (CE) was developed and is reaching wide use

(Mitra et al., 2008). CE-based chemical probing can produce hun-

dreds of electrophoretic profiles exhibiting tens of thousands of indi-

vidual electrophoretic bands from a single experiment, leading to

recent developments in two-dimensional mapping of complex RNA

structures (Kladwang et al., 2011) and their excited states (Tian et

al., 2014) and extension to large complexes such as entire viruses

(Watts et al., 2009) and to RNA design problems (Lee et al., 2014).

Further developments in next-generation sequencing readouts are

promising but still show biases compared with CE measurements

(Kladwang et al., 2014; Lucks et al., 2011).

Analyzing a large number of electrophoretic traces from a high-

throughput structure-mapping experiment is time consuming and

poses a significant informatic challenge, requiring a set of robust sig-

nal-processing algorithms for accurate quantification of the bands

embedded in these traces. Software methods for CE analysis include

capillary automated footprinting analysis (CAFA; Mitra et al.,

2008), ShapeFinder (Vasa et al., 2008), high-throughput robust ana-

lysis for CE (HiTRACE; Yoon et al., 2011), fast analysis of SHAPE

traces (FAST; Pang et al., 2011) and QuShape (Karabiber et al.,

2013).

A typical high-throughput CE analysis pipeline consists of the

following steps (Karabiber et al., 2013; Kladwang et al., 2014;

Yoon et al., 2011): preprocessing such as normalization and baseline

adjustment, alignment, peak detection, band annotation and peak

fitting. Among these, band annotation refers to the process of

mapping each band in an electrophoretic trace to a position in the

nucleic acid sequence. For verification, visual inspection in this

phase is inevitable to some extent. However, in practice, this band

annotation step often takes significant manual efforts in CAFA and

SHAPEfinder, for they were designed to focus more on alignment and

peak fitting. HiTRACE, QuShape and FAST have provided improved

levels of band annotation support, but band annotation remains still

the most time-consuming and error-prone step for large datasets.

This article describes a dynamic-programming based approach

to automated band annotation for large CE datasets. These datasets

involve at least four and up to hundreds of multiple traces that are

aligned for each RNA, based on sequencing ladders for the four dif-

ferent nucleotide types, different chemical modifiers, and/or chem-

ical modification under different solution conditions or with

different mutations. The central innovations herein are (i) an accur-

ate and well-tested procedure to integrate information across these

multiple traces into a single consensus band annotation with accur-

acy approaching that of manual annotation and (ii) a reliability esti-

mator for this procedure. Figure 1 shows the overview of the

proposed methodology.

2 Methods

2.1 Problem definition
Given an RNA sequence s probed at N nucleotides, assume that we

carry out the chemical structure probing of this sequence using M dif-

ferent treatments, each of which is run in a separate capillary lane.

Assume that the fluorescence intensity of each capillary is measured

over K time points. We define a profile (also called a trace) as the se-

quence of intensity values from a capillary. For any particular profile,

the reactivity of each nucleotide to the chemical reagent is repre-

sented at a specific location in the series of intensity values, and N

such locations are sequentially spread throughout the entire profile.

All profiles are assumed to be well aligned using the procedure

described in Yoon et al. (2011), such that each nucleotide corres-

ponds to the same location across all profiles. The entire CE measure-

ment can then be arranged in a K�M matrix D. Normally, N�K,

i.e. each electrophoretic profile is finely sampled in time. On the basis

of the characteristic of the chemical agent used in each treatment and

the secondary structure computationally inferred from the input se-

quence, we can predict the fluorescence intensity at each position of s

for each of M treatments. This prediction can be arranged in an

N�M matrix P called the prediction matrix (see below).

The problem of band annotation is therefore formulated as se-

lecting N out of the K rows of D using the information in P in such a

way that a certain objective is optimized over all possible K
N

� �
possibilities. The selected N points map to the locations of the

nucleotides of the sequence s in the CE measurement (see

Supplementary Fig. S1).

Fig. 1. Overview of the proposed dynamic-programming-based band annota-

tion methodology. Given an RNA sequence, we carry out high-throughput

structure-mapping experiments, producing a number of CE traces. If available

or estimated through computational prediction, we also provide the RNA’s

secondary structure. From this information and the characteristics of the

chemical probing method used, we derive a prediction matrix that stores ex-

pected interaction patterns across the residues and traces. On the basis of the

aligned CE traces and prediction matrix, we apply a dynamic-programming

approach that finds the optimal selection of the band locations under a well-

defined scoring scheme
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The input of the proposed method consists of the following:

• D 2 RK�M: the fluorescence intensity matrix
• P 2 f0; 1gN�M: the prediction matrix
• s 2 fA; C; G; UgN: the nucleotide sequence

and the output is an array y 2 ZN
þ representing N band locations se-

lected out of K.

2.2 Prediction matrix construction
Figure 2a defines the expected reactivity of each type of nucleotide

to chemical reagents used for chemical probing under the (un)paired

condition. The value of 1 means that the nucleotide is reactive to the

reagent, whereas 0 indicates no reactivity. For instance, the DMS

chemical modifies A and C but not U and G, and the entries for A and

C are one, while those for U and G are zero. We allow the use of nu-

merous chemical probing strategies: DMS alkylation, CMCT and

‘others’ that can produce bands at all locations, including 20-OH

acylation (the SHAPE strategy) (Kladwang et al., 2014). We also

allow input of a secondary structure in dot-parentheses notation.

Nucleotides forming base pairs are not expected to show bands in

DMS, CMCT, SHAPE and other structure mapping profiles.

Sequencing experiments that terminate reverse transcription of the

RNA with ddNTP incorporation produce bands after nucleotides

complementary to the terminating nucleotide. On the basis of this

information, we construct the prediction matrix P that stores the ex-

pected chemical reactivity for individual residues. The element pij

2 P indicates such reactivity information of residue i to reagent j.

Figure 2b shows an example RNA sequence with its secondary

structure. Figure 2c shows the corresponding prediction matrix P.

2.3 Initialization of candidate peaks from profiles
The first step is to locate prominent peaks on each profile (each col-

umn of D). Peaks in CE profiles are the locations where significant

reactivities are observed, implying that bands are more likely to exist

at the same position. Thus, these peaks are matched with bands

afterward. (Here and below, ‘peak’ refers to a local maximum in

each profile, of which there may be many; whereas ‘bands’ refers to

the desired N band locations.) Let dj be the jth column vector of

D;1� j�M. Briefly, the following procedure is executed.

1. Select candidates for the peaks in dj that can be mapped into

elements of the sequence s. These peaks are selected to satisfy

the following conditions. First, a peak djðkÞ must have a higher

intensity (a fundamental property of a peak) than those of its

neighbors, djðk� 1Þ and djðkþ 1Þ. Second, a peak must be with

a significant curvature which can be measured by the second de-

rivative of time series; since the time series given are discrete, the

curvature is estimated as below:

C ¼ D� � Dþ (1)

where

D� ¼ maxðdjðkÞ � djðk� 1Þ; ðdjðkÞ � djðk� 2ÞÞ
2

Þ

Dþ ¼ minðdjðkþ 1Þ � djðkÞ;
ðdjðkþ 2Þ � djðkÞÞ

2
Þ

The D� and Dþ in (1) approximate the slope of left and right side

of peak, respectively, and C is the difference between them; thus,

the magnitude of C represents how abruptly the curve has turned

from upward to downward. Now we choose Npeak
j peaks with

highest C from the points satisfying the first condition, where

Npeak
j is set to twice the number of nucleotides reactive to the

chemical agent used for the jth profile (i.e. the number of ones on

the jth column of P). Call these candidate peak locations Ai
j

ð1� i�Npeak
j ).

2. In preparation for the sampling scheme and score function compu-

tation below, estimate the ideal separation between bands based on

the remaining peak locations: q¼D ðmin
j

kr
j �min

j
kf

j Þ=ðN � 1Þ,
where kf

j and kr
j are the locations of the foremost peak and the rear-

most peak respectively on the jth profile.

3. In preparation for the score function computation below, con-

struct a matrix based on these candidate peak locations called

the bonus matrix B 2 ZK�M. Let C be the mean value of Ci of the

candidate peaks. Initialize B to all zero. At each peak Ai
j, we

apply a uniform bonus, supplemented by a stronger bonus at

sharp peaks: BðAi
j; jÞ ¼ C=2þ Ci.

2.4 Formulation as dynamic programming
2.4.1 Basic motivation

In essence, the band annotation problem is to select N out of K

points and match them to peak locations (if at all possible) in an

optimal way. This is similar to the problem of aligning two se-

quences ð1;2; . . . ;NÞ and ð1;2; . . . ;KÞ without allowing gaps for the

latter.

RNA sequence index : –1––2–––3 . . .N . . .–

Measurement index : 123456789 . . . . . ..K

In the example above, the first three bands are located at 2, 5 and 9

time units. To find the most probable one among all such align-

ments, each possible alignment is given a score that represents its

likelihood. Dynamic programming can be utilized to find the

Fig. 2. Prediction matrix. (A) Definition of the values appearing in the peak

prediction matrix; 1 means that a band is expected in that residue position,

whereas 0 means that no band is expected. aThe bands on ddTTP are ex-

pected to be at positions right before where As are located (and showing up

immediately afterward in electropherograms of complementary DNA). (B)

Example target sequence and its estimated secondary structure, here pre-

dicted by the Vienna RNA package (Hofacker, 2003). (C) The prediction matrix

for the example in (B)
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solution set with the highest score, which in turn leads to the most

likely locations of bands. More formally, define a matrix F indexed

by n and k (1�n�N; 1�k�K) where the value Fðn;kÞ indicates

the maximum score up to the band n and position k. (More details

on F are given below.) The matrix F is filled up recursively:

Fðn;kÞ ¼ max
k�2:5q�k0<k

fFðn� 1; k0Þ þ Sðn; k0; kÞg (2)

where Sðn;k0;kÞ is the score attained by going from position k0 to k

for band n. As shown in Equation (2), the mappings in Fðn;kÞ con-

sists of mapping band n to location k added to the solution for

Fðn� 1; k�Þ, where k� is the argmax in (2). The constraint on k0 in

(2) implies that a jump from k0 to k is forward and its width is

capped by a reasonable upper bound so that the entire search space

can be narrowed down for efficient implementation; it was also con-

firmed through tests that the existence of upper bound does not af-

fect the outcome.

2.4.2 Degeneracy breaking and primary profile

In the proposed method, a band is allowed to be matched to a candi-

date peak even if their positions are slightly off from each other; in

other words, an exact positional coincidence is not required for a

peak-band matching (see Section 2.5.2 for detail). Thus, the formal-

ization of our problem in the previous section allows for an un-

desired scenario in which two different bands will be matched to the

same closest peak (see Supplementary Fig. S2); this can be problem-

atic especially near strong peaks [high C in (1)]. To avoid such

degeneracies, an additional search variable p is introduced: the rela-

tive position of the matched peak to the band position k. The tuple

(n, k, p) corresponds to the instance in which the band n is located

at position k and matched with the peak at kþp if there is any; there

is no score bonus if there is no peak at the position. The matrix F is

now redefined as a 3-dimensional matrix as follows:

Fðn;k; pÞ ¼ max
k� 2:5q�k0 < k

jpj < q=2
k0 þ p0 < kþ p

fFðn� 1;k0;p0Þ þ Sðn;k0;k;pÞg (3)

The constraint jpj < q=2 is to restrict bands to be matched only with

nearby peaks, and the last constraint k0 þ p0 < kþ p means that two

distinct bands cannot share the same peak. One problem that arises

with the use of p is that there should be M such p’s for M profiles,

implying that the matrix F should not be three-dimensional but actu-

ally (Mþ2) dimensional. However, this would make solving this

problem too costly. As a compromise, the problem is simplified by

choosing one primary profile among M profiles so that p is applied

only to it; therefore, F may remain as a three-dimensional matrix.

Our software automatically determines the primary profile based on

the data type with a preference for sequencing ladders. For our

datasets, the last profile (a ddTTP ladder) was selected; without loss

of generality, dM will be considered as the primary profile in the rest

of this article.

2.4.3 Backtracking

The backtracking matrices Lk; Lp for finding the solution itself are

given by

Lðn;k;pÞ ¼ ðLkðn;k; pÞ;Lpðn;k; pÞÞ

¼ argmax
k� 2:5q�k0 < k

jpj < q=2

k0 þ p0 < kþ p

fFðn� 1;k0;p0Þ þ Sðn;k0;k;pÞg (4)

and, respectively, store the position k0 and the relative peak location

p0 from which Fðn; k;pÞ is derived as in (3). The output array y is

derived from Lk and Lp as follows:

yðnÞ ¼ ðykðnÞ; ypðnÞÞ

¼
(

argmax
k;p

fFðN; k;pÞg; if n ¼ N;

Lðnþ 1; ykðnþ 1Þ; ypðnþ 1ÞÞ; 1�n�N � 1:

(5)

The value of ykðnÞ corresponds to the location of the nth band in the

input sequence s. Figure 3 illustrates the proposed dynamic-pro-

gramming formulation with an example.

2.5 Description of score term
The score term in (3) consists of the following two components:

Sðn; k0;k; pÞ ¼ Sdistðn; k� k0Þ þwpeak � Speakðk;pÞ � Pðn; :Þ (6)

where Sdist and Speak are functions returning vectors of nonnegative

elements, and Pðn; :Þ is the nth row of the prediction matrix P. The

dot product in the second term is a sum over all lanes m from 1 to

M. A coefficient wpeak of 1.0 gave acceptable annotations in initial

tests and was not further optimized.

Fig. 3. Formulation as dynamic programming. (A) Fðn; k ;pÞ depends on

Fðn � 1; k 0 ;p0Þ in the previous column and the gap bonus Sðn; k 0 ; k ;pÞ between

them. The best tuple ðk 0;p0Þ that maximizes Fðn; k ;pÞ is searched for in the

range k � 2:5q�k 0 < k ; k 0 þ p0 < k þ p and is stored in the backtracking matri-

ces Lk ðn; k ;pÞ; Lpðn; k ;pÞ. The computation of Sðn; k 0 ; k ;pÞ is based on the

bonus matrix B and the prediction matrix P (Section 2.5). (B) Example. The data-

set used is ‘FMN Aptamer with single binding site’. N¼ 88, M¼ 5, K¼ 1324. The

backtracking path is represented by a series of red circles superimposed on the

score matrix F; since F is 3-dimensional, the figure alternatively represents a

reduced matrix F0 defined by F0ðn; kÞ ¼max p0Fðn; k ;p0Þ. The output array yk ,

which stores the position of each circle, indicates the band locations

Automated band annotation for RNA chemical probing 2811
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2.5.1 Distance bonus term

It is empirically supported that the length between consecutive loca-

tions, k0 and k, is quite evenly distributed. Sdist is the bonus term

that utilizes this fact and induces the dynamic programming to end

up with regularly stretched output. In addition, observations on ref-

erence annotations suggest that a gap between two consecutive loca-

tions tends to be shorter when the preceding location corresponds to

‘G’ in the RNA sequence (Mills and Kramer, 1979; Sasaki et al.,

1998). These observations lead to the definition of distance bonus

term as follows:

Sdistðn; dÞ ¼
fðq0 ;q2ÞðdÞ
fðq0 ;q2Þðq

0Þ (7)

where

q0 ¼
2

3
q; if sðn� 1Þ ¼ G;

q; otherwise

8<
:

and fðl;rÞ is the density function of Nðl; rÞ. That is, Sdistðn; dÞ reaches

its maximum value 1 when d ¼ q0 and decreases along a Gaussian

curve as d deviates from q0.

2.5.2 Peak bonus term

The second score term favors band locations near peaks of the elec-

trophoretic profiles with a significant curvature. Speak is a function

that returns a nonnegative M-dimensional value, where each of its

entries represents the peak bonus from each profile:

Speakðk;pÞ ¼ ðS1
peakðkÞ; . . . ; SM�1

peak ðkÞ; SM
peakðk;pÞÞ (8)

where Sm
peak stands for the bonus from matching a peak to a band in

dm, assuming such a band exists. The bonus was designed to be

boosted for a greater curvature at the peak and the proximity of the

peak to the band, so Sm
peak is defined as the product of a Gaussian

density function and an entry of B corresponding to the candidate

peak closest to location k:

Sm
peakðkÞ ¼ max

jqj<q=2

fð0;q5ÞðqÞ
fð0;q5Þð0Þ

� Bðkþ q;mÞ (9)

for m<M, and

SM
peakðk; pÞ ¼

fð0;q5ÞðpÞ
fð0;q5Þð0Þ

� Bðkþ p;MÞ � ðM� 1Þ (10)

As described above, this last term is taken from the primary profile

(typically a sequencing ladder) rather than searching for optimal

peak/band matches across all profiles to allow degeneracy breaking

at reasonable computational expense. [A separate dynamic-pro-

gramming-based band annotation algorithm was also tested which

does not carry out the peak/band degeneracy breaking of Equation

(10) and gave slightly worse performance; see Supplementary Fig.

S3.] The bonus in (10) is non-zero where kþp coincides with a can-

didate peak location Ai
M. For some cases, the primary profile might

have regions with few candidate peaks, and such matches do not

occur; the bonus values become zero and the optimal values of p are

instead set by positional constraints in (3) and candidate peaks in

other profiles (9). A large number of such failed matches flag an un-

reliable band annotation, as described next.

2.6 Reliability evaluation
Although the presented band annotation method was found to be

quite accurate, it was not perfect. We therefore sought a method to

assess the reliability of automatically determined band locations

prior to practical application. We devised a score to predict the qual-

ity of results. The idea behind the score is that when optimization of

Equation (6) fails to achieve the desirable solution, we typically see

extraordinarily short or long distances between consecutive loca-

tions (little information from Sdist) or bands on the primary profile

without proper matching to peaks (little information from SM
peak).

The E-score is defined with the following terms:

• n1: number of bands on the primary profile without correspond-

ing peak.
• n2: number of gaps with length<q=4 or>2q.
• Npeak

M : number of bands on the primary profile predicted by P.
• E ¼ 1�maxð n1

N
peak
M

; n2

K�1Þ

E-score is a value between 0 and 1 and conservatively estimates

the fraction of well-annotated bands in the output. The relationship

between E-score and accuracy is presented in Section 3.

3 Results

3.1 Robust determination of band positions
Figure 4a–c shows the electrophoretic profiles annotated with band

locations by three different methods: reference, proposed and

QuShape (Karabiber et al., 2013), respectively. The reference anno-

tation was based on expert assignments carried out at the time of

data acquisition (Lee et al., 2014). QuShape was chosen as the com-

parison target for its superior accuracy in band annotation relative

to other software we tested, FAST and ShapeFinder (data not

shown); no-modification and ddTTP ladder profiles were used as

references (RXS1, BGS1) while running QuShape. Visual inspection

suggests that the proposed method produces annotations more com-

patible with the reference. In this profile, the annotation determined

by QuShape deviates from the reference position, particularly near

the beginning of sequence.

To generally and quantitatively assess the accuracy of automated

band annotation, we applied the proposed method and QuShape to

95 datasets acquired in the EteRNA project (Table 1). For both

methods, we computed the mean squared error (MSE) of the band
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Fig. 4. Determination of band locations for dataset ‘ViennaRNA design 03’.

(A) Reference (manual) annotation. Red horizontal lines represent all deter-

mined band locations corresponding to RNA sequence. Red circles represent

the bands reactive to chemical agents for each profile. (B) The band locations

determined by the proposed method. (C) The band locations found by

QuShape (Karabiber et al., 2013)
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locations determined by the proposed method with respect to the

reference locations, in units of average distance between locations.

For a sense of scale, the typical MSE achieved by expert annotation

is 0.15, based on comparisons of different experts’ annotations with

each other and to next-generation-sequencing-based measurements,

where sequence annotation is unambiguous (Kladwang et al., 2014);

see Supplementary Figure S4. In our experience, a band annotation

result with MSE lower than 0.5 typically requires no or a small num-

ber of manual single-click corrections. The box plots in Figure 5a–c

and individual MSE values (Supplementary Tables S1 and S2) reveal

that the proposed method outperforms QuShape across the datasets.

For example, the median MSE of the proposed method is 0.21, well

under our target value of 0.5, compared with 0.72 from QuSHAPE.

As separate metrics of accuracy, we measured the Pearson’s correl-

ation coefficient r and the Kullback–Leibler (KL) divergence be-

tween the reference and computationally determined band

positions. Again, the average correlation coefficient of the proposed

method is 1.68 times closer to 1, and the average KL divergence is

5.84 times smaller. These results quantitatively confirm what we

observed qualitatively on using these tools: significantly less manual

intervention is needed with the proposed method compared with

QuShape. Further tests confirmed the utility of using multiple pro-

files, secondary structure information and peak match degeneracy

breaking in producing accurate band annotations (Supplementary

Fig. S3).

3.2 Accurate peak-area quantification
In the RNA structure mapping pipeline, the band annotation is fol-

lowed by peak deconvolution, which fits each band with a Gaussian

curve and outputs the quantified area of the band. To see how these

final band quantification results are impacted by the band annota-

tion method, we calculated Pearson’s correlation coefficients be-

tween band areas quantified based on the band annotation found by

the proposed method and those quantified based on the reference

annotation. We also repeated the calculation with the band inten-

sities quantified by QuShape. For fair comparison, we applied the

same peak deconvolution software (HiTRACE; Yoon et al., 2011)

to these three methods.

As one example, Figure 6a and b shows the correlation of results

between the proposed method and reference for a specific dataset

(flavin mononucleotide binding branches) for two chemical modifi-

cation strategies (SHAPE and DMS). Figure 6c and d shows the cor-

relation between the QuShape and reference results, which is

visually worse than the proposed method in both cases. Over all the

datasets, Figure 5d and Supplementary Table S1 gives the distribu-

tion of the Pearson’s correlation coefficients. The median correlation

coefficient for the proposed method is 0.976, which is higher than

that for QuShape (0.939) and the distribution for the proposed

method shows smaller variance. This observation suggests that using

the proposed band annotation can significantly enhance the accur-

acy of band quantification.

3.3 E-score reliability metric predicts MSE accuracy
In Section 2.6, we proposed E-score to evaluate the quality of results

from our method. We assessed the use of E-score based on its ability

to predict the accuracy of the band annotations compared with gold

standard annotations, quantitatively evaluated as MSE. Figure 7a

shows the distribution of MSE for results satisfying E ¼ 1:0; these

values are substantially smaller than those in Figure 7b, which in-

cludes all 95 datasets. For example, all 26 results under constraint E

¼ 1:0 have MSE below 0.5 as shown in Figure 7a, confirming that a

Table 1. High-throughput RNA structure mapping datasets ana-

lyzed by the proposed method (total 522 profiles and 47 210 bands)

Name No. profiles No. nt No. bands per profile No. total bands

R45a 60 108 88 5280

R46a 80 108 88 7040

R47b 90 112 92 8280

R47Bb 36 112 92 3312

R48b 96 112 92 8832

R49b 18 112 92 1656

R49Bc 48 115 95 4560

R50c 54 115 95 5130

R43d 40 98 78 3120

Excluding the last line, there are 95 datasets. More details of these 95 data-

sets are described in Lee et al. (2014). FMN, flavin mononucleotide.
aFMN aptamer with single binding site (Lee et al., 2014).
bFMN aptamer with single binding site II.
cFMN binding branches.
dThe backward C.
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Fig. 5. Proposed method (left) versus QuShape (right). Each plot represents

each metric’s distribution across 95 datasets. (A) MSE for band locations. (B)

Pearson’s correlation coefficient r for band locations. (C) KL divergence for

band locations. (D) Pearson’s correlation coefficient r for area quantification.

MSE units are normalized, so that average distance between band locations

is unity
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Fig. 6. Accuracy of quantifying peak areas for dataset ‘FMN Binding
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Correlation of the reference and the areas quantified by QuShape. Displayed

correlation values are Pearson’s correlation coefficient r
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‘perfect’ E-score essentially guarantees high quality of band annota-

tions; furthermore, 50 out of 51 results with E > 0:97 have MSE

below 0.5 (even the one exception has MSE<1). In addition to this

experimental test, artificial datasets were generated based on the ori-

ginal datasets through random convolution in terms of amplitude

and interval for further verification. Figure 7c and d show the trends

of mean and standard deviation of MSE with respect to E-score,

where Figure 7c comes from artificial data generated from a single

dataset, whereas artificial data involved in Figure 7d was generated

from all 95 datasets. The trends shown in Figure 7c and d further

confirm that a lower E-score corresponds to MSE values with higher

(worse) mean and standard deviation. Figure 7e shows the histo-

gram of the E-scores over the 95 datasets prepared. Overall, 39% of

the datasets have E-score equal to 1, and 84% have E-score greater

than 0.97, suggesting that poor E-scores and subsequent detail man-

ual correction will be encountered in a minority of cases.

3.4 Results in longer, biological RNA sequences
In an effort to test the proposed method’s compatibility with a wide

array of high-throughput RNA structure mapping datasets, we pre-

pared sample experimental datasets of biologically derived RNAs.

These additional 21 datasets include a class I ligase (Bagby et al.,

2009), the Tetrahymena L-21 ScaI group I ribozyme (Russell et al.,

2006), a four-way junction from the Escherichia coli 16S ribosomal

RNA (Tian et al., 2014), RNA replicases (C19, tC19 and tC19Z)

(Wochner et al., 2011), human Hox transcripts 50 UTR (Hox5 and

Hox9D189) (Xue et al., 2015) and RNA Puzzle entries (#5–10 and

12) (Cruz et al., 2012). In each dataset, complete sets of chemical

modifier reactions (no modification, SHAPE, DMS, CMCT) and ref-

erence ladders (ddNTPs) are present. In addition, a hepatitis delta

virus genomic segment studied previously allowed direct comparison

to the FAST software (Supplementary Fig. S5) (Pang et al., 2011).

These RNAs had lengths up to 400 nucleotides, significantly longer

than the 100-nt EteRNA designs (Table 1). Despite this increase in

length, the band annotation results from the proposed method were

still consistent with the reference expert annotation. Excluding an

abnormal result from the Tetrahymena ribozyme caused by an ex-

perimental issue that disallowed alignment of sequencing ladders,

the maximum of MSE is only 0.68. Furthermore, the two worst

MSE values (0.68 and 0.63) and two lowest E-scores (0.83 and

0.90) coincide in the results for RNA puzzle 6 (an adenosylcobala-

min riboswitch) and tRNA(phe), confirming E-score’s utility.

4 Discussion

The proposed method for band annotation is unique in its ability to

take into account all available CE profiles; prior methods (such as

those available in QuShape and FAST) have focused on a single

profile at a time with a reference profile if needed. The distinctive

robustness of the proposed method is primarily attributed to this

capability to integrate information across profiles. The method does

require an accurate alignment of all profiles prior to band annota-

tion. Our prior work (Yoon et al., 2011) described a different dy-

namic programming algorithm to accomplish this preceding

alignment based on standards co-loaded with each sample. In well

over 100 datasets analyzed here, we saw only one case where inter-

profile alignment was problematic (Tetrahymena ribozyme) and

required manual intervention. Therefore, our alignment and annota-

tion results herein confirm that all steps, including alignment and

annotation, of RNA structure mapping CE analysis can now be rou-

tinely achieved through automated algorithms.

To flag cases with uncertain automated band annotation, we

have introduced the E-score for reliability estimation. According to

our results, given any dataset for CE analysis, the band annotations

with E > 0:97 are almost always reliable and can be safely adopted

for final steps of band quantitation, whereas the results with E�
0:97 are less likely to reliable. Informally, we have encountered

datasets in which even expert annotation is ambiguous and has

required special additional experiments (such as co-loading sequenc-

ing ladders in the same color as the sample) to resolve (Tian et al.,

2014). This suggests that automated band annotation cannot im-

prove much further; a valuable development would be reliability es-

timates for specific subsets of bands rather than a global number.

An additional useful development would be use of known band

intensities based on prior experiments (Karabiber et al., 2013) or on

base pair probability estimates, rather than coarse predictions for

profiles based on sequence, modifier and a single secondary

structure.

The proposed algorithm has order of NK time and space com-

plexity, and the practical time demand of band annotation was rea-

sonable in our experiments. The proposed method was implemented

in the MATLAB programming environment (The MathWorks,

http://www.mathworks.com), and under the experimental setup

used (sequential execution on a Intel core i5 4570 processor with

8-GB main memory), the total time demand of annotating bands in

all the 95 datasets did not exceed 4 min (for each dataset, mean

2.2837 s; median 2.2707 s).

5 Conclusion

In the analysis of CE profiles, band annotation has remained the

most time-consuming and error-prone step, due to the lack of robust

computational tools for automating the process. Using a dynamic-

programming approach, the proposed algorithm can find an optimal

arrangement of bands in a given CE profile, under a scoring scheme
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suitable for high-throughput CE experiments with multiple profiles.

On over 100 CE datasets including designed and biological RNAs,

the proposed method identified the band positions matching the ref-

erence positions with accuracy sufficiently high as to obviate or sig-

nificantly reduce manual correction. Finally, the quality of the band

positions are well predicted by E-score, flagging unreliable annota-

tions to the user.
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