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ABSTRACT

This paper is a report of a second round of RNA-Puzzles, a collective and blind experiment in three-dimensional (3D) RNA
structure prediction. Three puzzles, Puzzles 5, 6, and 10, represented sequences of three large RNA structures with limited or
no homology with previously solved RNA molecules. A lariat-capping ribozyme, as well as riboswitches complexed to
adenosylcobalamin and tRNA, were predicted by seven groups using RNAComposer, ModeRNA/SimRNA, Vfold, Rosetta,
DMD, MC-Fold, 3dRNA, and AMBER refinement. Some groups derived models using data from state-of-the-art chemical-
mapping methods (SHAPE, DMS, CMCT, and mutate-and-map). The comparisons between the predictions and the three
subsequently released crystallographic structures, solved at diffraction resolutions of 2.5–3.2 Å, were carried out automatically
using various sets of quality indicators. The comparisons clearly demonstrate the state of present-day de novo prediction
abilities as well as the limitations of these state-of-the-art methods. All of the best prediction models have similar topologies to
the native structures, which suggests that computational methods for RNA structure prediction can already provide useful
structural information for biological problems. However, the prediction accuracy for non-Watson–Crick interactions, key to
proper folding of RNAs, is low and some predicted models had high Clash Scores. These two difficulties point to some of the
continuing bottlenecks in RNA structure prediction. All submitted models are available for download at http://ahsoka.u-strasbg
.fr/rnapuzzles/.
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INTRODUCTION

More than 100,000 structures are currently available in the
Protein Data Bank (PDB) (Berman et al. 2000); however,
RNA-containing structures take up <6% of these deposi-
tions, including RNA structures complexed with other mol-
ecules. Although protein related structures constitute >90%
of the structure database, <1/1000th of the proteins with
known sequences have experimental structures available
(Moult 2008). Given the vast number of noncoding RNA
molecules being discovered in cells and viruses, it is likely
that a very small part of the RNA conformational space has
been structurally characterized. RNA structure determina-
tion efforts still have a long way to go, and computational
modeling could play a major role in providing structural in-
sights for various biological problem explorations.

“RNA-Puzzles” is a CASP-like (Moult et al. 2014) collec-
tive blind experiment for the evaluation of three-dimensional
(3D) RNA structure prediction. The primary aims of RNA-
Puzzles are (i) to determine the capabilities and limitations
of current methods of 3D RNA structure prediction based
on sequence, (ii) to find whether and how progress has
beenmade, as well as what has yet to be done to achieve better
solutions, (iii) to identify whether there are specific bottle-
necks that hold back the field, (iv) to promote the available
methods and guide potential users in the choice of suitable
tools for real-world problems, and (v) to encourage the
RNA structure prediction community in their efforts to im-
prove the current tools and to make automated prediction
tools available. Until now, 12 puzzles have been set up and
assessments of three puzzles were previously published
(Cruz et al. 2012).

We now report a second round focusing on the prediction
of large RNA structures, a lariat-capping ribozyme (formerly
named GIR1), an adenosylcobalamin-binding riboswitch,
and a T-box–tRNA complex (Peselis and Serganov 2012;
Zhang and Ferre-D’Amare 2013;Meyer et al. 2014). No close-
ly homologous structures existed in structure databases at the
time of the experiment, except for theAzoarcus group I intron
(Adams et al. 2004) as a potential template for the catalytic
core of the GIR1 ribozyme, templates for the tRNA, and crys-
tallographic structure of a segment of a T-box RNA without
the tRNA (Wang et al. 2010; Grigg et al. 2013). This round
of prediction focuses on (i) the automatic assessment of de
novo prediction of large RNA structures, especially structure
topology, (ii) the evaluation of the contribution of simple
and fast experimental data in structure prediction, such as
chemical probing data, and (iii) the identification of bottle-
necks in modeling 3D interactions. The ultimate aim is to
derive force fields and programming systems allowing for au-
tomatic folding of RNA sequences in three-dimensional.
However, at this stage, the assessment does notmake a distinc-
tion between those groups deriving models based solely on ab
initio predictions from those incorporating experimental data
like chemical probing. As a matter of fact, RNA-Puzzles led to

the development of automatic production and retrieval of
solution data (see Kladwang et al. 2011a,b, 2014).
For the three puzzles, the best RMSDs range between 6.8

and 11.7 Å, and all display similar topologies to the native
structures. Given the sizes of the RNAs (>160 nt), this is a
very positive trend for de novo structure modeling. The
best models always show much better prediction of non-
Watson–Crick interactions but also, surprisingly, relatively
high clash scores. This reemphasizes the importance of
non-Watson–Crick interactions for RNA 3D structure mod-
eling as well as the difficulty of predicting such interactions
on the basis of RNA secondary structure even when comple-
mented with chemical probing data. The observed atomic
clashes, possibly due to the inclusions of experimental con-
straints for nucleotide contacts in the prediction without ad-
equate optimization, have led to further experiments and
insight toward better solutions, discussed below.

THE THREE RNA PUZZLES

Problem 5: the lariat-capping ribozyme

The lariat-capping ribozyme represents an individual family
of ribozymes that has evolved specific architectural features
from a group I intron ancestor (Meyer et al. 2014). The LC ri-
bozyme catalyzes a distinct reaction involving formation of
a 3-nt 2′,5′ lariat. The 188-nt long sequence is the following:

5′-GGUUGGGUUGGGAAGUAUCAUGGCUAAUCA
CCAUGAUGCAAUCGGGUUGAACACUUAAUU
GGGUUAAAACGGUGGGGGACGAUCCCGUAAC
AUCCGUCCUAACGGCGACAGACUGCACGGC
CCUGCCUCUUAGGUGUGUUCAAUGAACAGU
CGUUCCGAAAGGAAGCAUCCGGUAUCCCAAG
ACAAUC-3′

The crystal structure was resolved to 2.45 Å resolution.
Two crystallographic models became available after model-
ing, with PDB ID’s 4P95 and 4P9R.

Problem 6: the adenosylcobalamin riboswitch

An adenosylcobalamin riboswitch was crystallized (Peselis
and Serganov 2012). The 168 nt adenosylcobalamin ribo-
switch consists of a ligand-bound structured core and a
bent peripheral domain. The sequence is the following:

5′-CGGCAGGUGCUCCCGACCCUGCGGUCGGGA
GUUAAAAGGGAAGCCGGUGCAAGUCCGGCAC
GGUCCCGCCACUGUGACGGGGAGUCGCCCCU
CGGGAUGUGCCACUGGCCCGAAGGCCGGGAA
GGCGGAGGGGCGGCGAGGAUCCGGAGUCAGG
AAACCUGCCUGCCG-3′

The crystal structure (PDB 4GXY) has a resolution of 3.05
Å. An adenosylcobalamin molecule is given in the crystal
structure but was not revealed at the start of the puzzle.
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Problem 10: the T-box–tRNA complex structure

A T-box–tRNA complex structure was solved (Zhang and
Ferré-D’Amaré 2013). The sequence of the 96 nt T-box is
as follows:

5′-UGCGAUGAGAAGAAGAGUAUUAAGGAUUUAC
UAUGAUUAGCGACUCUAGGAUAGUGAAAGCU
AGAGGAUAGUAACCUUAAGAAGGCACUUCGAG
CA-3′

The sequence of tRNA is the following (75 nt):

5′-GCGGAAGUAGUUCAGUGGUAGAACACCACCUU
GCCAAGGUGGGGGUCGCGGGUUCGAAUCCCGU
CUUCCGCUCCA-3′

The structure of the complex was solved at a resolution
of 3.20 Å (PDB 4LCK). The crystallized sequence was slightly
different (the acceptor region was engineered in tRNA), but
this detail of the crystal structure was not disclosed in the
puzzle. Several RNA modules, including a K-turn, a G-bulge,
a double T-loop and an anticodon loop, appeared in this
complex structure.

Additional chemical-mapping data

The Das group provided chemical-mapping data on the three
puzzles to all the modelers. One-dimensional chemical-map-
ping data and mutate-and-map (M2) data were acquired,
quantitated, and normalized as described in Kladwang et al.
(2014) and Seetin et al. (2014), respectively. Three probes
were used: 1M7 (a SHAPE reagent, 1-methyl-7-nitroisatoic
anhydride, which acylates 2′-hydroxyls of flexible nucleo-
tides); DMS (dimethyl sulfate, reacting with exposed N1/
N3 of adenosine/cytosine; and CMCT (1-cyclohexyl(2-
morpholinoethyl) carbodiimide metho-p-toluene sulfonate,
reacting with exposed N1/N3 of guanosine/uracil) ([Morti-
mer and Weeks 2007; Cordero et al. 2012a] and references
therein). Data were released to modelers on the RNA Map-
ping Database in standardized formats (Rocca-Serra et al.
2011; Cordero et al. 2012b) in accession codes RNAPZ5_
STD_0000, RNAPZ5_1M7_0002, RNAPZ5_DMS_0002;
RNAPZ6_STD_0001, RNAPZ6_1M7_0002; RNAPZ10_
STD_0001, RNAPZ10_STD_0002. Each group was given
the possibility to use those data and each group describes be-
low at which stage and how these solution data were used
during the modeling process.

OVERALL COMPARISON RESULTS

Assessment methods

The automatic model assessment methods were the same
as previously used in RNA-Puzzles (Cruz et al. 2012). To
geometrically compare predicted models with the experi-

mental structures, we used the Root Mean Square Deviation
(RMSD)measure, the Deformation Index (DI), and the com-
plete Deformation Profile matrix (DP) which provides an
evaluation of the predictive quality of a model at multiple
scales (Parisien et al. 2009). The Clash Score as evaluated
by MolProbity is also used as a control measurement for
the quality of the geometric parameters of the models
(Chen et al. 2010). Additionally, MCQ (Mean of Circular
Quantities) score (Zok et al. 2014) was added as a reference
to assess prediction in terms of torsion angle space. MCQ
measures the dissimilarity between structures taking into ac-
count rotatable bonds and sugar pucker. Due to its sensitivity
to local differences and independence from structural align-
ment, it may serve as a complement to methods based on
atom coordinates. A single distortion, which can significantly
increase global RMSD, influences only distorted residues in
case of MCQ. On the other hand, numerous irregularities
that sharpen the backbone may cancel out when RMSD is
considered, but are revealed in torsion angle space. An imple-
mentation of MCQ score is publicly available for download
under http://www.cs.put.poznan.pl/tzok/mcq. It allows for
several usage scenarios, among which the global option was
used to assess models in RNA-Puzzles Round II. For each
pair consisting of the target and the predicted structure,
MCQ-global provides a single distance score, representing
their mean dissimilarity. Its value was computed upon the
differences between the corresponding sugar pseudorotation
angle (P) and seven dihedral angles defined for a residue (α, β,
γ, δ, ε, ζ, and χ). The final rank was built to grasp the overall
resemblance of models to the target structure in terms of
their trigonometric representation. The MCQ score ranges
between 0° and 180°. MCQ-local computes raw differences
between particular dihedral angles, thus being sensitive
even to the smallest discrepancy and allows the observation
of high dissimilarity at the residue level. MCQ-global intro-
duces an inevitable bias, since the information about single
distortions gets lost during the averaging. Therefore an inter-
pretation of the global score should take into account struc-
ture size. For large RNAs, global MCQ <15° indicates high
similarity of structures, while global MCQ >45° indicates
an overall dissimilarity.

Problem 5: the lariat-capping ribozyme

A total of 25 predicted models were submitted with RMSDs
ranging from 9.15 to 36.5 Å (mean RMSD is 24.1 Å, see Table
1). The top two models are better than the others in terms of
RMSD, Deformation Index, non-Watson–Crick interactions
and stacking (Fig. 1). The top three models also have >90%
Watson–Crick (WC) base pairs correctly predicted. Most of
the groups have, however, submitted models with very low
accuracy in non-WC interactions. The last three models
ranked by RMSD have similarly poor levels of accuracy for
non-WC interactions, with worse prediction of WC pairs
as well as worse stacking predictions. Several models present

RNA-Puzzles Round II
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high values for the Clash Score (Chen et al. 2010), while the
Clash Score for the crystal structure is low at 5.86. This im-
plies a need for updated dictionaries of distances and angles
or stronger constraints toward reasonable values both during
crystal structure refinement and in struc-
ture modeling. The crystal structure of
problem 5 shows an open ring structure
around the center formed by a kissing in-
teraction between two peripheral helices.
This striking architecture with a clearly
visible “hole” through the ring is not ex-
actly predicted by any of the prediction
models, although some groups correctly
identified the overall topology (Fig. 2).

Problem 6: the adenosylcobalamin
riboswitch

The RMSDs of the 34 submitted predic-
tion models range from 11.4 to 37.0 Å

with a mean value of 23.1 Å (Table 2).
These are very large RMSDs but the non-
inclusion of the ligand in the puzzle
could be largely the cause of such high
values. The Das, Major, and Chen groups
rank at the top as they have relatively high
accuracies in non-WC interaction pre-
diction, while the other groups do not
have the correct non-WC interactions.
As a large riboswitch structure, the native
structure has a Clash Score of 7.98. In
such a situation, it is probably under-
standable that clashes appear in predic-
tion models in order to maintain the
same topology as the native structure.
Models from the Das group show much
better similarity to the native structure
but with much higher Clash Scores due
to the limited time available for refining
models for this target.

Problem 10: T-box–tRNA complex

Twenty-six prediction models were sub-
mitted ranging from 6.8 to 16.9 Å
RMSD with 11.5 Å as the mean value
(Table 3). As this is a complex of two
RNA molecules, we also compared the
models of each molecule separately. The
RMSDs of the T-box ranges from 5.96
to 17.9 Å, with a mean RMSD of 12.1
Å, exactly the same as the average
RMSD of the molecular complex. As
the structure topology of tRNA is well
known, the modeling is more accurate,

and the average RMSD achieved is 3.8 Å with a RMSD range
between 2.49 and 6.9 Å. Therefore, the key comparisons be-
tween predictions are the T-box structure and the relative
orientation/interaction between the T-box and the tRNA.

FIGURE 1. Problem 5: the lariat-capping ribozyme (A) secondary structure and (B)
Deformation Profile values for the three predicted models with lowest RMSD: Das model 2
(green), Das model 1 (blue), and Adamiak model 1 (cyan). (Radial red lines) The minimum,
maximum, and mean DP values for each domain. (C) Structure superimposition between native
structure (green) and best predicted model (blue, Das model 2) with wall–eye stereo
representation.

FIGURE 2. Illustration of the “ring” topology structure in Problem 5. Native structure with
“ring” topology is shown in green; the best prediction model Das model 2 and the third best pre-
diction Adamiak model 1 are shown in the same aspect in blue and red, respectively. Although the
best model cannot totally capture the “ring” topology, it is more similar to native topology than
others.
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We find models of the tRNA segment from the Bujnicki
group rank at the top, while the Das group does better for
both the T-box alone and overall T-box/tRNA models. For
the T-box, the Das group shows good predictions for both
WC base pairs and non-WC interactions. However, their
models, even the tRNA structures, involve more atomic
clashes. In comparison, the Bujnicki group achieved better
accuracy on tRNA and included fewer atomic clashes.

MODELING METHODS

Seven research groups pursuing the development of automat-
ic modeling approaches participated in this round of RNA-
Puzzles experiments. The following provides a brief descrip-
tion of the methodology and protocols used by the modeling
groups (arranged alphabetically), together with comments
and discussions.

Adamiak group

The RNA 3D structure from the Adamiak group was pre-
dicted using automated method RNAComposer (Popenda
et al. 2012) in its batch mode. RNAComposer server (http
://rnacomposer.cs.put.poznan.pl) uses sequence and second-
ary structure topology information in dot-bracket notation.
Secondary structure (using the RNAStructure software)
(Reuter and Mathews 2010) was adjusted using experimental
data given for that RNA sequence by the Das group. Addi-
tional information about potential pseudoknots or tertiary
contacts was obtained from manual analysis of the mutate-
and-map data provided by the Das laboratory (RNA Map-
ping Database).

For Problem 5, two interactions were found: (i) 28UC29
with 93GA94 and (ii) 111GACUG115 with 148CAGUC152.
Both were introduced as squared brackets into extended
dot-bracket notation input:

GGUUGGGUUGGGAAGUAUCAUGGCUAAUCACC
AUGAUGCAAUCGGGUUGAACACUUAAUUGGG
UUAAAACGGUGGGGGACGAUCCCGUAACAUCC
GUCCUAACGGCGACAGACUGCACGGCCCUGCC
UCUUAGGUGUGUUCAAUGAACAGUCGUUCCG
AAAGGAAGCAUCCGGUAUCCCAAGACAAUC

(((((..(((((..(((((((((....[[.)))))))))..(((((((((((((......((((....
((((((((((..]]))))....)).))))((....)).....[[[[[....)))).(((.....)))
))))))).....]]]]].((((....))))..))))))...)))))..)))))

Before pressing “Compose” button in the batch mode, the
option “Add atom distance restraints” was checked to intro-
duce restraints concerning the interactions 111GACUG115
with 148CAGUC152. To do so, the RNA duplex with the
same sequence was extracted from the X-ray structure
(PDB 2Z75, resolution 1.7 Å) and selected using search en-
gine of RNA FRABASE (Popenda et al. 2008). Subsequently,
related 508 distance restraints were calculated (between at-
oms P, C1′, C2′, C5′, O3′, C2, C4, C6, and C8) and uploaded

to RNAComposer. RNAComposer (64-bit Intel Xeon 2.33
GHz processor-based platform with scalable 8 GB memory)
predicts 10 3D models within <10 min.
The resulting models were inspected for the total energy

value calculated by RNAComposer and for the preservation of
the 111GACUG115/148CAGUC152 and 28UC29/93GA94
interactions. Models showing lowest total energy were chosen
for further analysis. Some fragment selections chosen by
RNAComposer for the 3D structure assembly prohibited
the formation of required contacts and such models were
rejected at this stage. Subsequently, the selected models
were investigated for the proximity of the 111GACUG115/
148CAGUC152 pseudoknot region to the RNA termini.
The mutate-and-map data (RNA Mapping Database) sug-
gested that region hosting pseudoknot 111GACUG115/
148CAGUC152 should be close to the molecule termini,
namely to the internal loop 6GG7/182GA183. Themodel ful-
filling this criterion and representing the lowest total energy
estimated by RNAComposer was selected. Since RNACom-
poser automatically conducts two energy minimization steps
prior to returning final RNA 3D structure this model did not
require any further refinement. The model was validated us-
ing NUCheck (Feng et al. 1998).

Bujnicki group

The Bujnicki group used a hybrid strategy similar to the one
used in the previous editions of the RNA-Puzzles experiment
(Cruz et al. 2012), which comprised template-based (com-
parative) modeling, global folding with restraints using a
coarse-grained method for template-free folding, and high-
resolution refinement.
First, for all target sequences they attempted to identify

homologous families in the Rfam database (Burge et al.
2013) and homologous RNAs with experimentally deter-
mined structures. For RNA sequences or sequence fragments
that exhibited homology with RNAs with experimentally
determined structures, initial models were constructed
by template-based modeling and fragment assembly using
ModeRNA (Rother et al. 2011). Target-template alignments
were prepared manually, with the aid of secondary structure
information extracted from Rfam and corrected if needed
with the use of predictions made with RNA metaserver
(http://genesilico.pl/rnametaserver/) developed as a part of
the CompaRNA project (Puton et al. 2013). This stage was
very similar to that which they used previously in RNA-
Puzzles (Cruz et al. 2012). For Problem 5, a lariat-capping ri-
bozyme related to group I self-cleaving introns (Rfam family
RF01807), they used a group I intron structure (PDB 1ZZN)
as the main template. For Problem 6, an adenosylcobalamin
riboswitch (RF00174), they were unable to find a suitable
template, therefore no template-based modeling was per-
formed. For Problem 10, a tRNA bound to a T-box RNA,
template-based modeling of the entire complex was based
on the structure of a related complex (Grigg et al. 2013) built
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manually by the authors based on crystal and NMR struc-
tures of fragments (PDB 4JRC and PDB 2KHY), with the
use of cross-linking, mutagenesis, and SAXS data.
The aforementioned initial models of target structures (in

the case of Problem 6—an artificial circular conformation of
the target sequence with 5′ and 3′ ends close to each other)
were used as starting points for global refinement, using
the SimRNA method for RNA folding simulations, which
uses a coarse-grained representation, relies on the Monte
Carlo method for sampling the conformational space, and
uses a statistical potential to approximate the energy and
identify conformations that correspond to biologically rele-
vant structures (MJ Boniecki, G Lach, K Tomala, W Dawson,
P Lukasz, T Soltysinski, KM Rother, and JM Bujnicki, in
prep.). Here, they used a novel version of SimRNA, which
uses five (rather than three) atoms per residue: P of the phos-
phate group, C4′ of the ribose moiety, and in which basemoi-
eties are represented by triangles: N1–C2–C4 for pyrimidines
and N9–C2–C6 for purines. This representation provides
much improved description of base faces and edges com-
pared with the previous version that used only one atom
per base (Cruz et al. 2012; Rother et al. 2012) and therefore
improves the modeling of stacking and base-pairing interac-
tions, e.g., it discriminates much better between canonical
and noncanonical base-pairing. Regions predicted to be con-
fidently modeled in initial models were “frozen” while other
regions were allowed to change conformation. For modeling
of complex 3D structures, SimRNA can use additional re-
straints, derived from experimental or computational analy-
ses, including information about secondary structure and/
or long-range contacts. They have used such information
depending on its availability. Typically, predictions were first
made with restraints on predicted secondary structure and if
additional data became available sufficiently long before the
prediction deadline (e.g., results of experiments performed
by the Das group and made available to all participants of
RNA-Puzzles), additional simulations were conducted. Giv-
en the very tight deadline for Problem 6, they were unable
to utilize additional data for this RNA, leading to poor results.
Predictions generated by SimRNA were converted to full-

atom representation and ranked for submission using a
combination of various criteria, including the results of clus-
tering (the higher number of similar well-scored structures
the better), agreement with experimental data not used in
the process of modeling, manual inspection, and scoring
with independent methods such as RASP (Capriotti et al.
2011). If time permitted, models selected for submission
were subjected to high-resolution refinement whose aim
was to reduce clashes, idealize geometries, and improve local
interactions such as in standard and non-WC base pairs.
Here, they used a different method than previously, namely
an in-house software tool QRNAS (J Stasiewicz and JM
Bujnicki, unpubl.) that extends the AMBER force field with
energy terms explicitly modeling hydrogen bonds, idealizes
base pair planarity and regularizes backbone conformation.

As in their previous (Cruz et al. 2012) modeling exercise,
human intervention was relatively large. Most of the time
was devoted to searching for additional information related
to target RNA sequences and discussions within the group.
Time used for alignment preparation and for selection of
models for submission varied greatly depending on the diffi-
culty of the Problem. Time used for template-based model-
ing was negligible. Time required for SimRNA modeling
was typically a few days per target, and the final refinement
was typically run overnight.

Chen group

The Chen group used a hierarchical approach to predict RNA
3D structure from the sequence (Xu et al. 2014). For a given
RNA sequence, they first predict the secondary structure
from the free energy landscape using the Vfold model (Cao
and Chen 2005, 2006, 2009; Chen 2008). A unique feature
of the Vfold model at secondary level is its ability to compute
the RNA motif-based loop entropies. Using two virtual
bonds per nucleotide to represent the backbone conforma-
tion, Vfold model samples fluctuations of loops/junction
conformations in 3D space through conformational enumer-
ation model (Cao and Chen 2005, 2006, 2009; Chen 2008).
By calculating the probability of loop formation, the model
can give the conformational entropy parameters for the for-
mation of the different types of loops such as pseudoknot
loops. Another notable feature of the Vfold model at second-
ary level is the modeling of RNA loop free energy. By enu-
merating all the possible (sequence-dependent) intra-loop
mismatches, the Vfold model partially accounts for the se-
quence-dependence of the loop free energy.
Next, a 3D coarse-grained scaffold is constructed based on

the predicted secondary structure (Cao and Chen 2011). To
construct a 3D scaffold, the predicted helix stems are mod-
eled as A-form helices. For the loops/junctions, 3D fragments
from the known PDB database were used. Specifically, a
structural template database (Xu et al. 2014) was built by clas-
sifying the structures according to the different motifs such as
hairpin loops and internal/bulge loops, three-way junctions,
four-way junctions, pseudoknots, etc. For each junction, the
optimal (top 5) fragments were selected for the further struc-
ture assembly of the whole RNA. Any 3D structures generat-
ed by the structure assembly with structural clashes would
be excluded. The final all-atom structures were built based
on the coarse-grained model, followed by refinement using
AMBER energy minimization. Two thousand steps of energy
minimization were run, applying 500.0 kcal/mol constraints
to all the residues, followed by another 2000 steps of minimi-
zation without constraints.
In order to increase the accuracy of RNA secondary struc-

ture prediction, they applied Rfam (Burge et al. 2013) to iden-
tify the possible conserved base pairs and used the most
conserved base pair information as constraint to the Vfold
algorithm to predict secondary structures. If available, the
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SHAPE (selective 2′-hydroxyl acylation analyzed by primer
extension) (Merino et al. 2005) experimental data were also
used as constraint in the Vfold algorithm for secondary struc-
ture prediction. The SHAPE reactivity is strongly related to
the nucleotide flexibility at single nucleotide resolution.
Specifically, some nucleotides are restricted to be in loop re-
gions (without forming base pairs with other nucleotides)
because of their high SHAPE reactivity. The combination
of SHAPE data and/or homologous sequence information
fromRfam and the Vfold algorithm led to enhanced accuracy
of RNA secondary structure prediction.

For the RNA/RNA complex of Problem 10, they built the
3D structures for each strand separately using the above
hierarchical approach (Xu et al. 2014). The final complex
structure was built manually based on the previously pub-
lished SAXS-reconstructed envelope from DAMMIF (Fig. 5
in Grigg et al. 2013). Then, they ran a short-time MD simu-
lation to stabilize the interactions between the two RNA
molecules.

In summary, the computation involved two steps: (a) the
prediction of the secondary structure and the construction
of the coarse-grained 3D structure and
(b) AMBER energy minimization. The
computation time (Ta, Tb) for the two
steps are (∼2–3 h, <1 h), (<1 h, <1 h),
and (<1 h, <3 h), for Problems 5, 6,
and 10, respectively. The computations
were performed on a desktop PC with
Intel Core(TM) i7-2600 CPU at 3.40
GHz. They manually incorporated the
constraints from the SHAPE experi-
ments and the Rfam results into the
Vfold model for secondary structure pre-
diction. In addition to the construction
of 3D structures, the RNA/RNA complex
for Problem 10 involved human interfer-
ence based on the SAXS data. All oth-
er steps were achieved automatically by
computations.

Das group

The chemical probing data, obtained in
by the Das group, were first used to mod-
el secondary structure with available
automated algorithms and then further
used for tertiary structure prediction.
Automated secondary structure model-
ing with RNAstructure was carried out
as described in Tian et al. (2014), with
tools available by server (http://rmdb.
stanford.edu/structureserver/) (Cordero
et al. 2012b). In all three Problems, use
of 1D SHAPE data improved RNAstruc-
ture 5.4 secondary structure predictions

compared with modeling without data, leading to perfect re-
covery of helices in Problem 10 (Supplemental Table S1; Sup-
plemental Fig. S6B). Nevertheless, approximately half of
helices remained mispredicted in Problems 5 and 6. In Prob-
lem 5, use of DMS/CMCT with RNAstructure gave better
models than SHAPE-guided modeling; but for Problems 6
and 10, use of DMS/CMCT made models worse compared
even with modeling without data. On an encouraging note,
a bootstrapping procedure that gives conservative estimates
of modeling uncertainty (Kladwang et al. 2011b; Ramachan-
dran et al. 2013) was able to highlight confident and noncon-
fident regions in all cases. For example, any helix modeled
with >75% bootstrap values agreed with the subsequently re-
leased crystallographic model (Supplemental Figs. S1–S3)
(Fig. 3).
More recent versions of RNAstructure have updated pa-

rameters for nearest-neighbor energies and for converting
SHAPE values to pseudoenergies, and also have the ability
to model pseudoknots (Hajdin et al. 2013). Although not a
strictly blind test, the data above allowed a test of these ad-
vances. Use of RNAstructure 5.6 Fold for SHAPE-directed

FIGURE 3. Problem 6: the adenosylcobalamin riboswitch (A) secondary structure and (B)
Deformation Profile values for the three predicted models with lowest RMSD: Das model 4
(green), Das model 6 (blue) and Das model 2 (cyan). (Radial red lines) The minimum, maxi-
mum, andmean DP values for each domain. (C) Structure superimposition between native struc-
ture (green) and best predicted model (blue, Das model 4) with wall–eye stereo representation.

Miao et al.

10 RNA, Vol. 21, No. 6

 Cold Spring Harbor Laboratory Press on May 17, 2017 - Published by rnajournal.cshlp.orgDownloaded from 

http://rmdb.stanford.edu/structureserver/
http://rmdb.stanford.edu/structureserver/
http://rmdb.stanford.edu/structureserver/
http://rmdb.stanford.edu/structureserver/
http://rmdb.stanford.edu/structureserver/
http://rmdb.stanford.edu/structureserver/
http://rnajournal.cshlp.org/
http://www.cshlpress.com


modeling did not improve modeling of Problem 5, and gave
less accurate models of the other Problems 6 and 10, com-
pared with RNAstructure 5.4 Fold; the difference appears
to be due to a change in the parameters for SHAPE pseu-
doenergy. Use of the ShapeKnots executable produced a sig-
nificant improvement but still imperfect model in SHAPE-
directed modeling of Problem 5, which contains a pseu-
doknot in its catalytic core. In the other cases, ShapeKnots
predictions did not improve upon pseudoknot-free Fold
modeling. These results underscore the challenge of mod-
eling RNA secondary structure using conventional 1D
chemical-mapping data, even with continuing algorithmic
advances. As has been discussed previously (Cordero et al.
2012a; Leonard et al. 2013; Rice et al. 2014), protection of nu-
cleotides may signal non-Watson–Crick rather thanWatson–
Crick pairing in the structure, but current methods do not
generally distinguish these possibilities (Figs. 4, 5).
For Problems 5 and 6, secondary chemical-mapping

data were also acquired through the M2 approach (Cordero
et al. 2014). In this method, chemical-mapping profiles are
measured not only for the sequence of interest but also for
variants mutating each nucleotide in the RNA (Kladwang
et al. 2011a). Increased reactivity of one nucleotide upon
mutation of a sequence-distance nucleotide can signal their
interaction in three dimensions, and these data can be lever-
aged for automatic secondary structure inference in RNAs-
tructure. For Problem 5, RNAstructure
5.4 Fold guided by M2-SHAPE data
recovered all helices longer than 2 bp,
except the catalytic core pseudoknot. In-
tegrating M2 data with the more recent
RNAstructure 5.6 ShapeKnots recovered
all of these helices, including the pseu-
doknot (Supplemental Table S1; Sup-
plemental Fig. S1L). For Problem 6, all
helices longer than 2 bp were recovered
correctly with M2-SHAPE data and by ei-
ther RNAstructure executable. Errors in
edge base pairs of several helices remain,
as well as a register shift in Problem 5
(which was corrected in M2-DMS anal-
ysis; Supplemental Fig. S1P). Overall,
these comparisons confirm that second-
ary chemical mapping coupled to auto-
mated algorithms consistently achieves
correct global secondary structures for
complex RNA folds in terms of helix
recovery, but resolving fine errors in
edge base pairs will require methodolog-
ical improvements.
Beyond basic secondary structure

modeling, this round of puzzles also in-
spired development of computational
methods for 3D modeling, primarily in
three areas. First, simple automated tools

in the Rosetta framework (Leaver-Fay et al. 2011) were creat-
ed for threading structural templates into the desired se-
quence, such as the catalytic core of Problem 5, the lariat-
capping ribozyme (see also below). Second, the Das group
expanded fragment assembly of RNA with full-atom refine-
ment (FARFAR) (Das et al. 2010; Kladwang et al. 2011a),
whose interface for job setup was previously cumbersome,
especially to solve subpieces of large RNAs (e.g., the three-
way P15/P8/P3 junction of Problem 5). The RNA puzzles in-
spired them to write a single python script (rna_denovo_
setup.py) for straightforward setup of FARFAR jobs, taking
as input the full-model sequence and secondary structure,
the residues of desired subdomain, and PDB models for
any known subpieces of the subdomain. For Problem 6,
the Das group also created a mode for setting up rigid-body
“docking” of multiple RNA pieces including a placeholder
sphere for the adenosylcobalamin ligand. Finally, an expan-
sion of “stepwise” assembly was piloted, previously devel-
oped for enumerative high-resolution modeling of motifs
(Sripakdeevong et al. 2011; Chou et al. 2013), to gene rate
complex RNA folds by progressively closing “rings” of motifs
through numerous tertiary buildup paths (e.g., to model the
ring-like connection of the catalytic core with the P3/P8/P15
junction and the P2.1/P5 kissing loops in the GIR1 lariat-cap-
ping ribozyme). Compared with prior fragment assembly
approaches from Das group (Kladwang et al. 2011a), this

FIGURE 4. Problem10: the T-box–tRNA complex (A) secondary structure and (B) Deformation
Profile values for the three predicted models with lowest RMSD: Das model 3 (green), Das model
4 (blue), and Das model 1 (cyan). (Radial red lines) The minimum, maximum, and mean DP
values for each domain. (C) Structure superimposition between native structure (green) and
best predicted model (blue, Das model 3).
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stepwise strategy was efficient in generating realistic, con-
verged conformations of complex folds with multiple tertiary
contacts at subhelical resolution. All Rosetta tools are freely
available to academic researchers (Leaver-Fay et al. 2011)
and documented at https://www.rosettacommons.org/docs/
latest/rna-denovo-setup.html/.

The process was a mix of automatic and manual steps, as
many of the tools were being developed “on-the-fly.” On
one hand, chemical-mapping-guided inference of secondary
structure to double-checkmodels from the literature was car-
ried out automatically, but inference of some tertiary contacts
from these data was guided by visual inspection of the M2

data (see below). On the other hand, identification of poten-
tial templates for threading/homology modeling was not car-
ried out automatically. Structural templates and alignments
were instead derived from literature search (group I intron
alignment to the lariat-capping ribozyme for Problem 5
(Beckert et al. 2008); mapping “half” of the FMN riboswitch
to the adenosylcobalamin-binding core for Problem 6 (Bar-
rick and Breaker 2007; Geary et al. 2011); and mapping dou-
ble T-loop (Grigg et al. 2013; Lehmann et al. 2013), sarcin–
ricin loop (Yang et al. 2001) and kink-turn motifs (Vidovic
et al. 2000) to T-box, the tRNA (Fukai et al. 2000), and the
T-Box/tRNA interface derived from ribosome (Dunkle
et al. 2011) for Problem 10) and manual expert inspection
(refining the core of the Problem 5 group I intron alignment;
a previously unrecognized kink-turn in the Problem 6 ad-
enosylcobalamin riboswitch; the ribosome-bound tRNA/
mRNA-like interaction in the Problem 10 T-box/tRNA com-
plex). Fully automating template recognition and tertiary
contact inference-with guidance from readily available chem-
ical-mapping data-appears to be an important challenge for
the field (Table 4).

For all three targets, experimental data were critical for rul-
ing out structural hypotheses that would have required sub-
stantial computational expense to explore, and in some cases,
gave critical data that guided modeling, illustrated in Supple-
mental Figures S4–S6. For Problem 5, two peripheral tertiary
contacts were not recognized in previous literature but were
important for defining ∼1/3 of the model. The contacts were
apparent in M2 data as changes in chemical mapping on one
side of the contact in response to mutations on the other side.
For Problem 6, several secondary structure models had been
proposed in the literature (Ravnum and Andersson 2001;
Nahvi et al. 2002, 2004; Vitreschak et al. 2003; Barrick and
Breaker 2007), and the M2 analysis was important for unam-
biguously confirming the correct model. Further, theM2 data
showed no evidence of extensive interaction between the helix
P2 of the P1/P2/P3 junction and the long “arm” P7–P11, or
for interactions within the “arm”; so runs with those contacts
were not set up. For Problem10,M2datawasnot acquired due
to time constraints (three other Problems were being mod-
eled concomitantly), but the available 1D chemical-mapping
data helped rule out a potential fourth base pair neighboring
the three base pair interaction of the tRNA anticodon and its
T-box binding site; enforcing that interaction would have
produced inaccurate distortions (Table 5).
As many of the computational methods were being devel-

oped at the same time as modeling, performance was not op-
timized. Thousands of CPU-hours were used (12 h for ∼20–
100 cores) for each 3Dmodeling step that involved fragment-
based assembly and refinement of subpieces. For the case of
Problem 5, the Das group ended up expending at least 30,000
CPU-hours. Nevertheless, since the prediction period, fur-
ther automation and optimization has brought the computa-
tional expense of these procedures to under 10,000 CPU-
hours per target, taking less than a week of wall clock time.
It is noted that academic researchers interested in using these
tools canmake use of free “startup” allocations on the XSEDE
supercomputers of up to 20,000 CPU-hours. As for Problem
6 (adenosylcobalamin riboswitch), both experiments and
computational modeling were carried out in 1 wk.

Dokholyan group

The Dokholyan group at the University of North Carolina
at Chapel Hill in collaboration with the Ding group from
Clemson provided predictions for Problems 5, 6, and
10 using multiscale discrete molecular dynamics (DMD)
method (Proctor et al. 2011; Shirvanyants et al. 2012). The
structure modeling was performed with coarse-grained fold-
ing simulations followed by an all-atom reconstruction.
In the coarse-grained folding simulations, the three-bead
RNA model, where each nucleotide is represented by three
pseudoatoms corresponding to base, sugar, and phosphate
groups (Ding et al. 2008), was used. The interactions between
the three beads are modeled based on information avail-
able from high-resolution RNA structure database. Bonded

FIGURE 5. Modules in Problem 10. (A) Detailed structure of T-loop of
Das model 4, (B) detailed structure of U30 of Das model 4, (C) detailed
structure of K-turn of Das model 4, (D) detailed structure of Loop-E of
Das model 4.
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interactions are based on parameters derived from covalent-
bonding, bond angles and dihedral angles, while the non-
bonded interactions are derived from base-pairing, base
stacking, hydrophobic interactions, and phosphate–phos-
phate repulsions. Replica exchange DMD simulations were
performed (Ding et al. 2008) followed by a selection protocol
to select the lowest energy structures. Briefly, structures were
selected from coarse-grained simulations based on energies
obtained using the coarse-grained energy function. In the
first filter, all the structures from every replica, which are
the lowest ten percent of the energies and then perform hier-
archical clustering for identifying the most dominant state
among the lowest energy ensemble, were selected. The cen-
troid of the most populated cluster was selected as the repre-
sentative structure for the simulation. For the representative
structure, the model was further refined by performing all-
atom reconstruction. The all-atom DMD approach for
RNA is similar to one used for all-atom protein modeling
(Ding et al. 2008).
The CPU time for DMD-based RNA structure prediction

depends on the length of the RNA. Previous benchmarks’
showed linear dependence on RNA length. For Problems 6
and 10, the simulations were performed on UNC Killdevil
computing cluster (each compute node consists of 12 core,
2.99 GHz Intel processors, with either 48 of 96 Gb memory),
for Problem 6, a 169-nt length RNA, the total CPU time was
∼21 h for eight compute nodes, which roughly translates to
∼2.75 h of real time in simulation. The clustering algorithm
run on similar compute node took <15 min to complete.
In the predictions they used base-pairing information,

which was derived for each Problem using different methods.
Problem 5 wasmainly based on biochemical data provided by
the Das group and sequence comparative analysis obtained
by multiple sequence alignment from Rfam (Griffiths-Jones
et al. 2003). The same was true for Problem 6 with additional
data obtained from the Mfold server (Zuker 2003). Problem
10 used biochemical data from the Das group and the Mfold
server (Zuker 2003).
Experimentally derived tertiary structure information was

also used. In Puzzle 5, the specific long-range proximity con-
straint between nucleotides 78 and 170 was inferred from
the cleavage sites between helices 5 (P5) and 10 (P10). For
Problem 6, the two groups used the in-line probing data to
approximate the solvent accessibility (Nahvi et al. 2004),
which were added to DMD simulation as the hydroxyl radical
probing approach (Ding et al. 2012). In the case of Problem
10, the two binding sites between tRNA and tBox were taken
from experimental study (Grigg et al. 2013). The method is
fully automated once the base-pairing information for the
RNA has been provided.

Major group

The adenosylcobalamin riboswitch of Problem 6 was found
by sequence similarity using BLAST. The secondary structure

for this riboswitch was deduced by Barrick and Breaker
(2007) and it was used as a primary template. Among the al-
ternative structural elements, they kept the three-way and
four-way junctions, as well as the T-loop-type interaction be-
tween the four-way junction and the lower part of P7.
The Major group fed the stems P2 and P4 as constraints

to MC-Fold (Parisien and Major 2008). Various alternative
secondary structural elements were indicated by Barrick and
Breaker, especially between P7 and P11. The Major group
identified a sequence with a potential to adopt a kink-turn,
similar to the kink-turn predicted in the snoRNA U3 C′/D
box (Rozhdestvenskyet al. 2003).This kink-turnhas aGA tan-
dem and an asymmetric loop. We decided to assume its for-
mation by adding it to the constraints using a mask in MC-
Fold:

GGGAGU-GCGAGGAUC
((((((-))...))))

The 3D model was built by using the T-loop crystal struc-
ture of a tRNA (PDB 1EVV). The kink-turn area was mod-
eled after Kt-7 (PDB ID 3CC2 of the 23S rRNA of
Haloarcula Marismortui). The remaining parts and the final
assembly were modeled using MC-Sym (major.iric.ca/Web/
mctools). The models generated by MC-Sym were mini-
mized up to the “brushup” level of the MC-Pipeline. The
selection of the candidate models was based on “Score” val-
ues, a homemade all-atoms force-field which is part of the
“Analysis” module of the MC-pipeline.

Xiao group

The Xiao group used 3dRNA web server (http://122.205.6
.127/3dRNA/3dRNA.html) (Zhao et al. 2012) to complete
the prediction for Problems 5 and 6. 3dRNA builds tertiary
structure of an RNA molecule by assembling three-dimen-
sional (3D) structural templates of its secondary structure
elements, including helix, hairpin loop, internal loop, bulge
loop, and multiway junction. The 3D templates are from a li-
brary extracted from experimental RNA structures. In addi-
tion, 3dRNA can build different models for an RNA
molecule by using different templates for each of secondary
structure elements.
In the prediction for Problems 5 and 6, they first predicted

the secondary structures of the submitted sequences by using
Mfold (Zuker 2003) and RNAfold (Hofacker et al. 1994) and
picked out the optimal prediction. Then, the sequences and
predicted secondary structures were submitted to 3dRNA
web server and a set of structural models was generated. Fi-
nally, these structural models were ranked with a scoring
function 3dRNAscore (data not shown) and the lowest ener-
gy structures were selected as the candidate structures.
For Problem 5, the Xiao group used Mfold server (Zuker

2003) and RNAfold (Hofacker et al. 1994) to predict the sec-
ondary structure. The Mfold web server gave 10 secondary
structures consisting of an optimal and nine suboptimal
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folds. The RNAfold web server gave an optimal secondary
structure by minimum free energy and an optimal secondary
structure by thermodynamic ensemble. They used both the
Mfold and RNAfold optimal folds to predict the tertiary
structure. One of the optimal secondary structure is a
three-way-junction structure whose secondary structure is
(..().().....()). This three-way junction had no 3D templates
in the library but 3dRNA could automatically search the li-
brary and pick out a nearest three-way junction, whose sec-
ondary structure is (..()..()....()). In this case, the loop was
extracted from a ribozyme fragment 1GID. 3dRNA then
made deletion and insertion operations on it to match the
secondary structure needed, i.e., (..().().....()). After that,
the 3D templates of other secondary structural elements
were automatically searched for by the searching module of
3dRNA and then assembled to a whole all-atom structure
by the assembling module of 3dRNA. Finally, the structure
was refined by AMBER energy minimization. All calculations
were performed on an Intel S5500BC server (Intel(R) Xeon
(R) CPU E5620 @ 2.40 GHz). The template searching and as-
sembling process took ∼2 min. The AMBER energy minimi-
zation took ∼3 min.

As above, for Problem 6, the Xiao group used Mfold and
RNAfold to predict the secondary structure. The optimal sec-
ondary structure predicted by Mfold is a four-way junction
structure and the optimal secondary structure predicted by
RNAfold is made of three-way junction structures. The bar-
rier for 3dRNA is the lack of the 3D templates for the four-
way junction: (().....()....().......). As previously, 3dRNA
searched the templates library for the nearest loop. A four-
way junction with the secondary structure (..()........()......
()..) was picked out. It was extracted from rRNA 1C2W.
After deletion and insertion operations, a 3D template of
four-way junction with the secondary structure (().....()....
().......) was created. After that, the whole tertiary structure
was assembled smoothly. Ten models were predicted for
each of the optimal predicted secondary structures and
then scored by 3dRNAscore. The lowest energymodel was se-
lected as the candidate and further refined with AMBER en-
ergy minimization. All calculations were performed on an
Intel S5500BC server (Intel(R) Xeon(R) CPU E5620 @ 2.40
GHz). The whole template searching and assembling process
took <3 sec this time as the 3dRNA has been reimplemented.
The AMBER energy minimization process took 38 sec.

DISCUSSION

Except in some cases (Levitt 1969; Michel and Westhof
1990), RNA 3D structure prediction has historically lagged
behind protein structure prediction, although RNA
Watson–Crick pairing (secondary structure) is simpler to
predict than, for example, β−sheet pairings in proteins.
Nevertheless, compared to protein structure, RNA has
more degrees of freedom. In addition, despite the limited
number of non-Watson–Crick base pairs that simplifies anal-

ysis and inspection of tertiary structure, these non-Watson–
Crick base pairs are difficult to recognize but central to the
three-dimensional architecture of folded RNA molecules.
The backbone of a nucleotide has six rotatable bonds, while
an amino acid includes three (and theω dihedral angle is gen-
erally fixed∼180° in peptide plane). Therefore, the RNA con-
formational landscape is potentially much larger and the
three-dimensional structure prediction of RNAs with 100
nt is comparable, in terms of the number of degrees of free-
dom andmolecular weight, to the challenge of modeling pro-
teins of 200–300 aa. Although the structures in this round of
RNA-Puzzles are large, topologies of the best predictions are
not extreme compared with the native structures. This is a
positive signal for RNA structure modeling.
In the current stage, most predictions can achieve good ac-

curacy on Watson–Crick base pairs, while non-Watson–
Crick interactions remain an open challenge that constitute
an important bottleneck in RNA structure modeling. To
improve non-WC pair prediction, RNA module predic-
tion should be emphasized, since RNA modules are stable
in structure but difficult to predict. Programs such as
RMDetect (Cruz andWesthof 2011) could help in predicting
RNA modules and improve the non-WC interaction predic-
tion, e.g., for the K-turn in the adenosylcobalamin riboswitch
which was recognized by modelers but not automatically.
Unlike the numerous structures available for proteins, the
number of RNA structures solved by crystallization is still
limited and the available conformational space of RNA fold-
ing is far from complete. The prediction of non-WC pair and
stacking could also be improved with the increase of known
RNA structures and a complete search for RNA modules.
Other than module prediction programs, easy and fast ex-

periments can provide direct constraints in structure model-
ing. In the protein structure prediction trials CASP Round X
(Moult et al. 2014), a new category of “contact-assisted” pre-
diction was proposed. Experimental data such as NMR,
chemical shift, cross-linking, and surface labeling have been
proved to be instrumental. Previously, contacts inferred
from evolutionary information also achieved success in pro-
tein structure modeling (Morcos et al. 2011) but, at the time
of writing, they still have not had an impact in blind structure
prediction tests (Moult et al. 2014). Nevertheless, these
explorations have revealed a trend in structure modeling:
With the help of simple experimental constraints, structure
modeling could achieve the application level in providing
structural information for biological problems, even if no ho-
mologous structures are available. According to the three
large RNA structures in this round of RNA-Puzzles, the mod-
eling of RNA topology structures are already close to native,
and the relative orientation between T-box and tRNA struc-
tures are recovered at a resolution (6.8 Å) comparable to the
spacing between nucleotides.
Although the best predictions are similar to the topology

of native RNA structures, some beauties in native structure to-
pologies cannot be captured.As an example, the dramatic hole
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in the ring structure formed by two helices in Problem 5 was
not described at even nucleotide resolution by any prediction
model. Current fast experiments can only help in detecting lo-
cal and detailed interactions rather than global architectures
determined by long-range contacts. Thesemethods aremain-
ly sensitive to detailed contacts but are largely uninformative
as to global information such as holes. For consistent refine-
ment to higher resolution 3D models that predict these strik-
ing features, we still need deeper understanding of RNA
structure and/or new fast experimental tools.
Currently, the major challenges in RNA structure predic-

tion lie in (1) further improvement of algorithms that in-
corporate simple experimental data (contact-assisted data),
(2) structure optimization to alleviate atomic clashes and
improve accuracy, and (3) accumulation of comprehensive
RNA structure knowledge with the help of database increases
and automated structural bioinformatic tools. The surprising
high values for the clash scores in several otherwise respectable
models led to attempts to improve the clash score values by
rerefinement. The Das group had run ERRASER (Chou
et al. 2013), but ERRASER only works to find solutions with
each nucleotide within ∼2 Å RMSD of the starting solution.
Many of the derived models used fragments of other crystal
structures that did not fit well together. The relief of chain-
breaks and clashes require bigger changes than ERRASER
can currently handle. After an exchange of the previous ver-
sions of this article, the Bujnicki group ran their refinement
method QRNAS on the Das models (all 17 models submitted
for the three Problems). QRNAS is essentially a reimplemen-
tation of AMBER with additional regularization and it is used
as the final element in the Bujnicki modeling pipeline. In all
cases, a dramatic reduction of Clash Scores was obtained; in
10 models even down to zero. Only in three cases the Clash
Scores remained larger than 4; however, thesemodels had ini-
tial Clash Scores of nearly 30. Supplemental Table S2 shows
the values of all the metrics used for comparisons and most
of them display an improvement or at least no worsening.
However, the bond angle deviations increase severely in all
cases, a not so surprising result since that parameter was
kept free during optimization. Thus, further work is required
for resolving clashes in automatically derived models.
As attested by the number of coauthors involved in these

three RNA Puzzles in most modeling groups, the automatic-
ity of the 3D structure prediction process still requires a ma-
jor investment in computer science and in the development
of user-friendly and straightforward computer tools. There-
fore, in order to make RNA 3D structure prediction available
to the biological community in solving biological problems,
we encourage web servers for automatic RNA 3D structure
prediction. Such web servers should take query sequences,
probably together with simple experimental data, and return
possible RNA 3D coordinates. As described, several groups
have already advanced in this direction. As inspiration, in re-
cent years, servers have largely caught up with human expert
groups in protein structure prediction (Moult et al. 2014),

and it will be interesting to see if the RNA community can ac-
complish the same.
Finally, in the present comparisons, it is assumed that

the crystal structure is the relevant and correct target. Cry-
stallographic structures constitute highly relevant models
representing with high precision and accuracy particular ex-
periments and conditions. However, not all segments of crys-
tallized structures are at the same level of accuracy, because of
resolution issues, disorder, or high segmental mobilities (as
represented by the thermal B-factors). For those segments,
the uncertainty of the reference structure is a real question.
A meaningful comparison would thus require that the pre-
diction programs derive also a theoretical B-factor for the nu-
cleotides representing some aspects of the uncertainty in the
prediction. Preliminary results indicate that regions with high
experimental B-factors correlate with regions in disagree-
ment with the rest of the structure (regions in red color in
the deformation profiles). Thoughtful weighted comparisons
need to be developed to address these issues of molecular dy-
namics during comparisons between crystal structures and
predicted models.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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TABLE	S1.Summary	of	experimental	data	  	 base-pair	 helix	

 	  	  	 sensitivity	 ppv	 sensitivity	 ppv	

Puzzle	5	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

No	data	 5.4	Fold	 50.0%	 48.4%	 46.2%	 42.9%	

 	 5.6	Fold	 50.0%	 48.4%	 46.2%	 42.9%	

 	 5.6	ShapeKnots	 50.0%	 50.0%	 46.2%	 42.9%	

1D	SHAPE	 5.4	Fold	 45.0%	 41.5%	 38.5%	 35.7%	

 	 5.6	Fold	 45.0%	 41.5%	 69.2%	 35.7%	

 	 5.6	ShapeKnots	 78.3%	 72.3%	 46.2%	 69.2%	

1D	DMS/CMCT	 5.4	Fold	 58.3%	 53.9%	 46.2%	 42.9%	

 	 5.6	Fold	 58.3%	 53.9%	 76.9%	 42.9%	

 	 5.6	ShapeKnots	 81.7%	 79.0%	 61.5%	 76.9%	

1D	SHAPE/DMS/CMCT	 5.6	Fold	 66.7%	 60.6%	 61.5%	 53.3%	

 	 5.6	ShapeKnots	 73.3%	 67.7%	 69.2%	 66.7%	

2D	SHAPE	 5.4	Fold	 76.7%	 74.2%	 69.2%	 69.2%	

 	 5.6	Fold	 76.7%	 74.2%	 84.6%	 69.2%	

 	 5.6	ShapeKnots	 90.0%	 85.7%	 92.3%	 91.7%	

2D	DMS	 5.4	Fold	 81.7%	 77.8%	 76.9%	 71.4%	

 	 5.6	Fold	 81.7%	 77.8%	 76.9%	 71.4%	

 	 5.6	ShapeKnots	 93.3%	 86.2%	 92.3%	 85.7%	

Puzzle	6	 No	data	 5.4	Fold	 73.7%	 73.7%	 54.6%	 54.6%	

 	  	 5.6	Fold	 73.7%	 73.7%	 54.6%	 54.6%	

 	  	 5.6	ShapeKnots	 73.7%	 73.7%	 54.6%	 54.6%	

 	 1D	SHAPE	 5.4	Fold	 77.2%	 81.5%	 63.6%	 77.8%	

 	  	 5.6	Fold	 73.7%	 73.7%	 54.6%	 54.6%	

 	  	 5.6	ShapeKnots	 79.0%	 81.8%	 63.6%	 77.8%	

 	 1D	DMS/CMCT	 5.4	Fold	 63.2%	 64.3%	 54.6%	 50.0%	

 	  	 5.6	Fold	 63.2%	 64.3%	 54.6%	 50.0%	

 	  	 5.6	ShapeKnots	 71.9%	 70.7%	 54.6%	 54.6%	

 	 1D	SHAPE/DMS/CMCT	 5.6	Fold	 49.1%	 57.1%	 36.4%	 33.3%	

 	  	 5.6	ShapeKnots	 63.2%	 72.0%	 63.6%	 58.3%	

 	 2D	SHAPE	 5.4	Fold	 96.5%	 96.5%	 90.9%	 90.9%	

 	  	 5.6	Fold	 96.5%	 96.5%	 90.9%	 90.9%	

 	  	 5.6	ShapeKnots	 96.5%	 96.5%	 90.9%	 90.9%	

Puzzle	10	 No	data	 5.4	Fold	 83.0%	 79.6%	 88.9%	 80.0%	

 	  	 5.6	Fold	 83.0%	 79.6%	 88.9%	 80.0%	

 	  	 5.6	ShapeKnots	 83.0%	 79.6%	 88.9%	 80.0%	

 	 1D	SHAPE	 5.4	Fold	 100.0%	 97.9%	 100.0%	 100.0%	

 	  	 5.6	Fold	 87.2%	 82.0%	 88.9%	 80.0%	

 	  	 5.6	ShapeKnots	 97.9%	 92.0%	 100.0%	 90.0%	

 	 1D	DMS/CMCT	 5.4	Fold	 72.3%	 66.7%	 77.8%	 70.0%	

 	  	 5.6	Fold	 72.3%	 66.7%	 77.8%	 70.0%	

 	  	 5.6	ShapeKnots	 85.1%	 71.4%	 88.9%	 72.7%	



 	 1D	SHAPE/DMS/CMCT	 5.6	Fold	 55.3%	 55.3%	 55.6%	 50.0%	

 	  	 5.6	ShapeKnots	 63.8%	 61.2%	 66.7%	 60.0%	

	
	



Table S2. Structure Refinement based on Das lab models done by Bujnicki lab.  

Problem Lab Num RMSD P-value DI INF INF_wc INF_nwc INF_stacking clash pct_badbonds pct_resbadbonds pct_badangles pct_resbadangles 

5 DasRef* 1 9.96 0.00E+000 13.002 0.766 0.919 0.256 0.766 0 0.7 7.45 8.33 100 

5 DasRef 2 9.165 0.00E+000 11.94 0.768 0.908 0.344 0.757 0.17 0.25 1.6 7.07 100 

mean           0.475 4.525 7.7 100 

5 Das 1 9.948 0.00E+000 13.148 0.757 0.919 0.256 0.751 9.44 0.74 9.57 1.48 27.66 

5 Das 2 9.152 0.00E+000 12.019 0.761 0.906 0.334 0.751 6.79 0.49 6.38 1.52 30.85 

mean           0.615 7.975 1.5 29.255 

               

Problem Lab Num RMSD P-value DI INF INF_wc INF_nwc INF_stacking clash pct_badbonds pct_resbadbonds pct_badangles pct_resbadangles 

6 DasRef 1 14.504 3.23E-009 19.022 0.762 0.897 0.433 0.746 3.85 0.41 2.38 7.88 100 

6 DasRef 2 13.683 1.92E-010 17.889 0.765 0.905 0.361 0.755 0 0 0 7.04 100 

6 DasRef 3 15.778 1.73E-007 21.019 0.751 0.889 0.334 0.744 0.18 0.05 0.6 7.5 100 

6 DasRef 4 11.714 9.59E-014 15.595 0.751 0.897 0.416 0.731 5.32 0.78 5.95 9.34 100 

6 DasRef 5 15.862 2.22E-007 20.509 0.773 0.897 0.433 0.763 0 0 0 6.8 100 

6 DasRef 6 12.421 1.68E-012 16.464 0.754 0.897 0.433 0.734 3.85 0.37 1.79 7.77 100 

6 DasRef 7 17.959 5.12E-005 24.221 0.741 0.877 0.316 0.732 0 0 0 7.15 100 

6 DasRef 8 17.97 5.26E-005 23.451 0.766 0.897 0.416 0.755 0 0.82 5.95 8.32 100 

6 DasRef 9 15.107 2.26E-008 19.785 0.764 0.905 0.316 0.755 0 0.05 0.6 6.72 100 

6 DasRef 10 29.226 9.91E-001 39.946 0.732 0.897 0.312 0.718 0.37 0.41 2.38 8.02 100 

mean           0.289 1.965 7.654 100 

6 Das 1 14.478 2.96E-009 19.893 0.728 0.885 0.333 0.705 23.85 0.64 8.33 0.87 10.71 

6 Das 2 13.627 1.57E-010 18.774 0.726 0.885 0.347 0.705 17.24 0.6 7.14 0.84 10.12 

6 Das 3 15.752 1.60E-007 21.759 0.724 0.874 0.217 0.72 17.05 0.55 7.14 0.62 9.52 

6 Das 4 11.699 9.02E-014 16.151 0.724 0.885 0.316 0.702 23.48 0.64 8.33 0.92 11.31 

6 Das 5 15.834 2.04E-007 21.147 0.749 0.885 0.361 0.738 13.39 0.37 4.76 0.65 8.93 

6 Das 6 12.405 1.58E-012 17.08 0.726 0.885 0.333 0.702 24.59 0.64 8.33 0.92 11.9 

6 Das 7 17.875 4.22E-005 24.363 0.734 0.869 0.237 0.731 13.21 0.55 7.14 0.6 8.93 

6 Das 8 17.956 5.08E-005 24.06 0.746 0.877 0.334 0.743 13.02 0.41 5.36 0.62 8.33 

6 Das 9 15.048 1.88E-008 20.942 0.719 0.885 0.347 0.694 17.98 0.6 7.14 0.79 10.12 

6 Das 10 29.182 9.91E-001 41.226 0.708 0.877 0.25 0.698 19.82 0.64 7.74 0.62 6.55 

mean           0.564 7.141 0.745 9.642 

               

Problem Lab Num RMSD P-value DI INF INF_wc INF_nwc INF_stacking clash pct_badbonds pct_resbadbonds pct_badangles pct_resbadangles 

10 DasRef 1 7.64 0.00E+000 8.876 0.861 0.929 0.7 0.861 0 0 0 6.67 98.83 

10 DasRef 2 10.539 1.50E-015 12.191 0.864 0.938 0.802 0.847 0 0 0 6.59 98.83 

10 DasRef 3 6.837 0.00E+000 8.157 0.838 0.936 0.717 0.823 0 0 0 6.46 98.83 

10 DasRef 4 7.077 0.00E+000 8.305 0.852 0.938 0.717 0.842 0 0 0 6.7 98.83 

10 DasRef 5 10.482 1.17E-015 11.944 0.878 0.938 0.778 0.87 0 0 0 6.73 98.83 

mean           0 0 6.63 98.83 

10 Das 1 7.58 0.00E+000 9.199 0.824 0.92 0.7 0.811 11.64 0.36 4.09 0.56 8.77 

10 Das 2 10.447 9.99E-016 12.588 0.83 0.929 0.778 0.803 11.64 0.36 4.09 0.56 8.19 

10 Das 3 6.803 0.00E+000 8.365 0.813 0.946 0.7 0.786 11.09 0.41 4.68 0.64 9.36 

10 Das 4 7.062 0.00E+000 8.539 0.827 0.948 0.684 0.809 10.73 0.41 4.68 0.56 9.94 

10 Das 5 10.417 8.88E-016 12.295 0.847 0.948 0.778 0.823 10.91 0.27 2.92 0.45 7.02 

mean           0.362 4.092 0.554 8.656 

               

pct_badbonds: percentage of bad bonds           

pct_resbadbonds: percentage of residues with bad bonds          

pct_badangles: percentage of bad angles           

pct_resbadangles: percentage of residues with bad angles          

*The refinements were done by Bujnicki lab to alleviate the atomic clashes in models of Das lab and named as DasRef.  



Figure S1. Chemical mapping data and secondary structure predictions of RNA Puzzle 5.  
(A) Secondary structure from crystallographic structures. 
(B) Secondary structure prediction using no experimental data with RNAstructure 

5.4 or 5.6 Fold. Nucleotides are colored according with SHAPE reactivities. 
Crystallographic pairings missing in this model and new non-crystallographic 
pairings are drawn as yellow and blue lines, respectively. Percentage labels 
give bootstrap support values. 

(C) Secondary structure prediction using no data with RNAstructure 5.6 
ShapeKnots. 

(D) Secondary structure prediction using 1D SHAPE data with RNAstructure 5.6 
Fold. 

(E) Secondary structure prediction using 1D SHAPE data with RNAstructure 5.6 
ShapeKnots. 

(F) Secondary structure prediction using 1D DMS/CMCT data with RNAstructure 
5.4 Fold. 

(G) Secondary structure prediction using 1D DMS/CMCT data with RNAstructure 
5.6 Fold. 

(H) Secondary structure prediction using 1D DMS/CMCT data with RNAstructure 
5.6 ShapeKnots. 

(I) Secondary structure prediction using 1D SHAPE and DMS/CMCT data with 
RNAstructure 5.6 Fold. 

(J) Secondary structure prediction using 1D SHAPE and DMS/CMCT data with 
RNAstructure 5.6 ShapeKnots. 

(K) Secondary structure prediction using 2D SHAPE M2 data with RNAstructure 
5.6 Fold. 

(L) Secondary structure prediction using 2D SHAPE M2 data with RNAstructure 
5.6 ShapeKnots. 

(M) Mutate-and-map (M2) dataset probed by the DMS. 
(N) Secondary structure prediction using 2D SHAPE M2 data with RNAstructure 

5.4 Fold. 
(O) Secondary structure prediction using 2D DMS M2 data with RNAstructure 5.6 

Fold. 
(P) Secondary structure prediction using 2D DMS M2 data with RNAstructure 5.6 

ShapeKnots. 
 
Figure S2. Chemical mapping data and secondary structure predictions of RNA Puzzle 6.  

(A) Secondary structure from crystallographic structures. 
(B) Secondary structure prediction without experimental data with RNAstructure 

5.4 or 5.6 Fold. Nucleotides are colored with SHAPE reactivities. 
Crystallographic pairings missing in this model and new non-crystallographic 
pairings are drawn as yellow and blue lines, respectively. Percentage labels 
give bootstrap support values. 

(C) Secondary structure prediction using no data with RNAstructure 5.6 
ShapeKnots. 



(D) Secondary structure prediction using 1D SHAPE data with RNAstructure 5.6 
Fold. 

(E) Secondary structure prediction using 1D SHAPE data with RNAstructure 5.6 
ShapeKnots. 

(F) Secondary structure prediction using 1D DMS/CMCT data with RNAstructure 
5.4 Fold. 

(G) Secondary structure prediction using 1D DMS/CMCT data with RNAstructure 
5.6 Fold. 

(H) Secondary structure prediction using 1D DMS/CMCT data with RNAstructure 
5.6 ShapeKnots. 

(I) Secondary structure prediction using 1D SHAPE and DMS/CMCT data with 
RNAstructure 5.6 Fold. 

(J) Secondary structure prediction using 1D SHAPE and DMS/CMCT data with 
RNAstructure 5.6 ShapeKnots. 

(K) Secondary structure prediction using 2D SHAPE M2 data with RNAstructure 
5.6 Fold. 

(L) Secondary structure prediction using 2D SHAPE M2 data with RNAstructure 
5.6 ShapeKnots. 

 
Figure S3. Chemical mapping data and secondary structure predictions of RNA Puzzle 10.  

(A) Secondary structure from crystallographic structures. 
(B) Secondary structure prediction without experimental data with RNAstructure 

5.4 or 5.6 Fold. Nucleotides are colored with SHAPE reactivities. 
Crystallographic pairings missing in this model and new non-crystallographic 
pairings are drawn as yellow and blue lines, respectively. Percentage labels 
give bootstrap support values. 

(C) Secondary structure prediction using no data with RNAstructure 5.6 
ShapeKnots. 

(D) Secondary structure prediction using 1D SHAPE data with RNAstructure 5.6 
Fold. 

(E) Secondary structure prediction using 1D SHAPE data with RNAstructure 5.6 
ShapeKnots. 

(F) Secondary structure prediction using 1D DMS/CMCT data with RNAstructure 
5.4 Fold. 

(G) Secondary structure prediction using 1D DMS/CMCT data with RNAstructure 
5.6 Fold. 

(H) Secondary structure prediction using 1D DMS/CMCT data with RNAstructure 
5.6 ShapeKnots. 

(I) Secondary structure prediction using 1D SHAPE and DMS/CMCT data with 
RNAstructure 5.6 Fold. 

(J) Secondary structure prediction using 1D SHAPE and DMS/CMCT data with 
RNAstructure 5.6 ShapeKnots. 

 
Figure S4. Chemical mapping data and secondary structure predictions of RNA Puzzle 5.  



(A) Normalized reactivity of RNA Puzzle 5 RNA, using SHAPE (1M7), DMS and 
CMCT in 1-dimensional chemical mapping. Reactivities were normalized to 
GAGUA referencing hairpins (not shown). 

(B) Secondary structure prediction using 1-dimensional SHAPE (1M7) data. 
Nucleotides are colored with SHAPE reactivities. Crystallographic pairings 
missing in this model and new non-crystallographic pairings are drawn as 
yellow and blue lines, respectively. Percentage labels give bootstrap support 
values. 

(C) Mutate-and-map (M2) dataset probed by the SHAPE reagent 1M7. 
(D) Secondary structure prediction using 2D SHAPE M2 data. 

 
Figure S5. Chemical mapping data and secondary structure predictions of RNA Puzzle 6.  

(A) Normalized reactivity of RNA Puzzle 6 RNA, using SHAPE (1M7), DMS and 
CMCT in 1-dimensional chemical mapping, in presence of 60 μM 
adenosylcobalamin. Reactivities were normalized to GAGUA referencing 
hairpins (not shown). 

(B) Secondary structure prediction using 1-dimensional SHAPE (1M7) data. 
Nucleotides are colored with SHAPE reactivities. Crystallographic pairings 
missing in this model and new non-crystallographic pairings are drawn as 
yellow and blue lines, respectively. Percentage labels give bootstrap support 
values. 

(C) Mutate-and-map (M2) dataset probed by the SHAPE reagent 1M7, in presence 
of 60 μM adenosylcobalamin. 

(D) Secondary structure prediction using 2D SHAPE M2 data. 
 

Figure S6. Chemical mapping data and secondary structure predictions of RNA Puzzle 10.  
(A) Normalized reactivity of RNA Puzzle 10 RNA, using SHAPE (1M7), DMS 

and CMCT in 1-dimensional chemical mapping, in presence of 1 μM partner 
RNA strand. Reactivities were normalized to GAGUA referencing hairpins 
(not shown). 

(B) Secondary structure prediction using 1-dimensional SHAPE (1M7) data. 
Nucleotides are colored with SHAPE reactivities. Crystallographic pairings 
missing in this model and new non-crystallographic pairings are drawn as 
yellow and blue lines, respectively. Percentage labels give bootstrap support 
values. 

	














