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The predictive modeling and design of biologically active RNA mole-
cules requires understanding the energetic balance among their basic
components. Rapid developments in computer simulation promise
increasingly accurate recovery of RNA's nearest-neighbor (NN) free-
energy parameters, but these methods have not been tested in pre-
dictive trials or on nonstandard nucleotides. Here, we present, to our
knowledge, the first such tests through a RECCES-Rosetta (reweight-
ing of energy-function collection with conformational ensemble sam-
pling in Rosetta) framework that rigorously models conformational
entropy, predicts previously unmeasured NN parameters, and esti-
mates these values’ systematic uncertainties. RECCES-Rosetta recovers
the 10 NN parameters for Watson—Crick stacked base pairs and 32
single-nucleotide dangling-end parameters with unprecedented accu-
racies: rmsd of 0.28 kcal/mol and 0.41 kcal/mol, respectively. For set-
aside test sets, RECCES-Rosetta gives rmsd values of 0.32 kcal/mol on
eight stacked pairs involving G-U wobble pairs and 0.99 kcal/mol on
seven stacked pairs involving nonstandard isocytidine-isoguanosine
pairs. To more rigorously assess RECCES-Rosetta, we carried out four
blind predictions for stacked pairs involving 2,6-diaminopurine-U
pairs, which achieved 0.64 kcal/mol rmsd accuracy when tested by
subsequent experiments. Overall, these results establish that com-
putational methods can now blindly predict energetics of basic RNA
motifs, including chemically modified variants, with consistently
better than 1 kcal/mol accuracy. Systematic tests indicate that re-
solving the remaining discrepancies will require energy function
improvements beyond simply reweighting component terms, and
we propose further blind trials to test such efforts.

RNA helix | ensemble prediction | simulated tempering |
thermodynamics | blind prediction

NA plays central roles in biological processes, including

translation, splicing, regulation of genetic expression, and
catalysis (1, 2), and in bioengineering efforts to control these
processes (3-5). These critical RNA functions are defined at
their most fundamental level by the energetics of how RNA folds
and interacts with other RNAs and molecular partners, and how
these processes change upon naturally occurring or artificially
introduced chemical modifications. Experimentally, the folding
free energies of RNA motifs can be precisely measured by op-
tical melting experiments, and a compendium of these mea-
surements have established the nearest-neighbor (NN) model for
the most basic RNA elements, including double helices with the
four canonical ribonucleotides (6). In the NN model, the stability
of a base pair is assumed to only be affected by its adjacent base
pairs, and the folding free energy of a canonical RNA helix can
be estimated based on NN parameters for each stacked pair, an
initialization term for the entropic cost of creating the first base
pair, and corrections for different terminal base pairs. Although
next-NN effects and tertiary contacts are not treated in the NN
model (7-9), the current NN model gives accurate predictions for
the folding free energies of canonical RNA helices (<0.5 kcal/mol
for helices with 6-8 base pairs) (10, 11) and can be extended to
single-nucleotide dangling ends, chemically modified nucleotides,
and more complex motifs, such as noncanonical base pairs, hair-
pins, and internal loops (11-14). However, it is currently not
feasible to experimentally characterize the energetics of all RNA
motifs due to the large number of possible motif sequences and the
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requirement of specialized experiments to address complex motif
topologies, such as three-way junctions (15-17). These consider-
ations, and the desire to test physical models of RNA folding, have
motivated several groups to pursue automated computational
methods to calculate the folding free energies of RNA motifs.
Current computational approaches are beginning to recover
NN parameters for the simplest RNA motifs with accuracies
within a few-fold of the errors of experimental approaches. For
example, the Rosetta package has been developed and exten-
sively tested for structure prediction and design of macromole-
cules, including RNA. Recent successes at near-atomic resolution
have leveraged an all-atom “score function” that includes phys-
ics-based terms (for hydrogen bonding, van der Waals packing,
and orientation-dependent implicit solvation) and knowledge-
based terms (for, e.g., RNA torsional preferences) (18). When
interpreting the total score as an effective energy for a confor-
mation, simple Rosetta calculations recover the NN parameters
for all canonical stacked pairs with an rmsd of less than 0.5 kcal/mol
upon fitting two phenomenological parameters, the Rosetta
energy scale and a constant offset parameterizing the confor-
mational entropy loss upon folding each base pair (ref. 18 and
see below). In parallel, molecular dynamics studies have dem-
onstrated calculation of folding free energies of short RNA
hairpins using umbrella sampling, molecular mechanics—Poisson
Boltzmann surface area (MM-PB/SA), free energy perturbation,
and other methods (19-22). Although these calculations have not
yet accurately recovered folding free energies (errors > 10 kcal/mol)
(21, 22), relative differences of NN parameters between different
sequences and other aspects of RNA motif energetics have been
recovered with accuracies between 0.6-1.8 kcal/mol (22-24).
These error ranges are similar or lower than uncertainties of
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empirically defined NN parameters for most motifs, which are on
the scale of 1 kcal/mol. For example, original NN energy esti-
mates for G-U stacked pairs, single-nucleotide bulges, and
tetraloop free energies have been corrected by >1 kcal/mol when
revisited in detailed studies (11, 25-27). Overall, computational
approaches may be ready for calculations of new energetic pa-
rameters, including parameters for these uncertain motifs as well
as for motifs involving nonstandard nucleotides that are being
found throughout natural coding and noncoding RNAs (28, 29)
or used to engineer new RNA systems (30, 31). However, the
predictive power of these methods has not been evaluated through
tests on previously unmeasured NN parameters. Predictive tests
are particularly important because models are increasing in com-
plexity and risk overtraining on previously available data.

Here we report, to our knowledge, the first blind tests of a
method to computationally predict NN energetic parameters.
The newly measured parameters involve RNA stacked pairs
with the nonnatural nucleotide 2,6-diaminopurine (D) paired to
uracil (Fig. 1). To ensure a rigorous comparison, calculations
were carried out by one author (F.-C.C.) and subsequently tested
in independent experiments by another author (W.K.). In pre-
paration for this blind test, we developed a reweighting of
energy-function collection with conformational ensemble sampling
in Rosetta (RECCES-Rosetta) framework to calculate free en-
ergies based on density-of-states estimation and expected errors
from statistical precision, inaccuracies in the NN assumption,
and uncertainties in the weights of the underlying energy func-
tion. Furthermore, to address previous ad hoc assumptions used
to fit conformational entropy from data, RECCES calculates
the conformational entropy of helix and single-stranded states
without fitting of additional parameters. These systematic
improvements—and calibration based on previously measured NN
parameters—ensured that our blind tests carried sufficient power to
rigorously establish the accuracy and limitations of NN energy cal-
culations that seek to make nontrivial predictions.
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Fig. 1. Base pairs involved in NN parameters considered in this study.
(A) Canonical pairs adenosine—uracil and guanosine—cytidine, (B) guanosine—
uracil wobble pair, (C) nonnatural isoguanosine-isocytidine, (D) nonnatural
2,6-diaminopurine-uracil, and (E) inosine—cytidine.
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Results

Recovery of Canonical Helix and Dangling-End Parameters. Blind
tests of a prediction method are not worthwhile if the expected
prediction errors significantly exceed the range of possible ex-
perimental values—on the order of several kilocalories per mole
for NN parameters. We therefore first sought to determine whether
folding free-energy calculations with the Rosetta all-atom energy
function, previously developed for RNA structure prediction and
design, could recover NN energetics for canonical Watson—Crick
stacked pairs and whether these calculations’ uncertainties were ac-
ceptable for making blind predictions. The Rosetta energy function
involves separate component terms for hydrogen bonding, electro-
statics, van der Waals interactions, nucleobase stacking, torsional
potentials, and an orientation-dependent solvation model. Prior
structure prediction and design studies did not strongly constrain
the weights of these components (18). Thus, we anticipated that
NN parameter prediction would require optimization of the weights
and care in uncertainty estimation. To assess whether the errors
due to weight uncertainties would allow nontrivial predictions, we
sought not just a single weight set but instead a large collection of
weight sets consistent with available data.

To discover these weight sets, we developed the RECCES
framework for sampling conformational ensembles of the single-
stranded and helix conformations relevant to NN energy estimation
(Fig. 2 and SI Appendix, Table S1). Through the use of a density-
of-states formalism, simulated tempering, and weighted histogram
analysis method (WHAM) integration, RECCES allowed the es-
timation of free energies with bootstrapped errors of less than
0.003 kcal/mol, significantly less than systematic errors of 0.3 kcal/mol
(estimated below; SI Appendix, Tables S2-S4), using two central
processing unit (CPU) hours of computation per molecule. These
methods are similar to replica exchange methods in common use
in molecular dynamics studies, but are simpler in that they do not
require running multiple parallel processes (SI Appendix, Support-
ing Methods). Importantly, the overall RECCES framework did not
require separate fitting of conformational entropy factors, re-
ducing the likelihood of overfitting. Furthermore, starting from
these initial simulations, RECCES enabled evaluation of alterna-
tive weight sets with negligible additional computation (<0.1 s)
through a rapid reweighting of cached energies. Though noisy at
low energies (compare green to blue curves in Fig. 2C), we con-
firmed that this reweighting procedure nevertheless led to an ac-
ceptable mean calculation error of 0.28 kcal/mol (SI Appendix,
Table S4), significantly smaller than the several kilocalories per
mole range of experimental NN parameters (SI Appendix, Table
S1). Further tests of the NN assumption, based on simulations
with different helix contexts for each stacked pair, also gave sys-
tematic errors of 0.2-0.3 kcal/mol (SI Appendix, Table S2).
Hereafter, we conservatively describe the systematic errors of the
RECCES-Rosetta NN parameter estimates to be the higher value
in this range, 0.3 kcal/mol.

To obtain a collection of weight sets, we used RECCES to
optimize the weights of all terms in the Rosetta score function
over numerous runs with different initial values. These optimi-
zation runs minimized the mean square error with respect to the
NN parameters of 10 canonical stacked pairs (four base pairs
next to four base pairs, removing symmetric cases), 32 single-
nucleotide dangling ends (four nucleotides at either the 5’ or 3’
end of four base pairs), and the terminal penalty for A-U vs. G-C.
The resulting 9,544 minimized weight sets were highly diverse,
even after discarding the weight sets with 5% worst rmsd agree-
ment to training data (SI Appendix, Table S5, describes score
terms and summarizes mean and SDs of weights; SI Appendix,
Table S6, gives five example weight sets). Most score terms were
recovered with mean weights greater than zero by more than one
SD, confirming their importance for explaining RNA structure
and energetics. These terms included stack_elec, which models the
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Fig. 2. RECCES thermodynamic framework and reweighting. (A) Example sys-
tems simulated for this study. Degrees of freedom sampled are colored in white.
The relative orientation of first base pair in each helix was fixed (Right, yellow
dashes). (Upper and Lower) Folding reactions of two-base-pair and three-base-
pair systems, respectively. (B) Density of state estimation by simulated tempering
and WHAM. (C) Reweighting demonstration. (Left) State population at room
temperature before (blue) and after (green) reweighting. (Right) Two-dimensional
population histograms of fa_atr (Lennard-Jones attraction) vs. hbond_sc (hydro-
gen bonds) energy components, before and after reweighting.

electrostatic interaction between stacked nucleobases, an effect
previously posited by several groups to be important for under-
standing fine-scale RNA energetics (14, 32). Terms with wider
variance across weight sets could be explained through their co-
variance with other terms. For example, some pairs of score terms,
such as the nucleobase stacking term fa_stack and the van der
Waals term fa_atr, model similar physical effects, but other pairs
model opposing effects in helix association, such as hydrogen
bonding hbond_sc and the solvation term for burying polar moi-
eties geom_sol_fast (SI Appendix, Table S7). The weights of these
pairs varied significantly across optimized weight sets, but linear

Table 1. Accuracies of nearest-neighbor parameter predictions

combinations of these weight pairs were nearly invariant across the
weight set collection (SI Appendix, Fig. S1).

Despite the variations and covariations observed across this large
collection of weight sets, each weight set gave an rmsd accuracy of
better than 0.58 kcal/mol for canonical base pairs and dangling ends,
with a mean accuracy of 0.40 kcal/mol across all training data. These
accuracies were significantly better than rmsds of 1.51 kcal/mol and
1.23 kcal/mol, respectively, obtained with the original structure pre-
diction weights, supporting the need for reweighting (SI Appendix,
Table S6). The rmsd over just the canonical stacked base pairs was
0.28 kcal/mol (Fig. 34), comparable in accuracy to the initial exper-
imental estimates of these values (10, 12) and consistent with the
estimated systematic errors of our calculation strategies (0.3 kcal/mol)
(SI Appendix, Tables S2 and S4). For the dangling-end data, RECCES-
Rosetta also gave an excellent rmsd of 0.41 kcal/mol (Fig. 3B). For
these data, the largest deviations from experiment were tagged as
having the highest expected error from weight uncertainties by
RECCES, supporting this method of error computation (see,
e.g., >0 dangling end in SI Appendix, Table S1). For both sets of
NN ﬁffameters, the rmsd errors were significantly smaller than
the range of experimental values (2.5 kcal/mol and 1.5 kcal/mol for
canonical stacked pairs and dangling ends, respectively), leading to
the visually clear correlations in Fig. 3 A and B. The terminal
penalty for A-U relative to G—-C was also recovered with a similar
error (0.3 kcal/mol) (SI Appendix includes further discussion and
computation of other terminal base pair contributions).

Because we directly trained the RECCES score function
against the experimental dataset, the accuracies of these results
were expected. Nevertheless, we gained further confidence in the
use of Rosetta-derived energy functions and RECCES framework
by comparing its performance to the results of two simpler models
trained on the same data. First, a three-parameter hydrogen-bond
counting model, similar to simple phenomenological models that
inspired the NN parametrization (10) (SI Appendix, Supporting Methods),
achieved rmsd accuracies of 0.29 kcal/mol and 0.45 kcal/mol on
canonical stacked pairs and dangling ends, respectively—slightly
worse than the RECCES results (0.28 kcal/mol and 0.41 kcal/mol,
respectively), despite including fitted parameters that account for
conformational entropy loss of base pairs and dangling ends. Sec-
ond, a prior single-conformation Rosetta method, which uses the
same energy function as RECCES-Rosetta but evaluates the score
only for a minimized helix conformation (18) achieved accuracies of
0.30 kcal/mol and 0.44 kcal/mol for canonical stacked pairs and
dangling ends, respectively—again worse than the RECCES-
Rosetta results despite including separately fitted conformational
entropy terms. For all three models, the largest deviation was for

the stacked pair ig}z, which is less stable than the other stacked

pairs with two G—C pairs by 1 kcal/mol; still, even for this param-
eter, the RECCES—-Rosetta calculations were more accurate than
the simpler models. These comparisons supported the utility of

Rmsd accuracy (kcal/mol)

RNA motif category  No. motifs = Hydrogen-bond counting  Single-conformation Rosetta RECCES—Rosetta RECCES-Rosetta refitted*
Canonical® 10 0.29 0.30 0.28 0.41
Dangling® 32 0.45 0.44 0.41 0.43
G-U* 8 0.59 0.49 0.32 0.32
iG-ic* 7 0.79 0.85 0.99 1.08
D-US 4 0.48 0.40 0.63 0.46
All 61 0.50 0.49 0.50 0.53

*The model was trained with all data available, so all entries in the column are training data.

"Data used in training the models.
*Data set aside for testing.
SBlind test data.
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Fig. 3. Calculations vs. experiment for each NN parameter set. (A) Canonical
stacked pairs; (B) single-nucleotide dangling ends; (C) stacked pairs including
one G-U pair; (D) stacked pairs including at least one iG-iC pair; (E) stacked
pairs including one D-U pair. All panels are drawn with the same axis limits
and a line of equality (dashed) to aid cross-panel visual comparison.

the RECCES-Rosetta method compared with less generalizable
models. However, the significance in the accuracy improvement was
difficult to rigorously evaluate because the models contained dif-
ferent numbers and types of parameters; we therefore turned to
independent test sets and blind predictions.

Tests on Independent Nearest-Neighbor Parameter Measurements.
Recent comprehensive experimental measurements have updated
the NN parameters for stacked pairs involving G-U wobble
pairs next to canonical Watson—Crick pairs (11). Because these
values were not used in the training of the models herein and
because the geometry of G-U wobble pair is distinct from G-C
and A-U pairs (Fig. 1B), this set of measurements offered strong
tests of modeling accuracy. Furthermore, the expected error in the
RECCES-Rosetta calculations from weight uncertainties, based on
variation across the large collection of weight sets, was 0.22 kcal/mol
(ST Appendix, Table S1), less than the estimated ~0.3 kcal/mol
systematic error (S Appendix, Tables S2 and S4). Both error con-
tributions were significantly less than the full range of predicted NN
parameters (2.1 kcal/mol), supporting the strength of this test. The
actual rmsd accuracy across these G-U NN measurements was
0.32 kcal/mol for RECCES-Rosetta (Table 1), nearly as accurate
as the recovery of training set stacked pairs (0.28 kcal/mol) and
comparable to expected systematic errors. Furthermore, this accuracy
over G-U-containing stacked pairs outperformed the rmsd values
calculated from hydrogen-bond counting and single-conformation

Chou et al.

Rosetta scoring methods (0.59 and 0.49 kcal/mol, respectively) by 50—
80%, supporting the importance of carrying out detailed physical
simulations of the conformational ensemble via RECCES over sim-
pler approaches. Here and below, the predictions and their estimated
errors were calculated by computing means and SDs of NN param-
eters across the full collection of weight sets discovered by RECCES.
Compared with this averaging over multiple models, using the
single weight set with best fit to the training data gave slightly worse
accuracies on the test data (S Appendix, Table S6) (33).

A more difficult test involved seven previously measured NN
parameters of a nonnatural base pair, iG—iC (Fig. 1C) (34). The
rmsd for the iG-iC test case was 0.99 kcal/mol, mainly due to two

significant outliers: S,fGiC q79¢ (Fig. 3D). The predicted NN

parameters for thegeC guthers3 CWere larger than experimental
values (less stable) by 2.2 and 1.3 kcal/mol, respectively. Never-
theless, over the other five iG-iC NN parameters, the rmsd was
0.51 kcal/mol, and the discrepancies appeared primarily due to a
systematic offset in the predictions (Fig. 3D). The accuracy was
comparable to the maximum errors expected from weight un-
certainties (0.4-0.5 kcal/mol) and similar, in terms of relative
accuracies, to the canonical and G-U-containing stacked pairs
above. Compared with RECCES-Rosetta, the simpler hydrogen-
bond counting and single-conformation Rosetta scoring models
gave 15-20% better accuracies (0.79 and 0.85 kcal/mol, re-
spectively; 0.47 and 0.44 kcal/mol, excluding outliers); but both
simple models gave near-constant NN parameters (range less
than 0.3 kcal/mol) over all stacked pairs, providing no explana-
tion for the 2.2 kcal/mol range in experimental measurements or
for the outliers (Fig. 3D). On one hand, the two outliers suggest
that some important physical effect is missing or incorrectly
implemented in the current calculation procedure (see Discussion).
On the other hand, the excellent accuracies over the other iC-iG-
containing stacked pairs, along with the performance in the G-U
test set, motivated us to continue with blind comparisons.

Blind Tests Involving Diaminopurine-Uracil Base Pairs. As a blind
test, we applied RECCES-Rosetta to predict the NN parame-
ters for stacked pairs involving a distinct nonnatural base pair,
2,6-diaminopurine paired with uracil (D-U) (Fig. 1D). Predictions of
these parameters (SI Appendix, Table S1) suggested a wide range of
NN values and confirmed that errors from weight uncertainties
were smaller or comparable to other systematic sources of error
(0.3 kecal/mol). To test these predictions, we measured NN param-
eters for the four stacked pairs involving D-U next to G-C pairs,
which were expected to have a range of 0.8 kcal/mol. SI Appendix,
Table S8, gives construct sequences and experimental folding free-
energy values for these constructs, and Table 1 and SI Appendix,
Tables S1 and S9, summarize the NN parameter estimation. The
rmsd of the RECCES—Rosetta blind predictions was 0.63 kcal/mol
(Fig. 3E). The hydrogen-bond counting and single-conformation
Rosetta scoring models, which fared worse than RECCES-Rosetta
in most tests above, gave rmsds of 0.48 and 0.40 kcal/mol, re-
spectively, better than RECCES-Rosetta by 24-37% (Table 1). This
result is similar to what we observed in the iG-C test case; indeed,
the two simple models again produced near constant predictions
(range < 0.2 kcal/mol) for the D-U stacked pairs that did not account
for the 0.8 kcal/mol range of the measured values (Fig. 3E). Given
the blind nature of the test and our attempts to ensure its power to
falsify our calculations, this test unambiguously indicated that some
physical term is missing in the current Rosetta all-atom energetic
model (as well as simpler models). Nevertheless, the results are en-
couraging: the blind predictions from each of the three models over
each of four NN values separately achieved better than 1 kcal/mol
accuracy compared with subsequent experimental measurements.

Post Hoc Fit Across All Data. Though post hoc tests of models on
prior collected data are less rigorous than blind trials, they can
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help guide future work. As a final test, we wished to understand
possible explanations for the worse accuracy of RECCES-
Rosetta in iG-iC test cases and blind D-U trials compared with
the G-U test cases. One model for this inaccuracy was that
overfitting of energy function weights to the training data wors-
ened predictive power over the new data. Another (not neces-
sarily exclusive) model was that the underlying energy function
derived from Rosetta score terms was fundamentally incapable
of modeling the available NN data under any weight set with the
RECCES procedure. We were able to test these models by car-
rying out a post hoc global fit of energy function weights over all
available NN data (Fig. 4 and Table 1). As expected, we observed
better fits to the test data, including an improvement in rmsd
accuracy for the four D-U stacked pairs from 0.63 kcal/mol to 0.46
kcal/mol; this result suggests a modest overfitting to the training
set in the studies above. However, we observed somewhat worse
fits to the training data, including a worsening of rmsd accuracy for
the 10 canonical stacked pairs from 0.28 to 0.41 kcal/mol, worse
than expected systematic errors in our calculations (0.3 kcal/mol)
(SI Appendix, Tables S2 and S4) supporting the second model
of fundamental energy function inaccuracy. Furthermore, this
global fit still failed to account for the two striking outliers involving
iG-iC base pairs, again giving evidence for the second model:
energetic calculations based on the current Rosetta score function
are fundamentally incapable of accounting for all of the data within
expected error, even with a post hoc optimized weight set.

Discussion

This study reports, to our knowledge, the first blind test of the
predictive power of high-resolution, all-atom modeling methods
for RNA folding energetics. We developed a RECCES strategy
in the Rosetta framework that rigorously models conformational
ensembles of single strand and helical states, is computationally
efficient (hours with currently available CPUs), and brackets
systematic errors based on comprehensive reweighting tests.
Compared with simpler phenomenological methods, RECCES-
Rosetta achieved excellent rmsd accuracies for the NN param-
eters of canonical base pairs, dangling ends, and G-U pairs, but
somewhat worse results for NN parameters involving nonnatural
base pairs iG-iC and D-U. The latter D-U parameters were
measured after the predictions as a blind test. The computational
accuracies were better than 1 kcal/mol in all cases, based on rmsd
values over each separate set of NN parameters (0.28, 0.41, 0.32,
0.99, and 0.63 kcal/mol for canonical, dangling end, G-U, iG-iC,
and D-U parameters, respectively) and also individually for each
of the four blind predictions. These rmsd values are significantly
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smaller than the 2-3 kcal/mol ranges measured for these sets of
NN values (Fig. 4 and SI Appendix, Table S1), are comparable to
errors in ad hoc fits used in the current NN model for most motifs
(11, 25-27), and are generally smaller than molecular dynamics
calculations that remain significantly more expensive (21, 22). The
generality of the RECCES-Rosetta framework and this level of
success in initial tests support the further development of RECCES—
Rosetta for nonnatural nucleotides and for motifs more complex
than the helical stacked pairs and dangling ends considered herein.

While achieving consistently sub-kcal/mol accuracies, there is
room for improvement in the RECCES-Rosetta approach. For
example, the modeling does not account for the 1 kcal/mol sta-
bility increase of the S:GC NN parameter relative to z(c;g, the
electrostatic term stack_elec does favor the former, but is not
assigned a strong enough weight in the final fits to account for
the stability difference. Also, the rmsd accuracies still remain
larger than estimated systematic errors (0.3 kcal/mol), particu-
larly for the nonnatural base pairs in the test data, and the dis-
crepancies remain even if those data are included in a post hoc
fit of the energy function weights to all available measurements.
Our results help bracket which strategies might improve the
accuracy and which might not. On one hand, nonnatural pairs
present their atomic moieties in different bonded contexts, which
might modulate the strengths of hydrogen bonds or other in-
teractions that they form. For example, a previous analysis sug-
gested that the hydrogen bonds in an iG—-iC base pair might be
stronger than in a G-C base pair by ~0.4 kcal/mol (14). Ac-
counting for this effect would be predicted to offset our calcu-
lated NN parameters for all iG-iC stacked pairs, without
changing their relative ordering, and cannot account for strong
outliers. Indeed, if we added an extra fitting term for stabilizing
iG-iC pairing, the rmsd accuracy over these data did not sig-
nificantly improve (0.96 kcal/mol vs. 0.99 kcal/mol without the
extra term). On the other hand, several unmodeled factors are
sensitive to the ordering of base pairs within stacked pairs and
could affect the relative ordering of NN parameters within each
set. For example, the current Rosetta all-atom score function
models electrostatics through fixed charges with a distance-
dependent dielectric and does not explicitly model water or
counterions that may differentially stabilize the base pair steps
(35, 36). Recent and planned additions of nonlinear Poisson—
Boltzmann solvation models, polarizable electrostatic models,
and a potential of mean force for water-mediated hydrogen
bonding into the Rosetta framework should allow evaluation of
whether these physical effects can improve accuracy of NN
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Fig. 4. Calculations vs. experiment across all NN parameters. Comparisons are based on (A) RECCES-Rosetta weight sets trained on canonical and dangling-
end data (same values as in Fig. 3) and (B) “best-case” weight sets fitted post hoc over all available NN parameters, including D-U stacked pairs measured for

blind predictions.
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parameter calculations to the 0.3 kcal/mol fundamental limit of
the RECCES method. If these models can also be expanded to
calculate the temperature dependence of solvation, it may also
become possible to compare calculated and measured entropies
and enthalpies of the NN parameters, which are well measured
but may be dominated by solvation effects. In addition, we
propose that calculations for recently characterized stacked pairs
that give anomalous NN parameters, including some tandem
G-U stacked pairs (11) and pseudouridine-A—containing stacked
pairs (37, 38), could offer particularly stringent tests.
Continuing work in modeling RNA energetics will benefit from
further blind trials, perhaps in a community-wide setting analogous
to the ongoing RNA-puzzle structure prediction trials (39, 40). The
prediction of two kinds of parameters could serve as future blind
tests. First, based on the results herein, nonnatural base pairs offer
good test cases and require the same amount of computational
power as canonical base pair NN parameter estimation. Alterna-
tive approaches based on, e.g., molecular dynamics, should also be
applicable to these cases. We have completed RECCES-Rosetta
predictions for additional stacked pairs involving iG-iC and D-U
pairs, as well as for inosine—cytosine (I-C) base pairs (Fig. 1E and
SI Appendix, Table S1), but are waiting to make experimental
measurements until there are comparison values from other groups
and approaches. Second, future blind trials might involve predict-
ing energetics of RNA motifs more complex than those considered
herein, such as apical loops, internal loops, multihelix junctions,
and tertiary interactions. For these cases, an expansion of the
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RECCES approach in which physically realistic candidate confor-
mations of each motif are first estimated with structure prediction
(18, 41) and then subjected to rigorous RECCES-based free-en-
ergy calculations may offer predictive power. Such an approach may
also allow calculations of next-NN effects and development of rapid
approximations to estimate conformational entropy of candidate
conformations, which would be useful for structure prediction and
design (SI Appendix, Fig. S2). A new generation of high-throughput
RNA biochemistry platforms (42-44) offers the prospect of both
training these next-generation energetic prediction algorithms and
carrying out blind tests with many thousands of measurements.

Materials and Methods

Details of NN parameter estimation with RECCES (including basic equa-
tions, simulation parameters, and energy function) and with simple single-
conformation methods, as well as methods used to experimentally estimate
NN parameters for helices with D-U base pairs, are presented in S/ Appendix.
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Supporting Methods
Nearest-neighbor Parameter Estimation with RECCES

In this section, we describe computation of NN parameters under the RECCES framework. First, we
review how NN parameters can be determined from either experimental measurements or
computational estimates of the folding free energies of individual helix motifs. Hereafter, ‘folding free
energies’ refers to the free energy of association of two separate strands into a folded A-form helix at
1 M standard state. First, we discuss a simple example involving association of two GC segments with
each other, in the context of a longer helix. Second, we describe the calculations of NN parameters for
the general case where the helix strand segments have different sequences as well as calculations for
dangling-ends, again in terms of well-defined folding free energies of specific complexes. The presented
relations apply to both experimental and computational studies. Third, for computational approaches,
we show how each of these folding free energies can be computed based on the free energies of the
complex and of the separate strands (in a ‘random coil’ state). Last, we describe the RECCES sampling
framework, which uses simulated-tempering Monte Carlo to efficiently sample the density of states of

and then evaluate the free energy of each single-strand and helix molecule.

Nearest-neighbor Parameters with Symmetric G-C pairs

5'GC
Here we compute a NN parameter of the stacked pair (3’CG) using the folding free energies of two

helix motifs with different lengths. The NN model assumes that the folding free energy of an RNA helix

can be decomposed into the sum of the contribution of each NN fragment. For example,



5'GG 5'GG
AG/‘ = AGNA/ + AGim’t

3'CC 3'CC "
5'GGC 5GG 5'GC
AG, = AG,, +AGy, +AG,,
3ceG Wi3ce 3CG

where AG, is the folding free energy of the given helix; the terms AG,, are the NN parameters; and

AG,

... accounts for the entropic penalty of initiating the helix with the first G-C base pair. Hereafter, the
free energies are computed at standard states in which each molecule is at 1 M concentration and the
temperature is 37 °C, conditions at which most values of NN parameters are tabulated in the
experimental literature. (Similar expressions for the temperature dependence of energetics lead to
relations involving AH and AS . Calculating these parameters from simulations requires understanding

the dependence of solvation and other physical effects on temperature and will not be considered

herein.)

5'GC
In the above example, the folding free energy expression of the second helix contains the AG,,, (S'CG)

parameter, which we wish to determine from experimental measurements or computer simulations.

Taking the difference of the two folding free energies above, we have:

5'GC 5'GGC 5'GG
AG,, = AG, -AG, (2)
3¢G) \3eeg) T (3cc

Note that AG,, cancels out in the above equation. Calculating AG, ,requires accounting for the

translational and rotational entropy lost upon helix association and requires separate computations

beyond the scope of the present work.



Nearest-neighbor Parameter Estimation, General Case

The example above illustrates the evaluation of NN parameters involving two helix-associating segments
with the same two-nucleotide sequence. The more general case involves taking into account an
additional parameter, the terminal penalty, as discussed next.

5'GA3'
As an example, we describe the computation of the nearest-neighbor parameter AG,, ( )

3'Ccus
Following the procedure in egs. (1)-(2) above, this can be evaluated from folding free energies

5'GG

5'GGA . .
‘,.( ) and AG, (3‘CC) . The relationships assumed by the NN model are:

3'CCU

5'GGA 5'GG 5'GA
AGf( )=AGNN( )+AGNN( )+AG +AG

3'CCU 3'CC 3'CU init Terminal-AU (3)
aG, |29 =AG,, GG a6 )
/ 3'CC 3'CC ini

Here AG

rominal_4y 1S the terminal contribution for having an A-U pair at the terminal of the helix instead
of G-C. Determining this additional term requires additional folding free energies, as follows. The

5'0C3'
3'AGS'

S'GA3

definition of the NN model requires AG,,
3'CUs'

) to be the same as AGNN( ), flipping the upper

5'GUC
and lower sequence. Analogous to eq. (3), we can write the parameter in terms of AG,.( ) and

3'CAG
5'GU
AGf. :
“13'CA



AG, SGUC)_ 6 [SGU), pg [SUC) 56
3'CAG 3'CA 3'AG

5'GU 5'GU
AGf (B'CA) = A(;NN (3‘CA)+ AGin[t + AGTermina/—AU

(4)

The NN parameter and the terminal A-U contribution can now be computed in terms of measurable

folding free energies AGJ, of helix association as:

AG,, 5'GA _1 AG, 5'GGA -G, 5'GG +AG, 5'GUC -G, 5'GU
3CU) 2 3'CCU “\3'CC 3'CAG “\3'CA

(5)
1 5'GGA 5'GG 5'GUC 5'GU
AGTerminal—AU =5 AGf , - AG/ , - AGf , + AG/ ,
2 3'CCU 3'CC 3'CAG 3'CA

Other NN parameters and terminal contributions can be similarly evaluated in terms of folding free
energies of two-base-pair and three-base-pair helices. In our calculations, we checked that using helices
of different lengths or with a different first base pair led to systematic errors of 0.26 kcal/mol or less in

final NN values (Table S2).
The Dangling-End Nearest-neighbor Parameters
The other NN parameters considered herein are for single-nucleotide dangling ends. These dangling-

5'GAA
end parameters contribute to the folding free energies of complexes such as AG, (S'CU ) :

AG (5 GAA) =AG (5 GA) +AG,, (5 AA) +AG, +AG

f 3VCU - NN 3‘CU 3|U init Terminal-AU (6)
5'GA 5'GA
AG/' (3‘CU) = A(;NN (3,CU) + A(;im'z + AGTBrmina/—AU



Al

5
Similar to above [eq. (2) and (5)], the dangling-end NN parameter AGNN( ) can be estimated from

the difference of folding free energies for complexes with and without the dangling-ends:

5'AA 5'GAA 5'GA
AG,, = AG, ~AG, (7)
3U \3cu \3cu

As a brief note of clarification, the experimental measurements of the dangling-end parameters were
presented in a 1995 study, before the A-U terminal contribution was introduced into the NN model (1);
eq. (6) is the appropriate update to include the terminal contribution. In either case, however, the
simple expression (7) applies to determine the dangling end NN parameters from folding free energies,

and the tabulated computational values below use this shared expression.

Free Energy Computation and Score Function Reweighting

In the above sections, we expressed the NN parameters as linear combinations of the folding free
energies of strands folding into helices, which can be measured experimentally or estimated through
computation. In our computational approach, the folding free energy of a helix is defined as the
difference in the free energies of the helix and of the two separated single-strand molecules, i.e. the two

states involved in the folding equilibrium (main text Figure 2a):



5'GGC

GGC+GCC=—=
3'CCG
G, SGGE) _ (566 -G(GGC)-G(GCC)
3'CCG 3'CCG @)
GG + CC—s> 96
3'CC
AG, A e -G(GG)-G(cc)
\3'cC 3'CC

5'GGC

Here the terms G
3'CCG

), G(GGC), etc. are not free energy differences (AG ) but are instead the ‘raw’

free energies of the helices and single-strands, each defined by an integral over the system’s

conformational space:

G=-k,TInZ

z={[..[d6,d0,..do, exp(_WJ

(9)

Here the partition function Zis the integration of the Boltzmann factor over all accessible torsion angles
6; of the molecule, E is the internal energy of the molecule at a conformation specified by the torsion
angles, kg is the Boltzmann constant, and T is the system’s temperature. In the folded state, because the
energy of a single molecule is independent of translational and rotational degrees of freedom, those
degrees of freedom only contribute to a constant factor to the free energy of the system, which is
omitted in the above expressions. For bimolecular systems (e.g., the two disassociated strands), the
system free energy does depend on the relative positions and orientations of the molecules, but the
translational/rotational entropy from these terms cancel out in the determination of the NN parameters

[see, e.g., egs. (2) and (7) above] considered herein.



While eq. (9) can theoretically be used to directly compute the molecule’s free energy, it is challenging
to integrate the expression over all torsion angles, especially when the system has a large number of
degrees of freedom. Instead we compute the partition function by estimating the molecule’s density of

states (DOS), g(E):

¥ E
Z=V |dEg(E -—
Jurcoon|-£)

[--[db,..d0 5(x~E©,,--,6,))
v

P

(10)

g(x)=

v =[..[de,..de,

Here & is the Dirac delta function; and V, is the total phase space volume available to the molecule,
which can be calculated exactly (see below). Due to normalization by the V,, factor, the DOS g(E)
integrates to unity. The DOS describes the probability distribution of the molecule’s energy at infinite
temperature. Once determined, it allows the calculation of the partition function and hence free
energies at any temperature. However, in practice, an infinite temperature simulation gives negligible
sampling of the DOS for low energy states. Therefore, to estimate the DOS precisely at all temperatures,
we carry out simulations of the conformational ensemble at different temperatures, providing estimates
of g(E) within different, overlapping temperature ranges, up to a different scaling factor for each
simulation. Overlaying these distributions in overlapping energy regimes defines the unknown scaling
factors at each temperature and yields a portrait of g(E) across all temperature ranges, with the final

overall normalization set by the property that g(E) integrates to unity.



To carry out simulations of conformational ensembles, we used Metropolis Monte Carlo sampling, with
states defined as follows. For a single RNA strand, we allowed all backbone and side-chain torsions to
freely sample the entire range of 2z = 360°, except for the sugar puckers, which were only allowed to
sample two conformations, the ideal 2’-endo and 3’-endo puckers (main text Figure 2A, left panels). The

phase space volume is V/ =2"(2)"(2)"™", where n is the number of nucleotides in the strand. Here 2"

represents the two sugar pucker forms,

(27)" represents the side-chain torsions (x angle), and (27)*""" represent the backbone torsions

connecting the sugars [five torsions (g, {, a, B, y) for each connection, n — 1 connections between n
nucleotides]. The 5" and 3’ terminal phosphates were omitted in the simulated constructs. When
included, these phosphates did not make stable interactions and instead gave constant entropic

contributions that canceled out during the folding free energy evaluation.

For the helix state, we froze the relative position between the two strands by forcing the first base pair
to take an ideal geometry (main text Figure 2A, right panels). This constraint eliminates translation and
rotational entropy contributions to computed helix free energy, which cancel out during the calculations
of NN parameters; see, e.g., eq. (2). This cancellation allows the sampling to focus on estimating energy
fluctuations and conformational entropy important for the considered NN parameters. The sugar
puckers of all nucleotides were restricted to the 3’-endo form, and the other torsions were allowed to

sample values between +60° around ideal A-form torsion angles (a =—64°, 3 = 176", y =53°, € =—150°, {

2x5(n-1)

2n
=-71°; X =79°). The phase space volume over both strands is therefore V,= (27”) (2?”) , Where n

is the length of each strand in the helix. We note that the constraints described above provide our
working definition of the helix state. We confirmed in separate calculations that changing the backbone

torsion constraint from +60° to +40° and using alternative ideal pucker conformations, led to negligible
9



changes in computed free energies (0.08 and 0.13 kcal/mol error; Table S2). For both helix and strand
states, we allowed the torsion angle for 2°-OH to sample 360°, leading to additional phase space volume

contributions that canceled out during evaluation of the folding free energy.

For all Monte Carlo runs, we used a new application (‘recces_turner’) in Rosetta, with the computed
energy based on the Rosetta scoring function. (See Supporting Results for command-lines and version

numbers; Rosetta is freely available for academic users at www.rosettacommons.org.) The function is a

linear combination of multiple component terms, including a Lennard-Jones potential, hydrogen
bonding terms, an orientation-dependent solvation term, and long-range electrostatics (2). As noted
above, we performed Monte Carlo simulations at multiple temperatures, ranging from room
temperature to infinity. We applied the simulated tempering method (3) to facilitate the conformational
search and barrier crossing during the Monte Carlo runs by allowing the temperature to vary during the
simulation in a manner satisfying detailed balance (main text Figure 2B; see Supporting Methods for
details). For each molecule, a typical simulation took less than an hour on a single CPU to generate up to
10 million Monte Carlo samples. The simulated tempering parameters were determined using short
single-temperature simulations, as described by Huang et al. (4) We combined all simulations into one

DOS using the Weighted Histogram Analysis Method (WHAM) (5, 6).

The conformational ensemble obtained from the above simulation scheme allowed rapid tests of
alternative energy functions based on different weights on the Rosetta score terms. Caching the
contribution of each score term for each sampled conformation allowed rapid calculation of the entire
simulation ensemble with different score-term weights; see also refs (7, 8). For each molecular

ensemble, this reweighting step was a linear matrix operation that took less than 0.1 s on a single CPU.
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Main text Figure 2C illustrates this procedure. This rapid reweighting enabled optimization of the weight
set, by minimizing the difference between the computed NN parameters and the experimental values in
a training set using a standard quasi-Newton minimization algorithm. Because the target cost function is
not convex and has a large number of local minima, we repeated the minimization using thousands of
randomly initialized starting weights. These separate minimization runs gave a collection of score
functions, all compatible with the experimental NN parameters in the training set, and allowed an

estimate of the systematic errors for the prediction of new NN parameters.

Details of Simulated Tempering Monte Carlo simulations

The free energy of each sequence (single-strand or helix) was evaluated using simulated tempering
Monte Carlo (MC). For each sequence, we performed simulations at 7 temperatures T, with kg7 =0.8, 1,
1.4, 1.8, 3, 7 and 30 Rosetta units (RU), where kjz is the Boltzmann constant. In later reweighting stages
we calibrated the score so that one RU equals one kgT for T=310.15 K (37 °C, at which most nearest-
neighbor parameters are tabulated). Before the simulated tempering run, we first performed short
regular MC simulations (300,000 steps) at each of the seven temperatures, to determine parameters
that govern switching between temperatures during the simulated tempering run. The simulated
tempering parameters were computed by numerically solving the weight difference for each pair of
neighbor temperatures such that the mean probability of moving upward and downward in the
temperature ladder was the same (4). The initial values of these parameters, used by the numerical
equation solver, were computed using the average energy for each temperature (9). With the computed
simulated tempering parameters, we performed a long simulated tempering simulation (9,000,000
steps). In addition to simulated tempering, we also performed a regular MC simulation at infinite

temperature, to calibrate the full DOS profile. For all regular MC and simulated tempering simulations,
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acceptance rates for the conformational moves and temperature switches were above 10%. The
simulations stored the total score and each separate score term component (Tables S3, S6, and S7) for
all sampled conformations, so that scores could be recomputed for different weight sets without
rerunning the simulations. Example Rosetta command lines (for Rosetta release 3.6 and following

releases) are given below:

1. Short pre-runs:

recces_turner -score:weights stepwise/rna/turner -n_cycle 300000 -seql gaa -temps 0.8 -
out_prefix prerun

The above command performs a short single-temperature pre-run for the determination of the
simulated tempering parameters. Here kg7 = 0.8 RU, and the simulated sequence is GAA (single

strand).

2. Simulated tempering:

recces_turner -score:weights stepwise/rna/turner -seql gu -seq2 aac -n_cycle 9000000 -
temps 0.8 1 1.4 1.8 3 7 30 -st_weights © 8.04 15.39 17.78 17.76 14.96 11.81 -out_prefix
ST

A\l

5'GU
This command performs simulated tempering simulation on TCAA (dangling end).

3. Infinite temperature:

recces_turner -score:weights stepwise/rna/turner -seql gu -seq2 aac -n_cycle 300000 -
temps -1 -out_prefix kT_inf

The “-1” temperature stands for infinite temperature, where all MC moves are accepted.

These simulation results were then combined into a single DOS using WHAM. First the simulation data at
each temperature were aggregated into histograms with bin size of 0.1 RU. For the infinite temperature

12



simulation, the simulated conformation could have very high energy (> 1000 RU). Since these high
energy conformations are not sampled at room temperature, and are important only for normalizing the
density of states, we binned all conformations with scores higher than 800 RU into a single bin. We
verified that using different bin sizes and score cutoffs in this procedure gave negligible changes to the
results (<0.1 kcal/mol, Table S2). These histograms were then combined into one DOS using WHAM.
During the combination calculation, WHAM assigned a weight to each energy bin (so all conformations
in the same bin share the same weight). We recorded these weights for all conformations, which were

needed for reweighting, as discussed next.

Details of Reweighting and Training Scheme
After collecting the conformational samples for all relevant sequences, we reweighted the Rosetta score
function to minimize the prediction error on a limited training set of canonical and dangling end NN

parameters. In this section we present the technical details of these reweighting and training steps.

For each sampled conformation, the Rosetta score is the weighted linear combination of all individual

score terms:

Score(wl,---,wm)=2wisi (12)

i=1

Table S5 gives a short description of each score term; all were introduced in ref. (10) except for an
electrostatic interaction between nucleobases (stack_elec), described below. Here w; is the weight for
each score term, and s; is the value of the score term for the conformation. To reweight the score with a

new set of weights, we updated the value of w; in equation (11) to obtain a new score for each
13



conformation. The reweighted scores were then combined into DOS, using the WHAM weights
computed previously (see section above). This reweighted DOS was then used to compute the free

energy under the new weight set.

To optimize weight sets from training data (i.e. canonical and dangling-end parameters), we minimized
the training error with respect to the score term weights. The training error was a weighted square error

between the experimental and predicted NN parameters:

2 2 2
Error=E(G -G ) +0.1xE(G G, ) +(G G ) (12)
canonical,expt canonical,pred dangling,expt dangling,pred terminal,expt terminal,pred

Each dangling end data point was given a weight of 0.1 compared to canonical data points, to avoid
overfitting to the dangling end values, which were measured less accurately with fewer experimental
measurements. During the training step, we minimized the error function (12) with respect to the score
term weights, using the truncated Newton minimizer in Scipy (method TNC in scipy.optimize.minimize).
To ensure the minimized weights were reasonable, we constrained the score term weights to be within
certain ranges during minimization. Here the weights for fa_atr and fa_rep were constrained to be in
[0.1, 20], weights for hbond_sc and rna_torsion were constrained to be in [0.5, 20], and the weight for
fa_intra_rep was constrained to be in [0, 0.01]. All other score terms were constrained to be in [0, 20].
Before the minimization, the score term weights were randomly initialized to be between 1/10 to 10
times of the initial weights (Table S4). Minimizing with all the sampled data was computationally slow
due to the large number of conformations being reweighted in each stage. Instead, we used only 1% of
the data (randomly selected) for each minimization run. The final training errors for the minimized

weight sets were computed using the full dataset. Because the target error function is not convex, the
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minimization generated different results when initialized with different values. Rather than attempt an
aggressive global optimization, we chose to assemble a large collection of locally optimized weight sets
to help bracket systematic errors in predicting new energetic parameters. Here we repeated the
minimization 9,544 times to obtain a diverse set of minimized weights (see Table S6 for example
weights). These minimized weight sets were not all distinct; clustering analysis with a cluster radius of
0.4 (based on the Euclidean distance between the weight vectors) on 95% of the lowest error weight
sets led to 1315 unique clusters. All the reweighting and minimization stages were carried out in

separate Python scripts, also available in Rosetta (in subdirectory tools/rna_tools/recces).

Electrostatic interactions across stacked bases

Electrostatic interactions are critical components of the energetics of biomolecules. In previous Rosetta
RNA modeling work, hydrogen bonding interactions were modeled using a potential derived from
database hydrogen bond geometries and tested with quantum mechanical calculations (11).
Electrostatic contributions beyond this hydrogen bonding term were modeled in a limited manner (10,
12-14), through a weak carbon hydrogen bond potential (not included here due to lack of constraints
from NN data; not shown) and a highly screened electrostatic repulsion between the backbone
phosphates (fa_elec_rna_phos_phos)(10). Electrostatic interactions between bonded atoms were
included implicitly in the RNA torsional potential, which was derived in a knowledge-based fashion using
crystal structures in Protein Data Bank (PDB). The rather limited modeling of electrostatics followed the
philosophy of Rosetta protein modeling, in which complex physical effects were left out until strong
evidence from structure prediction or design tests have supported and helped calibrate the inclusion of

these terms (15).
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Recent studies of RNA model systems have suggested that the electrostatic interaction between the
stacking bases might play an important role in the NN interactions of RNA (16). To test this hypothesis,
we implemented a new score term called stack_elec. This new term models the electrostatic interaction
between atom pairs in different bases through Coulomb’s law with a distance-proportional dielectric
(the same as the Rosetta fa_elec term), but the interaction is suppressed to zero for atom pairs whose

inter-atom vector r is perpendicular to the base normal of the first or second base (parametrized by

4,4,

angles K, and K,): > (cos2 K, +cos’ Kz) , where ¢, and ¢, are the atom partial charges. As a result
r

of the orientation dependence, the electrostatic interactions between stacked but not co-planar bases
are captured in this term, and so stack_elec could be optimized separately from the knowledge-based
Rosetta hydrogen bond potential. Without the orientation-dependent suppression (i.e., use of the
original Rosetta fa_elec term), we observed strong repulsion between fixed positive charges of hydrogen
atoms in, e.g., A-U pairs that could not be reconciled with the stability of the Watson-Crick arrangement.
RECCES modeling of canonical stacked pairs with fa_elec instead of stack_elec gave worse RMSDs to
canonical pair NN parameters (0.48 kcal/mol compared to 0.33 kcal/mol); and in simulations with both
terms, optimization of these terms’ weights recovered stack_elec at positive weight and fa_elec at zero
weight. The partial charges for non-natural RNA residues were derived using the MATCH method
(multipurpose atom-typer for CHARMM) (17). For canonical RNA residues, we used the default atomic
partial charges in Rosetta for the stack_elec calculations. Calculations for NN parameters for canonical
stacked pairs using MATCH charges instead of default Rosetta charges gave similar results, with an

RMSD of 0.21 kcal/mol (comparable or less than other sources of systematic error; see Table S2).
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Simple single-conformation methods

As baseline comparisons for the RECCES calculations above, we sought NN parameter predictions from
phenomenological models that required negligible computation: a hydrogen-bond counting model and a
single-conformation Rosetta scoring model. These two models used the same pipeline as RECCES to
predict the NN parameters, by first computing the folding free energies for each helix motif, then
combining these free energies into NN parameters. However instead of performing comprehensive

ensemble sampling, these two models used simple approximations to evaluate the folding free energies.

Hydrogen-bond Counting Model

For the hydrogen-bond counting model, the folding free energy for a helix construct is

AG (S,,5,)=N,,(S.5,)AG, + N, . (5.5,)AG, .+ (13)

[L(S)+L(S,)-2]AG,, , +[L(S)+ L(S))]AG,  +AG

Base init

Dangle

Here S; and S; are the two strand sequences in a helix construct. N,,(S,,S,)and N, .(S,,S,) are the

angle

number of hydrogen-bonds and dangling-ends in a fully associated helix conformation. For example,

A\l

SGA has 5 hydrogen bonds (3 for the G-C, plus 2 for the A-U) and no dangling-ends; ;géA also has 5

hydrogen bonds, plus 1 dangling-end. L(S,) and L(S,) are the lengths of the single-strand S; and S,.

AG,, is the free energy contribution per hydrogen-bond, AG is the free energy contribution for the

Dangle

conformational entropy of each dangling-end, AG,, , is the free energy contribution for each base-base

k
stacking (L - 1 base-base stacking per strand), and AG,  is the entropy loss during folding for each base
in the single-strands. This model assumes the folding free energy of a helix is a simple linear function of
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the number of hydrogen bonds, as hydrogen-bonding is the dominant interaction in helix formation; the

contributions of other relevant physical factors, such as base stacking and entropy loss upon helix

formation, are approximated to be sequence independent.

We may further rewrite eq. (13) as follows:

AG/(SI’SZ) = NHB(Sl’Sz)AGHB + NDzmgle
[L(S))+L(S,))]AG +AG,

(SI’SZ)AGDangle + (14)

const

2G

Stack *

Here AG,=AG, ,+AG, and AG  =AG,

Stack Base const init

In eq. (14), AG,,,, AG and AG, are model

HB’ Dangle ?

parameters; AG_ s a constant factor that cancels out when we compute the NN parameters.

With the above folding free energy expressions, we can linearly combine them into NN parameters, as

5'GC 5'AA
we did in the RECCESS framework. For example, in this model, the NN parameters for and o
can be expressed as
5'GC
AGNNM (3‘CG) =3AG,, +2AG,
(15)
5'AA
AGNN,HB (3'U ) = AGDung/e +AG,

The model parameters were determined by least-squares regression against the experimental NN

parameters for canonical base pairs and dangling-ends (see Supporting Methods). The optimized

parameters were AG,, =—1.89 kcal/mol, AG = +1.31 kcal/mol, and AG =-1.83 kcal/mol .

Dangle ~
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Single-conformation Rosetta Scoring Method
Instead of simply counting the hydrogen bonds, the single-conformation Rosetta scoring method uses

the Rosetta score to approximate the free energy of a construct. Similar to eq. (13), the model is

AG,(S,.8,)=k

Rosetta

SCOF@(SI;S2) + NDangle
[L(S)+L(S,)]AG, +AG

const

(Sl ’ SZ )AGDangle + (16)

Here, Score(S,,S,) is the Rosetta score of a representative conformation of the target helix. This

representative conformation was obtained by minimizing the helix conformation under the Rosetta
score function. We used the standard Rosetta score function for RNA structure prediction (rna_hires).

k is a model parameter that sets the scale between the Rosetta score and the folding free energy in

Rosetta
kcal/mol; see also ref. (10).

5'GC 5'AA
For example, with this model, the NN parameters for 1CG and o can be expressed as

AG,, >'GC =Ky, s | SCOTE YGGC - Score Y66 +2AGS
3'CG } 3'CCG 3'CC

AG,, SAA =kR | Score SGAA - Score S'GA +AG +AG
3'U osena 3'CU 3'CU

Dangle N

(17)

The corresponding model parameters, determined by training against experimental NN parameters with

canonical base pairs and dangling-ends, are &

Rosetta

= 0.7 kcal/mol/Rosetta-unit, AG, = +2.12 kcal/mol, and

AG =+1.54 kcal/mol.

Dangle

19



Optical Melting Measurements on Helices with D-U Base pairs

To test the prediction accuracy of RECCES, we experimentally measured the folding free energies of RNA
helices containing D-U, a non-natural base pair for which the NN parameters have not been previously
determined. We performed optical melting experiments on six helices containing D-U using a Shimadzu
Spectrophotometer UV-1800, as well as two helices with canonical base pairs, which were confirmed to
give thermodynamic parameters that reproduced literature values. The RNA constructs were ordered
from Dharmacon with HPLC purification. For each construct, we obtained 12 melting curves at three
different concentrations (15, 25 and 35 uM), measured at 260 nm. The buffer system was 1.0 M NaCl, 20
mM sodium cacodylate at pH 7.0, and 0.5 mM Na,EDTA. For each sample, RNA concentrations were
determined in situ using the high-temperature absorbances and extinction coefficients of RNA single-
strands (18, 19). The extinction coefficient parameter for 2,6-diaminopurine is unknown. The free
energies computed herein are insensitive to small changes of the extinction coefficients (20); we
assumed that 2,6-diaminopurine has the same parameters as adenine. The melting curves were fitted
with a two-state model with linear baselines to obtain the corresponding folding free energies for all
constructs (21-23). To obtain the NN parameters from the helix folding free energies, recall that the
helix folding free energies can be written as linear combinations of NN parameters (e.g., see egs. (1), (3)
and (5)). The NN parameters can be solved through least-squares regression, with the exception of

AG

the terminal contribution of D-U relative to G-C. Determining AG requires

Terminal-DU Terminal-DU
measurements on RNA sequences with D at the 5’-end of strands and with D on the 3’-end of the
strands (see, e.g., eq. (4)), but the latter are not commercially available. For results in the main text, we

have assumed that this parameter is zero, as it should have the same geometry and same number of

hydrogen-bonds (3) as G-C. Assuming different terminal D-U contributions from —0.2 to +0.3 kcal/mol
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(compiled in Table S9) gives similar RMSD accuracies of our predictions compared to experimental

values.

Supporting Results

Accuracies of terminal base pair penalty calculations

In addition to predicting NN parameters for two-base-pair segments, we were able to calculate terminal
contributions with RECCES-Rosetta (see main text, eq. (4)). The terminal contribution is the free energy
contribution for having a non-G-C base pair instead of a G-C pair at the end of a helix. For example,
because an A-U base pair only has two hydrogen bonds, one less than that of G-C pair, putting it at the
end of the helix incurs a penalty in folding free energy. Our method predicted the terminal contribution
for A-U pair to be 0.75 + 0.15 kcal/mol, somewhat higher than the experimental value (0.45 kcal/mol)
(21). For G-U pairs, our prediction suggested it to be similar but slightly less stable than A-U pairs at helix
terminal (0.87 % 0.3 kcal/mol), while recent experiments have shown that it is equally stable as G-C pair
at terminal (24) (0 terminal contribution). The higher experimental stability of G-U pair at the terminal
may be due to the variety of non-A-form alternative conformations that it is known to the sample (24);
our current calculations only sampled near-A-form conformations for helices. For the iG-iC pair, our
method predicted a terminal contribution of —0.11 + 0.16 kcal/mol, within error of the experimental

value (=0.19 + 0.07 kcal/mol) (20).
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Supporting Tables

Table S1. Experimental NN parameters (20, 21, 25) and RECCES-Rosetta predictions.

NN Sequence RECCES-Rosetta Expt. NN Sequence RECCES-Rosetta Expt.
Canonical’
5'AA3" 5'uc3’
3 U5 -1.13+0.17 -0.93+0.03 3'AGS " -2.13+0.09 -2.35+0.06
5'AU3"’ 5'UG3"'
3 UAS " -0.91+0.21 -1.1+£0.08 31 ACS " -2.09+0.10 -2.11 +£0.07
5'AC3' 5'cc3’
3'UG5 " -1.95+0.14 -2.24 £ 0.06 31665 -3.29+0.21 -3.26 £ 0.07
5'AG3’ 5'CG3"'
31 ues -2.19+0.11 -2.08 £ 0.06 3'Ge5 -2.89+0.21 -2.36 £ 0.09
5'UA3"’ 5'GC3"'
3 AUS " -1.26 £ 0.20 -1.33+0.09 3'cG5 " -2.88+0.17 -3.42 £ 0.08
Terminal A-U 0.76 £ 0.15 0.45 £0.04
G-U pairsb
5'AG3’ 5'GG3"'
3 UU5 " -0.22+0.22 -0.35+ 0.08 3 cus’ -1.50+0.23 -1.8+0.09
5'AU3"’ 5'GuU3"’
3'UG5H" -1.24+£0.20 -0.9+0.08 3065 -1.96 £ 0.19 -2.15+0.10
5'CG3"' 5'GA3"’
3'GU5 " -1.32+0.29 -1.25+0.09 3'0U5 " -1.08 £ 0.23 -0.51+0.08
5'Cu3’ 5'UG3"'
3'GG5 " -2.27+0.17 -1.77 £0.09 3'AU5 " -0.35+0.28 -0.39 £ 0.09
Terminal G-U 0.87£0.30 0
Isoguanosine(iG)-Isocytidine(iC)b
5'AiG3"' 5'CiG3"’
3'UiC5 " -2.34+0.26 N.A. 3'Gics" -3.01+0.39 -2.46 £ 0.08
5'AiC3"' 5'CicC3"’
3'U1iG5 " -1.84+0.27 N.A. 3'GiG5" -3.23+0.16 -3.46 £ 0.11
5'UiG3"’' 5'iGiG3"’'
3'aiC5" -1.93+0.24 N.A. 3'1icics’ -3.66+0.41 -3.30+£0.17
5'UiC3"’ 5'iGiC3"'
3'21G5" -2.14+0.23 N.A. 3'1ciG5" -2.58 +0.26 -4.61+0.17
5'GiG3"' 5'iCiG3"'
3 cics’ -3.48 +0.22 -3.07£0.11 3'1G6ic5" -3.25+0.49 -2.45+0.17
> , G+C3 . -2.78 +£0.18 -4.00 £ 0.09 Terminal iG-iC -0.11 +0.16 -0.19 £ 0.07
3'CiG5
2,6-Diaminopurine(D)-U**
5'AD3"' 5'CD3"'
3'UU5 " -2.32+0.17 N.A. 3'GUS " -3.57+0.21 -2.72£0.20
5'AU3"’ 5'cu3’
3'UD5 " -1.85+0.19 N.A. 3'GD5 " -3.20+0.13 -2.28 £0.22
5'UD3"’ 5'DD3"'
3'AU5 " -2.61+0.18 N.A. 3'UU5 " -3.46+0.18 N.A.
5'UU3"’ 5'DU3"’
3'AD5 " -2.28+0.16 N.A. 3'UD5 " -3.01+0.21 N.A.
5'GD3" 5'UD3"'
3 U5 -3.10+0.17 -3.10+0.21 3'DUs " -3.64 £ 0.27 N.A.
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5'GU3’

el 2.80£015  -262£014 | TerminalD-U  -0.02+0.19 N.A,
Inosine(1)-C*
?f}éﬁ -1.09£0.14 N.A. ggég -1.98£0.20 N.A.
?f}?ﬁ 095021 N.A. gggg -2.24£0.16 N.A.
gf\éﬁ -0.98+0.25 N.A. géég -1.18 +0.29 N.A.
> -1.06 £ 0.11 N.A. P 1.01+0.23 NA
g:gég: -2.07 £0.26 N.A. g:gég: -0.96 +0.31 NA.
g : g(I:g : -1.96£0.13 N.A. Terminal I-C 0.88 +0.21 N.A.
Dangling ends™®

> had 10.58+0.27 0.8 e 10.350.12 0.3
> b3 10.39£0.31 0.5 ey 10.490.16 03
> hed 10.25+0.18 0.8 by 10.60+0.16 0.4
> b3 10.73+0.30 0.6 bty 10.12+0.09 0.2
e -0.96 £0.27 1.7 G 10.23£0.10 0.5
> -0.38£0.18 0.8 Sk 10.27£0.13 0.3
S 10.53+0.23 1.7 by 0.130.14 0.2
e -1.19+0.28 1.2 by 10.150.10 0.1
2. 10.93+0.30 11 o 10.23+0.10 0.2
b 10.68£0.25 0.4 ey 0.12£0.18 0.3
bl 10.70+0.18 13 by 10.23+0.15 0

bt -1.50 £ 0.45 0.6 by 0.0140.12 0

bl 10.56 +0.30 0.7 G 10.26+0.29 0.3
2.8 10.36+0.20 0.1 ey 10.23+0.13 0.1
2.8 10.08+0.22 0.7 by 10.16£0.19 0.2
2.8 -1.00+0.27 0.1 by 10.17 £0.09 0.2

All values in kcal/mol. N

.A., not available.

? Used in training the parameters.

® Used in model testing.
¢ Blind predictions.

d Experimental values determined by a linear regression to helix folding free energies, assuming a zero terminal contribution. See Methods for

details.

e . - -
No error estimates were given in the original paper.
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Table S2. Systematic errors due to different system setups, sampling schemes, and parameters used in
WHAM analysis.

Original No initial | Initial BP= | Initial BP = | Reduced A- | Alternative x:i'lfz':d
! ! 1 2 3 -
BP A/U GG/CC form range” | Sugar e
5'AC3'
3Ucs! -1.79 -1.91 -1.62 -1.49 -1.70 1.72 1.79
5'AG3'
3'UC5' -2.14 -2.17 -1.83 -1.92 -2.08 -2.31 -2.14
5'UC3'
3 AGE -2.10 -2.32 -1.94 -1.82 -2.00 -1.92 2.10
5'UG3'
ype -1.83 -1.46 -1.52 -1.58 -1.89 -1.91 1.83
(kc:|r/r:qro|)5 0.23 0.26 0.27 0.08 0.14 5.86x10°

! The initial base pairs for the simulation (see methods).

? Use +40° as the angle constraint for A-form helix instead of +60°.
® Use alternative conformation for the sugar rings during sampling (“-rna::corrected_geo false” in Rosetta command line).
* Use different bin-size and high-score cutoff (0.05 and 1600) instead. The original value is 0.1 and 800.
® Error relative to the original.

Table S3. Statistical error on sampling computed based on bootstrapping (resampling of model
ensembles with replacement).

Sequence Simulated molecule Mean free energy (kcal/mol) | Standard deviation (kcal/mol)

5'GGG3' Complex

3'cCCs! -5.54 0.0023

5'GU3' Complex

3'CAS! -5.12 0.0010

5'ACC3' Single strand 10.86 0.0017

5'GU3' Single strand 5.60 0.0014

5'GC3' Complex, dangling end

3'CGAS' -5.91 0.0010
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Table S4. Systematic error from RECCES reweighting procedure.
NN predictions from five weight sets were computed by applying a fast reweighting procedure to
models simulated with an arbitrarily chosen starting weight set, and compared to predictions from
explicit simulation of the conformational ensemble with five arbitrarily chosen new weight sets.

Score term Starting Weight 1 Weight 2 | Weight 3 | Weight 4 | Weight 5
fa_atr 0.37 0.58 0.28 0.10 0.33 0.93
fa_rep 0.2 0.1 1.25 0.72 0.32 1.15
fa_intra_rep 0.0035 0.0022 0.0046 0.0018 0.01 0
fa_stack 0.00001 0.0203 6.00 0.40 0.25 0
rna_torsion 9.5 4.90 5.79 5.65 3.29 6.78
hbond_sc 3.8 2.61 0.61 5.39 3.30 5.85
Ik_nonpolar 0.51 0 0.61 1.83 0.038 0.92
geom_sol_fast 0.40 0 1.68 1.40 0 2.02
stack_elec 1.7 3.26 2.29 2.41 1.92 1.14
fa_elec_rna_phos_phos 1.6 6.77 134 0 4.47 0.72
Reweighting error (kcal/mol) n.a. 0.48 0.26 0.25 0.22 0.23

Table S5. Mean and standard deviation of the weights of each score term from different optimization

runs.
Score term Description Mean | Standard deviation
fa_atr Lennard-Jones attraction 0.52 0.23 (45%)
fa_rep Lennard-Jones repulsion (inter-residue) 0.27 0.51 (186%)
fa_intra_rep Lennard-Jones repulsion (intra-residue) 0.067 | 0.038 (57%)
fa_stack Extra Lennard-Jones attraction for stacking atoms | 0.044 | 0.080 (181%)
rna_torsion RNA torsional potential 9.3 4.7 (50%)
hbond_sc Hydrogen bond 3.8 1.6 (42%)
Ik_nonpolar Lazaridis-Karplus solvation (Ref. (26)) 1.1 0.94 (85%)
geom_sol_fast Geometric solvation (Ref. (10)) 0.83 1.2 (139%)
stack_elec Electrostatics for stacking atoms 14 1.0 (74%)
fa_elec_rna_phos_phos | Electrostatics for backbone phosphates 9.6 7.6 (80%)
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Table S6. Example component weights in RECCES collection of energy functions.

Score term Structure Best’ Weight 1 | Weight | Weight | Weight
prediction1 2 3 4
fa_atr 0.23 0.73 0.72 0.94 0.50 0.39
fa_rep 0.12 0.1 0.17 0.39 0.1 0.19
fa_intra_rep 0.0029 0.0071 | 0.01 0.0029 0.0042 | 0.0100
fa_stack 0 0 0 0 0 0.051
rna_torsion 0.1 4.26 4.30 3.46 8.45 18.64
hbond_sc 3.4 2.46 2.48 2.36 3.11 5.99
Ik_nonpolar 0.32 0.25 1.66 0.82 0.55 3.63
geom_sol_fast 0.62 0 0 0 0.38 2.51
stack_elec 0 1.54 0.77 1.15 0.75 1.49
fa_elec_rna_phos_phos 1.05 4.54 0 0.73 13.6 20
Training error (kcal/mol) 1.23 0.35 0.38 0.41 0.36 0.38
Test error, GU (kcal/mol) 0.93 0.34 0.43 0.38 0.34 0.51
Test error, iGiC (kcal/mol) 1.79 1.06 0.96 1.10 1.00 1.03
Test error, iGiC with outlier exclusion 1.26 0.52 0.54 0.69 0.62 0.66

(kcal/mol)

! The default score weights used in Rosetta structure prediction. In addition to the listed score terms, it also includes the terms ch_bond (0.42),
hbond_sr_bb_sc (0.62), hbond_Ir_bb_sc (3.4) (weights in parentheses). Here ch_bond is the hydrogen bond interaction between C-H to polar
atom (O and N). The other two terms are hydrogen bonds between side-chain and backbone atoms. The terms do not contribute in a sequence-
dependent manner to helix NN parameters and were omitted from the simulations herein. The training and test errors presented in the table
are based on calculations optimizing a global scaling factor converting Rosetta energy units to kg T (final value of 1 kg7 /0.218) over training data

(canonical stacked pairs and dangling ends).

? The best weight with the lowest training error in the reweighting.
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Table S7. Highly correlated score terms in the collection of RECCES score functions.
Each score function uses a different, locally optimized weight set fitted to canonical Watson-Crick
stacked pairs and dangling ends for natural bases. Terms with absolute correlation > 0.1 are listed.

Score term 1 Score term 2 f:zrel;i::it;::
fa_atr fa_rep 0.31
fa_atr fa_stack -0.62
fa_atr rna_torsion -0.35
fa_atr stack_elec -0.11
fa_atr fa_elec_rna_phos_phos -0.17
fa_rep rna_torsion -0.12
fa_rep Ik_nonpolar 0.11
fa_rep stack_elec 0.14
fa_rep fa_elec_rna_phos_phos -0.18

fa_stack rna_torsion -0.12
fa_stack Ik_nonpolar -0.19
fa_stack stack_elec 0.35
fa_stack fa_elec_rna_phos_phos -0.10
rna_torsion hbond_sc 0.73
rna_torsion Ik_nonpolar 0.47
rna_torsion geom_sol_fast 0.72
rna_torsion fa_elec_rna_phos_phos 0.61
hbond_sc Ik_nonpolar 0.29
hbond_sc geom_sol_fast 0.99
hbond_sc stack_elec 0.32
hbond_sc fa_elec_rna_phos_phos 0.63

Ik_nonpolar geom_sol_fast 0.32

Ik_nonpolar | fa_elec_rna_phos_phos 0.26

geom_sol_fast stack_elec 0.29

geom_sol_fast | fa_elec_rna_phos_phos 0.64
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Table S8. Experimental measurements and free energy predictions of helices containing 2,6-
diaminopurine (D)-uracil base pairs.

Sequence Experiment | RECCES-Rosetta | Hydrogen-bond counting | Rosetta score
GDGCUC -9.56 £ 0.37 -11.51+£0.38 -10.04 £ 0.24 -10.34+£0.24
CUGCDG -9.06 £ 0.38 -12.45+0.42 -11.11+0.23 -10.61+£0.23
CDCGUG -8.34+0.11 -10.58 £ 0.44 -10.04 £ 0.24 -10.04 £ 0.24
DGCGCU -9.16 £ 0.63 -11.14 £ 0.42 -10.84 £ 0.38 -10.46 £ 0.38
GDCGUC -9.38+0.35 -9.64+0.4 -11.11+0.23 -10.91+0.23
DCCGGU -9.67 £0.22 -10+£0.43 -10.5+0.37 -10.62 £ 0.37

RMSE (kcal/mol) 2.02 (21.9%) 1.52 (16.5%) 1.34 (14.6%)

Predicted values are computed by linear combinations of the predicted NN parameters; errors for the predictions were estimated by error

propagation.

Table S9. Nearest-neighbor parameters for 2,6-Diaminopurine/U containing stacked pairs assuming

different terminal D-U contributions (in kcal/mol).

Terminal D-U [5’DG/3’UC|5’GD/3’CU|5’DC/3’UG|5’CD/3’GU |RMSE (vs. RECCES)
-0.2 -2.08 -3.30 -2.42 -2.92 0.68
-0.1 -2.18 -3.20 -2.52 -2.82 0.65
0 -2.28 -3.10 -2.62 -2.72 0.63
0.1 -2.38 -3.00 -2.72 -2.62 0.63
0.2 -2.48 -2.90 -2.82 -2.52 0.65
0.3 -2.58 -2.80 -2.92 -2.42 0.67
RECCES-Rosetta -3.2 -3.1 -2.8 -3.57 n.a.
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Supporting Figures

Figure S1. Correlation plots for the component score terms.
Each red cross represents a minimized score weight set from the RECCES-Rosetta energy function
collection. The blue lines are linear regressions of the red crosses.
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Figure S2. RECCES weights tested in structure prediction.

De novo 3D structure prediction (5000 fragment assembly steps, 2000 models each) repeated for all noncanonical motifs in the
FARFAR benchmark (Das, Karanicolas, Baker, Nature Methods, 2010) confirms that the ‘best’ RECCES weight set (Table S5)
recovers 12 of the 16 motifs previously recovered at better than 2 A resolution. Examples include (a) domain IV from signal
recognition particle RNA (1LNT) and (b) the tetraloop/receptor from the P4-P6 domain (2R8S). For the other 4 motifs, models
better than 2 A accuracy are still sampled, are stable to refinement in the RECCES energy function, and give energies similar to
the lowest energy models. Examples include (c) GAGUA pentaloop from a SARS conserved domain (1XJR) and (d) the bacterial
5S ribosomal RNA loop E motif. Each panel gives single-model RECCES energies for de novo models (blue) and refined native
models (red) vs. RMSD to crystallographic structure (right); and one 3D model (colored) overlaid on crystallographic structure
(white) (on left). The scores computed in this figure are for single conformations; they might achieve higher accuracy through
RECCES ensemble modeling for each conformation, whose computation may be possible with extensions of RECCES and would
also allow inclusion of structure prediction during weight training.
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