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ABSTRACT: Over the past decade, the Rosetta biomolecular modeling suite has
informed diverse biological questions and engineering challenges ranging from
interpretation of low-resolution structural data to design of nanomaterials, protein
therapeutics, and vaccines. Central to Rosetta’s success is the energy function: a model
parametrized from small-molecule and X-ray crystal structure data used to approximate the
energy associated with each biomolecule conformation. This paper describes the
mathematical models and physical concepts that underlie the latest Rosetta energy
function, called the Rosetta Energy Function 2015 (REF15). Applying these concepts, we
explain how to use Rosetta energies to identify and analyze the features of biomolecular
models. Finally, we discuss the latest advances in the energy function that extend its
capabilities from soluble proteins to also include membrane proteins, peptides containing
noncanonical amino acids, small molecules, carbohydrates, nucleic acids, and other
macromolecules.

Received: February 6, 2017
Published: April 21, 2017

Article

pubs.acs.org/JCTC

© 2017 American Chemical Society 3031 DOI: 10.1021/acs.jctc.7b00125
J. Chem. Theory Comput. 2017, 13, 3031−3048

pubs.acs.org/JCTC
http://dx.doi.org/10.1021/acs.jctc.7b00125
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jctc.7b00125&iName=master.img-000.jpg&w=134&h=134


■ INTRODUCTION
Proteins adopt diverse three-dimensional conformations to
carry out the complex mechanisms of life. Their structures are
constrained by the underlying amino acid sequence1 and
stabilized by a fine balance between enthalphic and entropic
contributions to non-covalent interactions.2 Energy functions
that seek to approximate the energies of these interactions are
fundamental to computational modeling of biomolecular
structures. The goal of this paper is to describe the energy
calculations used by the Rosetta macromolecular modeling
program:3 we explain the underlying physical concepts,
mathematical models, latest advances, and application to
biomolecular simulations.
Energy functions are based on Anfinsen’s hypothesis that

native-like protein conformations represent unique, low-energy,
thermodynamically stable conformations.4 These folded states
reside in minima on the energy landscape, and they have a net
favorable change in Gibbs free energy, which is the sum of
contributions from both enthalpy (ΔH) and entropy (TΔS),
relative to the unfolded state. To follow these heuristics,
macromolecular modeling programs require a mathematical
function that can discriminate between the unfolded, folded,
and native-like conformations. Typically, these functions are
linear combinations of terms that compute energies as a
function of various degrees of freedom.
The earliest macromolecular energy functions combined a

Lennard-Jones potential for van der Waals interactions5−7 with
harmonic torsional potentials8 that were parametrized using
force constants from vibrational spectra of small molecules.9−11

These formulations were first applied to investigations of the
structures of hemolysin,12 trypsin inhibitor,13 and hemoglobin14

and have now diversified into a large family of commonly used
energy functions such as AMBER,15 DREIDING,16 OPLS,17

and CHARMM.18,19 Many of these energy functions also rely
on new terms and parametrizations. For example, faster
computers have enabled the derivation of parameters from ab
initio quantum calculations.20 The maturation of X-ray
crystallography and NMR protein structure determination
methods has enabled the development of statistical potentials
derived from per-residue, inter-residue, secondary-structure,
and whole-structure features.21−28 Additionally, there are
alternate models of electrostatics and solvation, such as the
generalized Born approximation of the Poisson−Boltzmann
equation29 and polarizable electrostatic terms that accommo-
date varying charge distributions.30

The first version of the Rosetta energy function was
developed for proteins by Simons et al.31 Initially, it used
statistical potentials describing individual residue environments
and frequent residue-pair interactions derived from the Protein
Data Bank (PDB).32 Later the authors added terms for packing
of van der Waals spheres and hydrogen-bonding, secondary-
structure, and van der Waals interactions to improve the
performance of ab initio structure prediction.33 These terms
were for low-resolution modeling, meaning that the scores were
dependent on only the coordinates of the backbone atoms and
that interactions between the side chains were treated
implicitly.
To enable higher-resolution modeling, in the early 2000s

Kuhlman and Baker34 implemented an all-atom energy function
that emphasized atomic packing, hydrogen bonding, solvation,
and protein torsion angles commonly found in folded proteins.
This energy function first included a Lennard-Jones term,35 a

pairwise-additive implicit solvation model,36 a statistically
derived electrostatics term, and a term for backbone-dependent
rotamer preferences.37 Shortly thereafter, several terms were
added, including an orientation-dependent hydrogen-bonding
term,38 in agreement with electronic structure calculations.39

This combination of traditional molecular mechanics energies
and statistical torsion potentials enabled Rosetta to reach
several milestones in structure prediction and design, including
accurate ab initio structure prediction,40 hot-spot predic-
tion,41,42 protein−protein docking,43 small-molecule docking,44

and specificity redesign45 as well as the first de novo designed
protein backbone not found in nature46 and the first
computationally designed new protein−protein interface.47

The Rosetta energy function has changed dramatically since
it was last described in complete detail by Rohl et al.48 in 2004.
It has undergone significant advances ranging from improved
models of hydrogen bonding49 and solvation50 to updated
evaluation of backbone51 and rotamer conformations.52 Along
the way, these developments have enabled Rosetta to address
new biomolecular modeling problems, including the refinement
of low-resolution X-ray structures and use of sparse data53,54

and the design of vaccines,55 biomineralization peptides,56 self-
assembling materials,57 and enzymes that perform new
functions.58,59 Instead of arbitrary units, the energy function
is now also fitted to estimate energies in kilocalories per mole.
The details of the energy function advances are distributed
across code comments, methods development papers,
application papers, and individual experts, making it challenging
for Rosetta developers and users in both academia and industry
to learn the underlying concepts. Moreover, members of the
Rosetta community are actively working to generalize the all-
atom energy function for use in different contexts60,61 and for
all macromolecules, including RNA,62 DNA,63,64 small-
molecule ligands,65,66 noncanonical amino acids and back-
bones,67−69 and carbohydrates,70 further encouraging us to
reexamine the underpinnings of the energy function. Thus,
there is a need for an up-to-date description of the current
energy function.
In this paper, we describe the new default energy function,

called the Rosetta Energy Function 2015 (REF15). Our
discussion aims to expose the physical and mathematical
details of the energy function required for rigorous under-
standing. In addition, we explain how to apply the computed
energies to analyze structural models produced by Rosetta
simulations. We hope this paper will provide critically needed
documentation of the energy methods as well as an educational
resource to help students and scientists interpret the results of
these simulations.

■ COMPUTING THE TOTAL ROSETTA ENERGY
The Rosetta energy function approximates the energy of a
biomolecule conformation. This quantity, called ΔEtotal, is
computed as a linear combination of energy terms Ei that are
calculated as functions of geometric degrees of freedom (Θ)
and chemical identities (aa) and scaled by a weight on each
term (wi), as shown in eq 1:

∑Δ = ΘE wE ( , aa )
i

i i i itotal
(1)

Here we explain the Rosetta energy function term by term.
First, we describe the energies of interactions between
nonbonded atom pairs, which are important for atomic
packing, electrostatics, and solvation. Second, we explain the
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empirical potentials used to model hydrogen and disulfide
bonds. Next, we explain the statistical potentials used to
describe backbone and side-chain torsional preferences in
proteins. Then we explain a set of terms that accommodate
features that are not explicitly captured yet are important for
native structural feature recapitulation. Finally, we discuss how
the energy terms are combined into a single function used to
approximate the energy of biomolecules. For reference, items in
the fixed-width font are names of energy terms in the Rosetta
code. The energy terms are summarized in Table 1.
Terms for Atom-Pair Interactions. Van der Waals

Interactions. Van der Waals interactions are short-range
attractive and repulsive forces that vary with atom-pair distance.
Whereas attractive forces result from the cross-correlated
motions of electrons in neighboring nonbonded atoms,
repulsive forces occur because electrons cannot occupy the
same orbitals by the Pauli exclusion principle. To model van
der Waals interactions, Rosetta uses the Lennard-Jones (LJ) 6−

12 potential,5,6 which calculates the interaction energy of atoms
i and j in different residues given the sum of their atomic radii,
σi,j (σi,j in Rosetta has the same definition as ri,j

min in
CHARMM), the atom-pair distance, di,j, and the geometric
mean of their well depths, εi,j (eq 2):

ε
σ σ

= −
⎡

⎣
⎢⎢
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
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⎞
⎠
⎟⎟

⎤

⎦
⎥⎥E i j

d d
( , ) 2i j
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i j

i j
vdw ,

,

,

12
,

,

6

(2)

The atomic radii and well depths are derived from small-
molecule liquid-phase data optimized in the context of the
energy model.50

Rosetta splits the LJ potential at the function’s minimum (di,j
= σi,j) into two components that can be weighted separately:
attractive (fa_atr) and repulsive (fa_rep). By decompos-
ing the function this way, we can alter component weights
without changing the minimum-energy distance or introducing
any derivative discontinuities. Many conformational sampling

Table 1. Summary of Terms in REF15 for Proteins

term description weight units ref(s)

fa_atr attractive energy between two atoms on different residues separated by a distance d 1.0 kcal/mol 5, 6
fa_rep repulsive energy between two atoms on different residues separated by a distance d 0.55 kcal/mol 5, 6
fa_intra_rep repulsive energy between two atoms on the same residue separated by a distance d 0.005 kcal/mol 5, 6
fa_sol Gaussian exclusion implicit solvation energy between protein atoms in different residues 1.0 kcal/mol 36
lk_ball_wtd orientation-dependent solvation of polar atoms assuming ideal water geometry 1.0 kcal/mol 50, 71
fa_intra_sol Gaussian exclusion implicit solvation energy between protein atoms in the same residue 1.0 kcal/mol 36
fa_elec energy of interaction between two nonbonded charged atoms separated by a distance d 1.0 kcal/mol 50
hbond_lr_bb energy of short-range hydrogen bonds 1.0 kcal/mol 38, 49
hbond_sr_bb energy of long-range hydrogen bonds 1.0 kcal/mol 38, 49
hbond_bb_sc energy of backbone−side-chain hydrogen bonds 1.0 kcal/mol 38, 49
hbond_sc energy of side-chain−side-chain hydrogen bonds 1.0 kcal/mol 38, 49
dslf_fa13 energy of disulfide bridges 1.25 kcal/mol 49
rama_prepro probability of backbone ϕ, ψ angles given the amino acid type (0.45 kcal/mol)/kT kT 50, 51
p_aa_pp probability of amino acid identity given backbone ϕ, ψ angles (0.4 kcal/mol)/kT kT 51
fa_dun probability that a chosen rotamer is native-like given backbone ϕ, ψ angles (0.7 kcal/mol)/kT kT 52
omega backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals

that deviate from 180°
(0.6 kcal/mol)/AU AUa 72

pro_close penalty for an open proline ring and proline ω bonding energy (1.25 kcal/mol)/AU AU 51
yhh_planarity sinusoidal penalty for nonplanar tyrosine χ3 dihedral angle (0.625 kcal/mol)/AU AU 49
ref reference energies for amino acid types (1.0 kcal/mol)/AU AU 1, 51

aAU = arbitrary units.

Figure 1. Van der Waals and electrostatics energies. Shown are comparisons between the pairwise energies of nonbonded atoms computed by
Rosetta and the forms computed by traditional molecular mechanics force fields. Here the interactions between the backbone nitrogen and carbon
are used as examples. (A) Lennard-Jones van der Waals energy with well-depths εNbb = 0.162 kcal/mol and εCbb = 0.063 kcal/mol and atomic radii
rNbb = 1.763 Å and rCbb = 2.011 Å (red) and Rosetta fa_rep (blue). (B) Lennard-Jones van der Waals energy (red) and Rosetta fa_atr (blue).
As the atom-pair distance approaches 6.0 Å, the fa_atr term smoothly approaches zero and deviates slightly from the original Lennard-Jones
potential. (C) Coulomb electrostatic energy with a dielectric constant ϵ = 10 and partial charges qNbb = −0.604e and qCbb = 0.090e (red) compared
with Rosetta fa_elec (blue). The fa_elec model is shifted to reach zero at the cutoff distance of 6.0 Å.
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protocols in Rosetta take advantage of this splitting by slowly
increasing the weight of the repulsive component to traverse
rugged energy landscapes and to prevent structures from
unfolding during sampling.73

The repulsive van der Waals energy, fa_rep, varies as a
function of atom-pair distance. At short distances, atomic
overlap results in strong forces that lead to large changes in the
energy. The steep 1/di,j

12 term can cause poor performance in
minimization routines and overall structure prediction and
design calculations.74,75 To alleviate this problem, we weaken
the repulsive component by replacing the 1/di,j

12 term with a
softer linear term for di,j ≤ 0.6σi,j. The term is computed using
the atom-type-specific parameters mi,j and bi,j, which are fit to
ensure derivative continuity at di,j = 0.6σi,j. After the linear
component, the function transitions smoothly to the 6−12
form until di,j = σi,j, where it reaches zero and remains zero (eq
3 and Figure 1A):
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Rosetta also includes an intraresidue version of the repulsive
component, fa_intra_rep, with the same functional form
as the fa_rep term (eq 3). We include this term because the
knowledge-based rotamer energy (fa_dun; see below)
underestimates intraresidue collisions.
The attractive van der Waals energy, fa_atr, has a value of

−εi,j for di,j ≤ σi,j and then transitions to the 6−12 potential as
the distance increases (eq 4 and Figure 1B):
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For speed, we truncate the LJ term beyond di,j = 6.0 Å, where
the van der Waals forces are small. To avoid derivative
discontinuities, we use a cubic polynomial function, f poly(di,j),
for di,j > 4.5 Å to transition the standard Lennard-Jones
functional form smoothly to zero. These smooth derivatives are
necessary to ensure that bumps do not accumulate in the
distributions of structural features at inflection points in the
energy landscape during conformational sampling with
gradient-based minimization (Sheffler, unpublished, 2006).
Both terms are multiplied by a connectivity weight, wi,j

conn, to
exclude the large repulsive energetic contributions that would
otherwise be calculated for atoms separated by fewer than four
chemical bonds (eq 5).
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To ensure the connectivity rules include both atoms in a dipole,
if an atom is part of a strong dipole, then we count bonds
(ni,j

bonds) to include both atoms in the dipole. Such weights are
common to molecular force fields that assume that covalent
bonds are not formed or broken during a simulation. Rosetta
uses four chemical bonds as the “crossover” separation when
wi,j
conn transitions from 0 to 1 (rather than three chemical bonds

as used by traditional force fields) to limit the effects of double
counting due to knowledge-based torsional potentials.
The comparison between eq 2 and the modified LJ potential

(eqs 3 and 4) is shown in Figure 1A,B.
Electrostatics. Nonbonded electrostatic interactions arise

from forces between fully and partially charged atoms. To
evaluate these interactions, Rosetta uses Coulomb’s law with
partial charges originally taken from CHARMM and adjusted
via a group optimization scheme (Table S3 in the Supporting
Information).50 Coulomb’s law is a pairwise term commonly
expressed in terms of di,j, the dielectric constant, ϵ, the partial
atomic charges for each atom, qi and qj, and Coulomb’s
constant, C0 (=322 Å kcal/mol e−2, where e is the elementary
charge) (eq 6):

=
ϵ

E i j
C q q

d
( , )

1i j

i j
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0

, (6)

To approximate electrostatic interactions in biomolecules, we
modify the potential to account for the difference in dielectric
constant between the protein core and the solvent-exposed
surface.76 Specifically, we substitute the constant ϵ in eq 6 with
a sigmoidal function ϵ(di,j) that increases from ϵcore = 6 to
ϵsolvent = 80 when di,j is between 0 and 4 Å (eqs 7 and 8):
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As with the van der Waals term, we make several heuristic
approximations to adapt this calculation for simulations of
biomolecules. To avoid strong repulsive forces at short
distances, we replace the steep gradient with the constant
Eelec(dmin) for di,j < 1.45 Å. Next, since the distance-dependent
dielectric assumption results in dampened long-range electro-
statics, for speed we truncate the potential at dmax = 5.5 Å and
modify the Coulomb curve by subtracting 1/dmax

2 to shift the
potential to zero at di,j = dmax (eq 9).
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We use the cubic polynomials f poly
elec,low(di,j) and f poly

elec,high(di,j) to
smooth between the traditional form and our adjustments while
avoiding derivative discontinuities. The energy is also multi-
plied by the connectivity weight, wi,j

conn (eq 5). The final
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modified electrostatic potential is given by eq 10 and compared
with the standard form in Figure 1C.
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Solvation. Native-like protein conformations minimize the
exposure of hydrophobic side chains to the surrounding polar
solvent. Unfortunately, explicitly modeling all of the inter-
actions between solvent and protein atoms is computationally
expensive. Instead, Rosetta represents the solvent as bulk water
based upon the Lazaridis−Karplus (LK) implicit Gaussian
exclusion model.36 Rosetta’s solvation model has two
components: an isotropic solvation energy, called fa_sol,
which assumes that bulk water is uniformly distributed around
the atoms (Figure 2A), and an anisotropic solvation energy,
called lk_ball_wtd, which accounts for specific waters near
polar atoms that form the solvation shell (Figure 2B).
The isotropic (LK) model36 is based on the function fdesolv

that describes the energy required to desolvate (remove
contacting water) an atom i when it is approached by a
neighboring atom j. In Rosetta, we exclude the LK ΔGref term
because we implement our own reference energy (discussed
later). The energy of the atom-pair interaction varies with the
separation distance, di,j, the experimentally determined vapor-
to-water transfer free energy, ΔGi

free, the sum of the atomic
radii, σi,j, the correlation length, λi, and the atomic volume of
the desolvating atom, Vj (eq 11):
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At short distances, fa_rep prevents atoms from overlapping;
however, many protocols briefly downweight or disable the
fa_rep term. To avoid scenarios where fdesolv encourages
atom-pair overlap in the absence of fa_rep, we smoothly
increase the value of the function to a constant at short
distances where the van der Waals spheres overlap (di,j = σi,j).
At large distances, the function asymptotically approaches zero;
therefore, we truncate the function at 6.0 Å for speed. We also
transition between the constants at short and long distances
using the distance-dependent cubic polynomials fpoly

solv,low and
f poly
solv,high with constants c0 = 0.3 Å and c1 = 0.2 Å that define a
window for smoothing. The overall desolvation function is
given by eq 12:
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The total isotropic solvation energy, Efa_sol, is computed as a
sum of the energies for atom j desolvating atom i and vice versa,
scaled by the previously defined connectivity weight (eq 13):

∑= +_E w g i j g j i[ ( , ) ( , )]
i j

i jfa sol
,

,
conn

desolv desolv
(13)

Figure 2. Two-component Lazaridis−Karplus solvation model. Rosetta uses two energy terms to evaluate the desolvation of protein side chains: an
isotropic term (fa_sol) and an anisotropic term (lk_ball_wtd). (A) and (B) demonstrate the difference between isotropic and anisotropic
solvation of the NH2 group by CH3 on the asparagine side chain. The contours vary from low energy (blue) to high energy (yellow). The arrows
represent the approach vectors for the pair potentials shown in (C−E), where we compare the fa_sol, lk_ball, and lk_ball_wtd +
fa_sol energies for the solvation of the NH2 group on asparagine for three different approach angles: (C) in line with the 1HD2 atom, (D) along
the bisector of the angle between 1HD1 and 1HD2, and (E) vertically down from above the plane of the hydrogens (out of plane).
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Rosetta also includes an intraresidue version of the isotropic
solvation energy, fa_intra_sol, with the same functional
form as the fa_sol term (eq 13).
A recent innovation (2016) is the addition of the energy

term lk_ball_wtd to model the orientation-dependent
solvation of polar atoms. This anisotropic model increases the
desolvation penalty for occluding polar atoms near sites where
waters may form hydrogen-bonding interactions. For polar
atoms, we subtract off part of the isotropic energy given by eq
13 and then add the anisotropic energy to account for the
position of the desolvating atom relative to hypothesized water
positions.
To compute the anisotropic energy, we first calculate the set

of ideal water sites around atom i, ν ν= { , , ...}i i i1 2 . This set
contains one to three water sites, depending on the atom type
of atom i. Each site is 2.65 Å from atom i and has an optimal
hydrogen-bonding geometry, and we consider the potential
overlap of a desolvating atom j with each water. The overlap is
considered negligible until the van der Waals sphere of the
desolvating atom j (with radius σj) touches the van der Waals
sphere of the water (with radius σw) at site k, and then the term
smoothly increases over a zone of partial overlap of
approximately 0.5 Å. Thus, for each water site k with
coordinates vi,k, we compute an occlusion measure dk

2 to
capture the gap between the hypothetical water and the
desolvating atom j, using the offset Ω = 3.7 Å2 to provide the
ramp-up buffer (eq 14):

ν σ σ= || − || − + + Ωd r ( )k j i k j
2

,
2

w
2

(14)

Next, we find the soft minimum of dk
2 over all water sites in i

by computing the logarithmic average:

∑= − −
∈
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⎢⎢
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⎥⎥d i j d( , ) ln exp( )

k
kmin

2 2

i (15)

Then dmin
2 and Ω are used to compute a damping function,

f lkfrac, that varies from 0 when the desolvating atom is at least a
van der Waals distance from any preferred water site to 1 when
the desolvating atom overlaps a water site by more than ∼0.5 Å
(eq 16):
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We calculate the anisotropic energy for desolvating a polar
atom, Elk_ball, by scaling the desolvation function gdesolv by the
damping function f lkfrac and an atom-type-specific weight, waniso,
which is typically ∼0.7 (eq 17):

=_E i j w g i j f i j( , ) ( , ) ( , )ilk ball aniso, desolv lkfrac (17)

The amount of isotropic solvation energy subtracted is gdesolv
multiplied by wiso, where wiso is an atom-type-specific weight,
typically ∼0.3 (eq 18):

Figure 3. Orientation-dependent hydrogen bonding model. (A) Degrees of freedom evaluated by the hydrogen-bonding term: the acceptor−donor
distance, dHA; the angle between the base, acceptor, and hydrogen, θBAH; the angle between the acceptor, hydrogen, and donor, θAHD; and the
dihedral angle corresponding to rotation around the base−acceptor bond, ϕB2BAH. (B) Lambert azimuthal projection of the Ehbond

B2BAH energy landscape

for an sp2-hybridized acceptor.49 (C) Ehbond
B2BAH energy landscape for an sp3-hybridized acceptor. (D−F) Example energies for hydrogen bonding of the

histidine imidazole ring acceptor with a protein backbone amide: (D) energy Ehbond
HA vs the acceptor−donor distance dHA; (E) energy EhbondBAH vs the

base−acceptor−hydrogen angle θBAH; (F) energy Ehbond
AHD vs the acceptor−hydrogen−donor angle θAHD.
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= −_ _E i j w g i j( , ) ( , )ilk ball iso iso, desolv (18)

The total weight on the isotropic contribution through both the
fa_sol and lk_ball_wtd terms is thus ∼0.7. The
isotropic and anisotropic components are then summed to
yield a new desolvation function, hdesolv (eq 19):

= +_ _ _h i j E i j E i j( , ) ( , ) ( , )desolv lk ball iso lk ball (19)

Like fa_sol, the energies for desolvation of atom i by atom j
and desolvation of atom j by atom i are summed to yield the
overall lk_ball_wtd energy, but counting only the
desolvation of polar, hydrogen-bonding heavy atoms (O, N),
defined as the set (eq 20):

∑ ∑= +_ _
∈ ∈

E w h i j w h j i( , ) ( , )
i

i j
j

i jlk ball wtd ,
conn

desolv ,
conn

desolv

(20)

Figure 2 shows comparisons of fa_sol, lk_ball (eq 17),
and the sum of fa_sol and lk_ball_wtd for the example
of an asparagine NH2 desolvated from three different approach
angles. As the approach angle varies, the sum of
lk_ball_wtd and fa_sol creates a larger desolvation
penalty when water sites are occluded and a smaller penalty
otherwise, relative to fa_sol alone.
Hydrogen Bonding. Hydrogen bonds are partially covalent

interactions that form when a nucleophilic heavy atom donates
electron density to a polar hydrogen.77 At short ranges (<2.5
Å), they exhibit geometries that maximize orbital overlap.78 The
interactions between hydrogen-bonding groups are also
partially described by electrostatics. While this hybrid
covalent−electrostatic character is complex, it is crucial for
capturing the structural specificity that underlies protein
folding, function, and interactions.
Rosetta calculates the energies of hydrogen bonds using

fa_elec and a hydrogen-bonding model that evaluates
energies on the basis of orientation preferences of hydrogen
bonds found in high-resolution crystal structures.38,49 To derive
this model, we curated intraprotein polar contacts from ∼8000
high-resolution crystal structures (the Top8000 data set79) and
identified features using adaptive density estimation. We then
empirically fit the functional form of the energy such that the
Rosetta-generated polar contacts mimic the distributions from
Top8000. The resulting hydrogen-bonding energy is evaluated
for all pairs of donor hydrogens, H, and acceptors, A, as a
function of four degrees of freedom (Figure 3A): (1) the
distance between the donor and acceptor, dHA; (2) the angle
θAHD formed by the acceptor, the donor H, and the donor
heavy atom, D; (3) the angle θBAH formed by the acceptor’s
parent atom (“base”), B, the acceptor, and the donor; and (4)
the torsion angle ϕB2BAH formed by the donor H, the acceptor,
and two subsequent parent atoms B and B2. B, the parent atom
of A, is the first atom on the shortest path to the root atom
(e.g., Cα). The B2 atom of A is the parent atom of B (e.g., the
sp2 plane is defined by B2, B, and A). For convenience, the
hydrogen-bonding energy is subdivided into four separate
t e rm s : l o n g - r a n g e b a c k bon e h yd r o g en bond s
(hbond_lr_bb), short-range backbone hydrogen bonds
(hbond_sr_bb), hydrogen bonds between backbone and
side-chain atoms (hbond_bb_sc), and hydrogen bonds
between side-chain atoms (hbond_sc).
To avoid overcounting, side chain to backbone hydrogen

bonds are excluded if the backbone group is already involved in

a hydrogen bond to prevent formation of too many i to i-4 or i
to i-3 hydrogen bonds for helical serines and threonines. For
speed, the component terms have simple analytic functional
forms (Figure 3B−F and eqs S1−S7 in the Supporting
Information). The term is also multiplied by two atom-type-
specific weights, wH and wA, that account for the varying
strength of hydrogen bonds. The overall model is given by eq
21, in which the Ehbond

B2BAH term depends on the orbital
hybridization of the acceptor, ρ, and the function f(x) (eq
22) is used for smoothing to avoid derivative discontinuities
and ensure that edge-case hydrogen bonds are considered:
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Disulfide Bonding. Disulfide bonds are covalent interactions
that link sulfur atoms in cysteine residues. In Rosetta we
typically rely on a tree-based kinematic system3,80 to keep bond
lengths and angles fixed so that we may sample the
conformation space by changing only torsions. For this reason,
we do not generally need terms that evaluate bond-length and
bond-angle energetics. However, with disulfide bonds and
proline (discussed below), the extra bonds cannot be
represented with a tree (since a tree graph is acyclic) and
thus must be treated explicitly. Therefore, disulfide bonds are a
special case of inter-residue covalent contacts that requires a
representation with more degrees of freedom. To evaluate
disulfide-bonding interactions, Rosetta identifies pairs of
cysteines that have covalent bonds linking the Sγ atoms and
computes the energies of these interactions using an
orientation-dependent model called dslf_fa13.49 The
model was derived by curating intraprotein disulfide bonds
from Top8000 and identifying features using kernel density
estimates. For speed, the feature distributions are modeled
using skewed Gaussian functions and a mixture of one, two, and
three von Mises functions (eqs S8−S11).
The overall disulfide energy is computed as a function of six

degrees of freedom (Figure 4) that map to four component
energies. First, the component due to the sulfur−sulfur
distance, dSS, is evaluated as Edslf

SS (dSS). Second, the components
due to the angles formed by Cβ1 and Cβ2 with the S−S bond,
θCβ1SS and θCβ2SS, respectively, are evaluated as Edslf

CSS(θCβSS).

Third, the components due to the dihedral angles formed by
Cα1Cβ1 and Cα2Cβ2 with the S−S bond, ϕCα1Cβ1SS and ϕCα2Cβ2SS,

respectively, are evaluated as Edslf
CαCβSS(ϕCαCβSS). Finally, the

dihedral angle formed by Cβ1, Cβ2, and the S−S bond, ϕCβ1SSCβ2
,

is evaluated as Edslf
CβSSCβ(ϕCβ1SSCβ2

). The complete disulfide

bonding energy evaluated for all S−S pairs is given by eq 23:
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Terms for Protein Backbone and Side-Chain Torsions.
Rosetta evaluates backbone and side-chain conformations in
torsion space to greatly reduce the search domain and increase
the computational efficiency. Traditional molecular mechanics
force fields describe torsional energies in terms of sines and
cosines, which have at times performed poorly at reproducing
the observed backbone dihedral distributions in unstructured
regions.81 Instead, Rosetta uses several knowledge-based terms
for torsion angles that are fast approximations of quantum
effects and more accurately model the preferred conformations
of protein backbones and side chains.

Ramachandran Maps. To evaluate the backbone ϕ and ψ
angles, we define an energy term called rama_prepro based
on Ramachandran maps for each amino acid using torsions
from 3985 protein chains with a resolution of ≤1.8 Å, R factor
of ≤0.22 and sequence identity of ≤50%.82 Amino acids with
low electron density (in the bottom 25th percentile of each
residue type) were removed from the data set. The resulting
∼581 000 residues were used in adaptive kernel density
estimates52 of Ramachandran maps with a grid step of 10°
for both ϕ and ψ. Residues preceding proline are also treated
separately because they exhibit distinct ϕ, ψ preferences due to
steric interactions with the proline Cδ.

83 The energy, called
Erama_prepro, is then computed by converting the probabilities to
energies at the grid points via the inverted Boltzmann relation84

(eq 24 and Figure 5):

∑
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reg
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(24)

The energies are then evaluated using bicubic interpolation.
The Supporting Information includes a detailed discussion of
why interpolation is performed on the backbone torsional

Figure 4. Orientation-dependent disulfide bonding model. (A)
Degrees of freedom evaluated by the disulfide bonding energy: the
sulfur−sulfur distance, dSS; the angle formed by Cβ and the two sulfur
atoms, θCβSS; the dihedral angle corresponding to rotation about the

Cβ−sulfur bond, ϕCαCβSS; and the dihedral angle corresponding to

rotation about the S−S bond, ϕCβSSCβ
. (B−E) Plots of the energy terms

(B) Edslf
SS (dSS), (C) Edslf

CSS(θCβSS), (D) Edslf
CβSSCβ(ϕCβSSCβ

), and (E)

Edslf
CαCβSS(ϕCαCβSS).

Figure 5. Backbone torsion energies. (A) The angle ϕ is defined by the backbone atoms Ci−1−N−Cα−C, and the angle ψ is defined by N−Cα−C−
Ni+1. (B, C) Backbone-dependent torsion energies (Erama_prepro) for the lysine residue (B) without a proline at i + 1 and (C) with a proline at i + 1.
(D) Ep_aa_pp of lysine.
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energies rather than the probabilities (Figure S3 and eqs S12 and
S13).
Backbone Design Term. Rosetta also computes the

likelihood of placing a specific amino acid side chain given an
existing ϕ, ψ backbone conformation. This term, called
p_aa_pp, represents the propensity to observe an amino
acid relative to the other 19 canonical amino acids.85 The
knowledge-based propensity, P(aa|ϕ, ψ) (eq 25), was derived
using the adaptive kernel density estimates for P(ϕ, ψ|aa) and
Bayes’ rule, and the equation for Ep_aa_pp is given in eq 26
(Figure 5D):

ϕ ψ ϕ ψ
ϕ ψ

| = |
∑ | ′′

P
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Side-Chain Conformations. Protein side chains mostly
occupy discrete conformations (rotamers) separated by large
energy barriers. To evaluate rotamer conformations, Rosetta
derives probabilities from the 2010 backbone-dependent
rotamer library (http://dunbrack.fccc.edu/bbdep2010/),
which contains the frequencies, means, and standard deviations
of individual χ angles for each χ angle k of each rotamer of each
amino acid type.52 The probability has three components: (1)
observing a specific rotamer given the backbone dihedral
angles; (2) observing specific χ angles given the rotamer; and
(3) observing the terminal χ angle distribution, which is either
Gaussian-like or continuous when the terminal χ angle is sp2-
hybridized (eq 27):

∏χ ϕ ψ ϕ ψ χ ϕ ψ
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k T
k

T (27)

where T is the number of rotameric χ angles plus 1.
The 2010 rotamer library distinguishes between rotameric

and nonrotameric torsions. A torsion is rotameric when the
third of the four atoms defining the torsion is sp3-hybridized
(i.e., preferring ∼60°, ∼180°, and ∼ −60° with steep energy
barriers between the wells), If the last χ torsion is rotameric, the
probability p(χT|ϕ, ψ, rot, aa) is fixed at 1. On the other hand, a
torsion is nonrotameric if its third atom is sp2-hybridized: the
library describes its probability distribution continuously
instead. The category of semirotameric amino acids with both
rotameric and nonrotameric dihedrals encompasses eight
amino acids: Asp, Asn, Gln, Glu, His, Phe, Tyr, and Trp.86

The probability of each rotamer, P(rot|ϕ, ψ, aa), is derived
from the same data set as the Ramachandran maps described
above. The probabilities were identified using adaptive kernel
density estimation, and the same data set is used to estimate the
mean μχk and standard deviation σχk for each χ dihedral in the
rotamer as functions of the backbone dihedrals, allowing us to
compute a probability for the χ values using eq 28:
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This formulation is reminiscent of the Gaussian distribution,
except that it is missing the normalization coefficient of
[2πσχk(ϕ, ψ|rot, aa)]

−1/2. Taking the logarithm of this proba-
bility gives a term resembling Hooke’s law with the spring
constant given by σχk

−2(ϕ, ψ|rot, aa).
The full form of Efa_dun is given by eq 29 as a sum over all

residues r. The difference between the rotameric and
semirotameric models is also shown in Figure 6.
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The energy from −ln[P(rotr|ϕr, ψr, aar)] is computed using
bicubic-spline interpolation; P(χTr,r|ϕr, ψr, rotr, aar) is computed

using tricubic-spline interpolation. To save memory, μχk(ϕr, ψr|
rotr, aar), and σχk(ϕr, ψr|rotr, aar) are computed using bilinear
interpolation, though this has the effect of producing derivative
discontinuities at the (ϕ, ψ) grid boundaries. These disconti-
nuities, however, do not appear to produce noticeable
artifacts.51

Terms for Special-Case Torsions. Peptide bond dihedral
angles, ω, remain mostly fixed in a cis or trans conformation
and depend on the backbone ϕ and ψ angles. Since the electron
pair on the backbone nitrogen donates electron density to the
electrophilic carbonyl carbon, the peptide bond has partial
double-bond character. To model this barrier to rotation,
Rosetta implements a backbone-dependent harmonic penalty

Figure 6. Energies for side-chain rotamer conformations. The
Dunbrack rotamer energy, Efa_dun, is dependent on both the ϕ and
ψ backbone torsions and the χ side-chain torsions. Here we
demonstrate the variation of Efa_dun when the backbone is fixed in
an α-helical conformation with ϕ = −57° and ψ = −47° and the χ
values can vary. χ1 is shown in blue, χ2 in red, and χ3 in green. (A) χ-
dependent Dunbrack energy of methionine with an sp3-hybridized
terminus. (B) χ-dependent energy of glutamine with an sp2-hybridized
χ3 terminus. χ1, χ2, and χ3 of methionine and χ1 and χ2 of glutamine
express rotameric behavior, while χ3 of the latter expresses broad
nonrotameric behavior.
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centered near 0° for cis and 180° for trans (Figure 7A). This
energy, called omega, is evaluated on all peptide bonds in the
biomolecule (eq 30):
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The means μω and standard derivations σω are backbone
(ϕ, ψ)-dependent, as given by kernel regressions of ω on ϕ and
ψ.72

Most Rosetta protocols search over only simple torsions
within chains and rigid-body degrees of freedom between
chains. However, the side chain of proline requires special
treatment because its ring cannot be represented by a kinematic
tree.87 Therefore, Rosetta implements a proline closure term,
called pro_close (Figure 7B). There are two components
to this energy, as shown in eq 31. First, there is a torsional
potential that operates on the dihedral formed by Or−1−Cr−1−
Nr−Cδ,r (called ωr′) given the observed mean μω′ and standard
deviation σω′, where r is the residue index. This term keeps the
Cδ atom in the peptide plane. Second, to ensure the correct
geometry for the two hydrogens bound to Cδ, we build a virtual
nitrogen atom, Nv, off Cδ whose coordinate is controlled by χ3
(Figure 7B). The pro_close term seeks to align the virtual
atom Nv directly on top of the real backbone nitrogen. The N−
Cδ−Cγ bond angle and the N−Cδ bond length are restrained to
their ideal values.
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Tyrosine also requires special treatment for its χ3 angle because
the hydroxyl hydrogen prefers to be in the plane of the
aromatic ring.88 To enforce this preference, Rosetta implements
a sinusoidal penalty to model the barrier to a χ3 angle that
deviates from planarity. This tyrosine hydroxyl penalty is called
yhh_planarity (eq 32 and Figure 7C):

∑ π χ= − +_E
1
2

[cos( 2 ) 1]
i

iyhh planarity 3,
(32)

Terms for Modeling Nonideal Bond Lengths and
Angles. Cartesian Bonding Energy. Recently, modeling
Cartesian degrees of freedom during gradient-based minimiza-
tion has been shown to improve Rosetta’s ability to refine low-
resolution structures determined by X-ray crystallography and
cryogenic electron microscopy53 as well as its ability to
discriminate near-native conformations in the absence of
experimental data.89 These data suggest that capturing nonideal
bond lengths and angles can be important for accurate
modeling of minimum-energy protein conformations. To
accommodate, Rosetta now allows these “nonideal” angles
and lengths to be included as additional degrees of freedom in
refinement and includes a Cartesian minimization mode in
which the atom coordinates are explicit degrees of freedom in
optimization.
To evaluate the energetics of nonideal bond lengths, angles,

and planar groups, an energy term called cart_bonded
represents the deviation of these degrees of freedom from ideal
using harmonic potentials (eqs 32−34):
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In these equations, di is a bonded-atom-pair distance with di,0 as
its ideal distance, θi is a bond angle with θi,0 as its ideal angle,
and ϕi is a bond torsion or improper torsion with ϕi,0 as its

Figure 7. Special case torsion energies. (A−C) Rosetta implements three additional energy terms to model torsional degrees of freedom with acute
preferences: (A) omega torsion, corresponding to rotation about C−N; (B) proline secondary omega torsion, corresponding to rotation about C−N
related to the Cδ in the ring; (C) tyrosine terminal χ torsion. (D) Omega energy. (E) Proline closure energy. (F) Tyrosine planarity energy.
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ideal value and ρi as its periodicity. The ideal bond lengths and
angles90,91 were selected on the basis of their ability to rebuild
side chains observed in crystal structures (Kevin Karplus and
James J. Havranek, unpublished); they were subsequently
modified empirically.51 The spring constants for the angle and
length terms are from CHARMM32.19 Finally, all planar groups
and the Cβ “pseudotorsion” are constrained using empirically
derived values and spring constants:
The function fwrap(x, y) wraps x to the range [0, y). To avoid

double counting in the case of Ecart_torsion, the spring constant
ktorsion,i is zero when the torsion ϕi is being scored by either the
rama or fa_dun terms.
Terms for Protein Design. Design Reference Energy. The

terms above are sufficient for comparing different protein
conformations with a fixed sequence. However, protein design
simulations compare the relative stability of different amino
acid sequences given a desired structure to identify models that
exhibit a large free energy gap between the folded and unfolded
states. Explicit calculations of unfolded-state free energies are
computationally expensive and error-prone. Rosetta therefore
approximates the relative energies of the unfolded-state
ensembles using an unfolded-state reference energy called ref.
Rosetta calculates the reference energy as a sum of individual

constant unfolded-state reference energies, ΔGi
ref, for each

amino acid, aai (eq 36):1

∑= ΔE G (aa )
i

i iref
ref

(36)

The ΔGi
ref values are empirically optimized by searching for

values that maximize native sequence recovery (discussed
below) during design simulations on a large set of high-
resolution crystal structures.50,51 During design, this energy
term helps normalize the observed frequencies of the different
amino acids. When design is turned off, the term contributes a
constant offset for a fixed sequence.
Bringing the Energy Terms Together. The Rosetta

energy function combines all of the terms using a weighted
linear sum to approximate free energies (Table 1). Historically,
we have adjusted the weights and parameters to balance the
energetic contributions from the various terms. This balance is
important because the van der Waals, solvation, and electro-
statics energies partially capture torsional preferences and
overlap can cause errors as a result of double counting of
atomic or residue-specific contributions.92 More recently, we
have fixed the physics-based terms with weights of 1.0 and
perturbed the other weights and atomic-level parameters using
a Nelder−Mead scheme93 to optimize the agreement of Rosetta
calculations with small-molecule thermodynamic data and high-
resolution structural features.50 The energy function parameters
have evolved over the years by optimization of the performance
of multiple scientific benchmarks (Table 2).50,51,94 These
benchmarks were chosen to test the recovery of native-like
structural features, ranging from individual hydrogen-bond
geometries to thermodynamic properties and interface
conformations. In addition, and more recently, Song et al.,95

Conway and DiMaio,96 and O’Meara et al.49 have fit intraterm
parameters to recover features of the experimentally
determined folded conformations. An in-depth review of
energy function benchmarking can be found in Leaver-Fay et
al.51 Table S3 lists the Rosetta database files containing the
current full set of physical parameters for each score term.
Energy Function Units. Initially, Rosetta energies were

expressed in a generic unit called the Rosetta energy unit

(REU). This choice was made because some original Rosetta
energy terms were not calibrated with experimental data, and
the use of statistical potentials convoluted interpretation of the
energy. Over time the physical meaning of Rosetta energies has
been extensively debated within and outside the community,
and several steps have been taken to clarify the interpretation.
The most recent energy function (REF15) was parametrized on
high-resolution protein structures and small-molecule thermo-
dynamic parameters that were measured in kilocalories per
mole.50 The optimization data show a strong correlation
between the experimental data and values predicted by Rosetta
(ΔΔG upon mutation, R = 0.994; small-molecule ΔHvap, Figure
S1). As a result, Rosetta energies are now a stronger
approximation of energies in units of kilocalories per mole.
Therefore, as is standard practice for molecular force fields such
as OPLS, CHARMM, and AMBER, we now also express
energies in kilocalories per mole.

■ ENERGIES IN ACTION: USING INDIVIDUAL ENERGY
TERMS TO ANALYZE ROSETTA MODELS

Rosetta energy terms are mathematical models of the physics
that governs protein structure, stability, and association.
Therefore, the decomposed relative energies of a structure or
ensemble of structures can expose important details about the
biomolecular model. Now that we have presented the details of
each energy term, we here demonstrate how these energies can
be applied to detailed interpretations of structural models. In
this section, we discuss two common structure calculations: (1)
estimating the free energy change (ΔΔG) of mutation97 and
(2) modeling the structure of a protein−protein interface.101

ΔΔG of Mutation. The first example demonstrates how
Rosetta can be used to estimate and rationalize thermodynamic
parameters. Here we present an example ΔΔG of mutation
calculation for the T193V mutation in the RT-RH-derived
peptide bound to HIV-1 protease (PDB entry 1kjg; Figure
8A).104 The details of this calculation are provided in the
Supporting Information.
Rosetta calculates the ΔΔG of the T193V mutation to be

−4.95 kcal/mol, and the experimentally measured value is
−1.11 kcal/mol.104 Both the experiment and calculation reveal
that T193V is stabilizing, yet these numbers alone do not reveal
which specific interactions are responsible for the stabilization.
To investigate, we used various analysis tools accessible in
PyRosetta105 to identify important energetic contributions to

Table 2. Common Energy Function Benchmarking Methods

test description ref(s)

sequence recovery percentage of the native sequence recovered
after backbone redesign

1, 51

rotamer recovery percentage of native rotamers recovered
after full repacking

51

ΔΔG prediction prediction of free energy changes upon
mutation

97

loop modeling prediction of loop conformations 98

high-resolution
refinement

discrimination of native-like decoys upon
refinement of ab initio protein models

99

docking prediction of protein−protein, protein−
peptide, or protein−ligand interfaces

44, 100−102

homology
modeling

structure prediction incorporating
homologous information from templates

103

thermodynamic
properties

recapitulation of thermodynamic properties
of protein side-chain analogues

17

recapitulation of
crystal structure
geometries

recapitulation of features (e.g., atom-pair
distance distribution) from high-resolution
protein crystal structures

50
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the total ΔΔG. First, we decomposed the ΔΔG into individual
energy terms and observed the balance of terms, both favorable
and unfavorable, that sum to the total (Figure 8B). To
decompose the most favorable term, Δfa_sol, we used the
print_residue_pair_energies function to identify
residues that interact with the mutation site (in this case,
residue 4) to produce a nonzero residue-pair solvation energy.
With the resulting table, we found that a hydrophobic pocket
around the mutation site formed by residues V27, I45, G46,
and I80 on HIV peptidase and residue F194 on the peptide
made a large (>0.05 kcal/mol) and favorable contribution to
the change in solvation energy (Figure 8C).
We further investigated this result on the atomic level with

the function print_atom_pair_energy_table by
generating atom-pair energy tables (see the Supporting
Information) for residues 5, 27, 45, 46, and 80 against both
threonine and valine at residue 193 (an example for residue 80
is shown in Table 3). Here we find that the specific substitution

of the polar hydroxyl group on threonine with the nonpolar
alkyl group on valine stabilizes the peptide in the hydrophobic
protease pocket. This result is consistent with chemical
intuition and demonstrates how breaking down the total
energies can provide insight into characteristics of the mutated
structures.
Protein−Protein Docking. The second example shows

how the Rosetta energies of an ensemble of models can be used
to discriminate between models and investigate the character-
istics of a protein−protein interface. Below we investigate
docked models of West Nile Virus envelope protein and a

neutralizing antibody (PDB entry 1ztx; Figure 9A).106

Calculation details can be found in the Supporting Information.
To evaluate the docked models, we examine the variation of

the energies as a function of the root-mean-square deviation
(RMSD) between the residues at the interface in each model
and the known structure. For our calculation, interface residues
are residues with a Cβ atom less than 8.0 Å away from the Cβ of
a residue in the other docking partner. The plot of energies
against RMSD values is called a funnel plot and is intended to
mimic the funnel-like energy landscape of protein folding and
binding.
As in the previous example, we decompose the energies to

yield information about the nature of interactions at the
interface. Here we observe significant changes in the following
energy terms upon interface formation relative to the unbound
state: fa_atr, fa_rep, fa_sol, lk_ball_wtd,
fa_elec , hbond_lr_bb , hbond_bb_sc , and
hbond_sc (Figure 9B). The change in the Lennard-Jones
energy upon interface formation is due to the introduction of
atom−atom contacts at the interface. As more atoms come into
contact near the native conformation (RMSD → 0), the
favorable attractive energy (fa_atr) decreases whereas the
unfavorable repulsive energy (fa_rep) increases. The change
in the isotropic solvation energy (Δfa_sol) is positive
(unfavorable), indicating that polar residues are buried upon
interface formation. Balancing the desolvation penalty, the
changes in polar solvation energy (Δlk_ball_wtd) and
electrostatics (Δfa_elec) are negative because of the
formation of polar contacts at the interface. Finally, the
changes in the three hydrogen-bonding energies
(Δhbond_lr_bb, Δhbond_bb_sc, and Δhbond_sc)
reflect the formation of backbone−backbone, backbone−side-
chain, and side-chain−side-chain hydrogen bonds at the
interface.

■ DISCUSSION
The Rosetta energy function represents our collaboration’s
ongoing pursuit to model the rules in nature that govern
biomolecular structure, stability, and association. This paper
summarizes the latest version, which brings together
fundamental physical theories, statistical-mechanical models,
and observations of protein structures. This work represents
almost 20 years of interdisciplinary collaboration in the Rosetta

Figure 8. Structural model of the HIV-1 protease bound to the T193V mutant of RT-RH-derived peptide. (A) Structural model of the native HIV-1
peptidase (teal and dark blue) bound to the native peptide (gray) superimposed onto the T193V mutant peptide (magenta). (B) Contributions
greater than ±0.1 kcal/mol to the ΔΔG of mutation for T193V. The remaining contributions are dslf_fa13 = 0 kcal/mol, hbond_lr_bb =
−0.09 kcal/mol, hbond_bb_sc = −0.05, hbond_sc = −0.0104, fa_intra_rep = 0.01, fa_intra_sol = −0.07, and
yhh_planarity = 0. (C) Hydrophobic patch of residues surrounding position 193 on the RT-RH-derived peptide.

Table 3. Changes in Atom-Pair Energies (in kcal/mol)
between I80 and T193 versus V193

I80 atoms

T193→V193 atoms CB CG1 CG2 CD1

N 0.000 0.000 0.000 0.000
CA 0.000 0.000 0.000 0.004
C 0.000 0.000 0.000 0.008
O 0.000 0.000 0.000 −0.010
CB 0.000 0.054 0.000 −0.002
OG1 → CG1 0.008 −0.054 −0.316 −0.398
CG2 → CG2′ 0.000 0.000 0.001 0.020
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community, which in turn builds on and incorporates decades
of work outside the community.
After 20 years, we have improved physical theories, structural

data, representations, experiments, and computational tools;
nevertheless, the energy functions are far from perfect.
Compared with the first torsional potentials, the energy
functions are also now vastly more complex. There are
countless ways to arrive at more accurate energy functions.
Here we discuss grand challenges specific to development of
the Rosetta energy function in the coming decade.
Modeling of Biomolecules Other than Proteins. The

Rosetta energy function was originally developed to predict and

design protein structures. A clear artifact of this goal is the
energy function’s dependence on statistical potentials derived
from protein X-ray crystal structures. Today the Rosetta
community also pursues goals ranging from the design of
synthetic macromolecules to the prediction of interactions and
structures of other biomolecules such as glycoproteins and
RNA. Accordingly, an active research thrust is to generalize the
all-atom energy function for all biomolecules.
Many of the physically derived terms (e.g., van der Waals)

have already been made compatible with noncanonical amino
acids and nonprotein biomolecules (Table S5). Recently,
Bhardwaj, Mulligan, Bahl, and co-workers69 adapted the

Figure 9. Using energies to discriminate docked models of West Nile Virus and the E16 neutralizing antibody. (A) Comparison of the native E16
antibody (purple) docked to the lowest-RMSD model of the West Nile Virus envelope protein and several other random models of varying energy
to show sampling diversity (gray, semitransparent). (B) Change in the interface energy relative to the unbound state vs RMSD relative to the native
structure. Models with low RMSD relative to the native interface have a low overall interface energy due to favorable van der Waals contacts,
electrostatic interactions, and side-chain hydrogen bonds, as reflected by the Δfa_atr, Δfa_elec, and Δhbond_sc energy terms.

Table 4. New Energy Terms for Biomolecules Other than Proteins

biomolecule term description unit ref

noncanonical
amino acids

mm_lj_intra_rep repulsive van der Waals energy between two atoms from the same residue kcal/mol 67
mm_lj_intra_atr attractive van der Waals energy between two atoms from the same residue kcal/mol 67
mm_twist molecular mechanics derived torsion term for all proper torsions kcal/mol 67
unfolded energy of the unfolded state based on explicit unfolded state model AUa 67
split_unfolded_1b one-body component of the two-component reference energy, lowest energy of a side

chain in a dipeptide model system
AU in the SI

split_unfolded_2b two-body component of the two-component reference energy, median two-body
interaction energy based on atom-type composition

AU in the SI

carbohydrates sugar_bb energy for glycosidic torsions kcal/mol 70
DNA gb_elec generalized Born model of the electrostatics energy kcal/mol 107
RNA fa_stack π−π stacking energy for RNA bases kT 113

stack_elec electrostatic energy for stacked RNA bases kT 114
fa_elec_rna_phos electrostatic energy (fa_elec) between RNA phosphate atoms kT 62
rna_torsion knowledge-based torsional potential for RNA kT 62
rna_sugar_close penalty for opening an RNA sugar kT 62

aAU = arbitrary units.
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rama_prepro, p_aa_pp, fa_dun, pro_close,
omega, dslf_fa13, yhh_planarity, and ref terms
to be compatible with mixed-chirality peptides. Several of
Rosetta’s statistical potentials have been validated against
quantum-mechanical calculations to evaluate non-protein
models (Table 4). Early work by Meiler and Baker44 on
Rosetta Ligand introduced new atom and residue types for
non-protein residues. The first non-protein energy terms were
added by Havranek et al.107 and Chen et al.,108 who modified
the hydrogen-bonding potential to capture planar hydrogen
bonds between protein side chains and nucleic acid bases.
Renfrew and co-workers67,109 added molecular mechanics
torsions and Lennard-Jones terms to model proteins with
noncanonical amino acids, oligosaccharides, β-peptides, and
oligopeptoids.68 Labonte et al.70 implemented Woods’
CarboHydrate-Intrinsic (CHI) function,110,111 which evaluates
glycan geometries given the axial−equatorial character of the
bonds. Das and co-workers added a set of terms to model
Watson−Crick base pairing, π−π interactions in base stacking,
and torsional potentials important for predicting and designing
RNA structures.62,112−114 Bazzoli and Karanicolas115 recently
developed a new polar solvation model that evaluates the
penalty associated with displacing waters in the first solvation
shell. In addition, Combs116 tested a small-molecule force field
based on electron orbital models. Many of these terms are
presented in detail in the Supporting Information.
Expanding Rosetta’s chemical library brings new challenges.

Currently there are separate energy functions for various types
of biomolecules. Typically, these functions mix physically
derived terms from the protein energy function with molecule-
specific statistical potentials, custom weights, and possibly
custom atomic parameters. If nature uses only one energy
function, why do we need so many? Some discrepancies may
result from features that we do not model explicitly, such as
π−π, n−π*, and cation−π interactions. Efforts to converge on a
single energy function will therefore pose interesting questions
about the set of universal physical determinants of biomolecular
structure.
Capturing the Intra- and Extracellular Environments.

Rosetta traditionally models the solvent surrounding the
protein using the Lazaridis−Karplus (LK) model, which
assumes a solvent environment made of pure water. In contrast,
biology operates under various conditions influenced by pH,
redox potential, temperature, solvent viscosity, chaotropes,
kosmotropes, and polarizability. Therefore, modeling more
details of the intra- and extracellular environments would
enable Rosetta to identify structures that are important in
different biological contexts.
Rosetta currently includes two groups of energy terms to

model alternate environments (Table 5). Kilambi and Gray117

implemented a method to account for pH by including a term
called e_pH that calculates the likelihood of a protein side
chain’s protonation state given a user-specified pH; it requires
the inclusion of both protonated and deprotonated side chains
during side-chain rotamer packing. This model can predict pKa

values with an RMS error under 1 unit,117 and it improves
protein−protein docking, especially under acidic or basic
conditions.60 The accuracy of this model is limited by the
distance-dependent Coulomb approximation and sensitivity to
fine backbone rearrangements.
In addition, Rosetta implements Lazaridis’ implicit mem-

brane model (IMM) for modeling proteins in a lipid bilayer
enviornment.36,118,119 The IMM terms provide a fast
approximation of the nonpolar hydrocarbon core of the lipid
bilayer and have been successfully applied to membrane protein
folding,120 docking, and early design tasks.61 This continuum
model has a fixed thickness, omitting the detailed chemistry at
the membrane interface and any dynamic bilayer rearrange-
ments.

The Origin of Energy Models: Top-Down versus
Bottom-Up Development. Traditionally, energy functions
are developed using a bottom-up approach: experimental
observables serve as building blocks to parametrize physics-
based formulas. The advent of powerful optimization
techniques and artificial intelligence has recently empowered
the top-down category, where numerical methods are used to
derive models and/or parameters. Top-down approaches have
been used to solve problems in various fields, including
structural biology and bioinformatics. Recently, top-down
development was also applied to optimize the Lennard-Jones,
LK, and Coulomb parameters in the Rosetta energy function
(Tables S4−S6).50,93
Top-down approaches have enormous potential to improve

the accuracy of biomolecular modeling because more
parameters can vary and the objective function can be
minimized with more benchmarks. These approaches also
introduce new challenges. With any computer-derived model
there is a risk of overfitting, as validation via structure-
prediction data sets reflect observable states, whereas
simulations are intended to predict features of states that
experiments cannot yet observe. Computer-derived parameters
also introduce a unique kind of uncertainty. Consider the
following scenario: the performance of scientific benchmarks
improves as physical atomic parameters are perturbed away
from the measured experimental values. As there is less physical
basis for the parameters, are the predictions and interpretations
still meaningful?
Top-down development will also provide power to develop

more complicated energy functions. Currently, the Rosetta
energy function advances by incrementally addressing weak-
nesses: with each new paper, we modify analytic formulas, add
corrective terms, and adjust weights. As this paper demon-
strates, the energy function is significantly more complicated
than the initial theoretical forms. Given this complexity
increase, an interesting approach to leverage the power of
top-down development would be to simplify and subtract terms
to evaluate their individual benefits.

A Highly Interdisciplinary Endeavor. The Rosetta
energy function has advanced rapidly because of the Rosetta
Community, a highly interdisciplinary collaboration among

Table 5. Energy Terms for Structure Prediction in Different Contexts

context term description unit ref(s)

membrane
environment

fa_mpsolv solvation energy dependent on the protein orientation relative to the membrane kcal/mol 118, 121
fa_mpenv one-body membrane environment energy dependent on the protein orientation relative to the

membrane
kcal/mol 118, 121

pH e_pH likelihood of side-chain protonation given a user-specified pH kcal/mol 117
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scientists with diverse backgrounds located in over 50
laboratories around the world. The many facets of our team
enable us to probe different aspects of the energy function. For
example, expert computer scientists and applied mathemati-
cians have implemented algorithms to speed up calculations.
Dedicated software engineers maintain the code and maintain a
platform for scientific benchmark testing. Physicists and
chemists develop new energy terms that better model the
physical rules found in nature. Structural biologists maintain a
focus on created biological features and functions. We look
forward to leveraging this powerful interdisciplinary scientific
team as we head into the next decade of energy function
advances.

■ CONCLUSION: A LIVING ENERGY FUNCTION
For the first time since 2004,48 we have documented all of the
mathematical and physical details of the Rosetta all-atom
energy function, highlighting the latest upgrades to both the
underlying science and the speed of calculations. In addition,
we have illustrated how the energies can be used to analyze
output models from Rosetta simulations. These advances have
enabled Rosetta’s achievements in biomolecular structure
prediction and design over the past 15 years. Still, the energy
function is far from complete and will continue to evolve long
after this publication. Thus, we hope that this document will
serve as an important resource for understanding the
foundational physical and mathematical concepts in the energy
function. Furthermore, we hope to encourage both current and
future Rosetta developers and users to understand the strengths
and shortcomings of the energy function as it applies to the
scientific questions they are trying to answer.
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Major changes to the Rosetta energy function since 2000 
 
The all-atom Rosetta energy function for proteins has undergone significant upgrades since the original 
implementation in 2000. These changes range from improved atomic parameters and models of 
hydrogen bonding to smoothing routines that eliminate errors during minimization. An overview of these 
advances is listed in Table S1.  
 
Table S1: Major changes to the Rosetta Energy Function since 2000 

Energy Term Adjustment Ref.  
Lennard-Jones Soften repulsive potential 

Atomic radii matched to crystal structures  
Shifted LJ Potential 
Extra soft repulsive potential 
Make derivatives continuous 
New well-depth parameters 
Incorporation of hydrogens in the fa_atr calculation 

Kuhlman et al. 20001 
Kuhlman et al. 20032 
Tsai et al. 20033 
Meiler & Baker, 20064 
Scheffler 2006, Unpublished 
Park et al. 20165 

Solvation Implementation of Lazaridis-Karplus Model 
Make derivatives continuous 
Anisotropic Solvation Model 
New atomic volume 𝜆 and ∆Gfree parameters 

Kuhlman et al. 20006 
Sheffler 2006, Unpublished 
Yanover et al. 20117 
Park et al. 20165 

Electrostatics Knowledge-based Pair term 
Coulomb electrostatics for ligand interactions 
Coulomb electrostatics for nucleic acids 
Coulomb electrostatics for proteins 
Sigmoid dielectric model 
Avoidance of dipole splitting for local interactions 
New partial charges  

Kuhlman et al. 20006 
Meiler & Baker, 20064 
Yanover et al. 20117 
O’Meara et al. 20158 
Park et al. 20165 

Hydrogen Bonding Orientation-dependent hydrogen bond potential 
Favoring H-bonds in the sp2 plane 
No H-bond environment dependence 
Weights on hydrogen bond donors and acceptors 

Kortemme et al. 20039 
O’Meara et al. 20158 
Park et al. 20165 
 

Dunbrack 
Rotamers 

Add 2002 backbone-dependent rotamer library 
Replace 2002 version with the 2010 smoothed 
rotamer library 

Dunbrack et al. 200210 
Shapovalov et al. 201111 
Leaver-Fay et al. 201312 

Ramachandran & 
p_aa_pp 

Interpolation with bicubic splines 
Correction for pre-proline backbone torsions 

Leaver-Fay et al. 201312 
Park et al. 20165 

Side-chain specific Penalty for Tyr hydroxyl hydrogen leaving aromatic 
plane 

O’Meara et al. 20158 

Design reference 
energy 

Refit reference energies with OptE 
Refit reference energies with DualOptE 

Leaver-Fay et al. 201112 
O’Meara et al. 20158 
Park et al. 20165 
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Table S2: Rosetta revisions corresponding to major energy function updates 
Version Rosetta Revisiona Public Versionb 

Score12 pre-#55611 Pre-Rosetta 3.5 
Talaris2013 #55611 Rosetta 3.5 
Talaris2014 #58602 v2016.13-dev58602 
REF2015 #59248 v2017.05-dev59248 
a Internal code revision number available to member institutions of the Rosetta Commons.  
b Download the public Rosetta release from http://www.rosettacommons.org. 

Data for calibrating Rosetta energies to kcal/mol 
  
The parameters and weights in REF2015 were recently fit5 such that Rosetta simulations reproduce high-
resolution protein structural data and thermodynamic data for small molecules from Jorgensen et al.13 
Thus, the Rosetta energy is now expressed in kcal/mol. In support, Figure S1 compares experimental 
data and Rosetta predictions of density, heat of vaporization (∆Hvap) and heat capacity (Cp(l)) for 
seventeen molecules: ethane, propane, isobutene, cyclohexane, benzene, toluene, phenol, methanol, 
ethanol, 2-propanol, tert-Butyl alcohol, methane thiol, ethane thiol, dimethyl sulfide, acetamide, N-
methylamide, N-methylformamide, dimethyl ether, ethanol and propanone.  
 

 
Figure S1: Comparison of Rosetta simulations with experimental thermodynamic data 
Comparison between Rosetta predictions and experimental thermodynamic measurements for seventeen small 
molecules (A) Density (B) Heat Capacity and (C) Heat of vaporization. 
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Additional energy function details 
 
Parameters for the Lennard-Jones and Lazaridis-Karplus energies 
 
New experiments and numerical methods to optimize the energy function have led to updated atomic-
parameters used by the Lennard-Jones14,15 and Lazaridis-Karplus16 potentials. The updated parameters 
are in the following Rosetta database files:  
 
Table S3: Location of Rosetta atom type parameters 
Parameter Database File 
Radii, 𝛥𝐺free, 𝜖 chemical/atom_type_sets/fa_standard/atom_properties.txt 

Partial charges chemical/residue_type_sets/residue_types/l-caa/*.params 
lk_ball weights chemical/atom_type_sets/fa_standard/extras/lk_ball_wtd.txt 

hbond parameters scoring/score_functions/hbonds/* 

rama scoring/score_functions/rama/* 

p_aa_pp scoring/score_functions/P_AA_pp/* 

omega scoring/score_functions/omega/* 

fa_dun rotamer/* 

 
Tables S4-S6 present a comparison between selected atomic parameters between the original source 
publication and the values in Rosetta energy functions, Talaris2014 and REF2015. 
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Table S4: Atomic radii values from the Neria et al. force field, Talaris2014, and REF2015 
Atom Type Neria et al.17 

Radius (Å)  
Talaris2014  
Radius (Å) 

REF20155 
Radius (Å) 

CAbb 2.3650 2.0000 2.0112 
CH1 2.3650 2.0000 2.0112 
CH2 2.2350 2.0000 2.0112 
CH3 2.1650 2.0000 2.0112 
CNH2 -- 2.0000 1.9922 
COO 2.1000 2.0000 1.9649 
CObb -- 2.0000 1.9649 
aroC 2.1000 2.0000 1.9859 
NH2O -- 1.7500 1.7632 
Narg 1.6000 1.7500 1.7632 
Nbb 1.6000 1.7500 1.7632 
Nhis 1.6000 1.7500 1.7632 
Nlys 1.6000 1.7500 1.7632 
Npro 1.6000 1.7500 1.7632 
Ntrp 1.6000 1.7500 1.7632 
OCbb 1.6000 1.5500 1.5268 
OH 1.6000 1.5500 1.5354 
ONH2 -- 1.5500 1.5760 
OOC -- 1.5500 1.4492 
S 0.0430 1.9000 2.0171 
HNbb -- 1.0000 0.8773 
Hapo -- 1.2000 1.4634 
Haro -- 1.2000 1.3778 
Hpol 0.8000 1.0000 0.8773 
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Table S5: Well-depth parameters from the Neria et al. force field, Talaris2014, and REF2015 
Atom Type Neria et al.17 

𝝐 (kcal/mol) 
Talaris2014  
𝝐 (kcal/mol) 

REF20155 
𝝐 (kcal/mol) 

CAbb 0.0486 0.0486 0.0626 
CH1 0.0486 0.0486 0.0626 
CH2 0.1142 0.1142 0.0626 
CH3 0.1811 0.1811 0.0626 
CNH2 -- 0.1200 0.0626 
COO 0.1200 0.1200 0.0946 
CObb -- 0.1400 0.1418 
aroC 0.1200 0.1200 0.1418 
NH2O -- 0.2834 0.0688 
Narg 0.2384 0.2834 0.1617 
Nbb 0.2384 0.2834 0.1617 
Nhis 0.2384 0.2834 0.1617 
Nlys 0.2384 0.2834 0.1617 
Npro 0.2384 0.2834 0.1617 
Ntrp 0.2384 0.2834 0.1617 
OCbb  0.1591 0.1617 
OH 0.1591 0.1591 0.1617 
ONH2 -- 0.1591 0.1424 
OOC -- 0.2100 0.1619 
S 0.0430 0.1600 0.1829 
SH1 -- -- 0.0999 
HNbb -- 0.0500 0.4560 
HS -- -- 0.4560 
Hapo -- 0.0500 0.0050 
Haro -- 0.0500 0.0508 
Hpol -- 0.0500 0.0218 
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Table S6: ∆Gfree parameters from Lazaridis & Karplus, Talaris2014 and REF2015 
Atom Type Lazarids-Karplus16  

∆𝑮free (kcal/mol) 
Talaris2014,  

∆𝑮free  (kcal/mol) 
REF20155 

∆𝑮𝐟𝐫𝐞𝐞	(kcal/mol) 
CAbb -0.2500 1.0000 2.5338 
CH0 -0.2500 -0.2500 1.4093 
CH1 -0.2500 -0.2500 -3.5384 
CH2 0.5200 0.5200 -1.8547 
CH3 1.5000 1.5000 7.2929 
CNH2 -- 0.0000 3.0770 
COO 0.1200 -1.4000 -3.3326 
CObb -- 1.0000 3.1042 
aroC 0.8000 0.0800 1.7979 
NH2O -- -7.8000 -8.1016 
Narg -10.0000 -10.0000 -8.9684 
Nbb -7.8000 -5.0000 -9.9695 
Nhis -4.0000 -4.0000 -9.7396 
Nlys -20.000 -20.000 -20.865 
Npro -1.5500 -1.5500 -0.9846 
Ntrp -8.9000 -8.9000 -8.4131 
OCbb -10.0000 -5.0000 -8.0068 
OH -6.7000 -6.7000 -8.1335 
ONH2 -- -5.8500 -6.5916 
OOC -- -10.0000 -9.2398 
S -4.1000 -4.1000 -1.7072 
SH1 -2.7000 -- 3.2916 
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Analytical form of the hydrogen bonding potential 
 
To avoid expensive table lookups, the hydrogen bonding potential (Eq. 21-22 in the main text) is given 
by component energies with simple analytical forms. For completeness, we detail these analytical forms 
below. The first two components, 𝐸hbond67 𝑑67  and 𝐸hbond679 𝜃679  are polynomial functions, 𝑓poly(𝑃, 𝑥) where 
the polynomial 𝑃 depends on the atom type of the acceptor and donor, and the order 𝑛 varies from 6 to 
10 (Eq. S1). The forms of 𝐸hbond67 𝑑67  and 𝐸hbond679 𝜃679  are given by Eq. S2-3.  
 

𝑓poly 𝑃, 𝑥 = 𝐶F + 𝐶H𝑥 + 𝐶I𝑥I + ⋯+ 𝐶KLH𝑥KLH + 𝐶K𝑥K (S1) 
 

𝐸hbond67 𝑑67 = 𝐹67 ∙ 𝑓poly(𝑃, 𝑑67)  (S2) 
 

𝐸hbond679 𝜃679 = 𝐹679 ∙ 𝑓poly(𝑃(𝜃679))   (S3) 
 
The third component, 𝐸hbond

OPO76 𝜌, 𝜙OPO76	, 𝜃O76 , is dependent on the hybridization of the acceptor, 𝜌. For 
sp2 hybridized acceptors, the potential is given as a combination of cosine and polynomial functions (Eq. 
S4-5) controlled by a cosine switch function (Eq. S6). The functional forms are also shown in Fig. S2.  
 

𝐹 𝜙 =

S
I
cos 3(𝜋 − 𝜙) + SLH

I
IY
Z
< 𝜙	

\
I
cos H

]
𝜋 − IY

Z
𝜙 + \LH

I
IY
Z
− 𝑙 ≤ 𝜙 ≤ IY

Z

𝑚 − H
I

𝜙 < IY
Z
− 𝑙

 (S4) 

 

𝐺 𝜙 =

𝑑 − H
I

IY
Z
< 𝜙

\LS
I
cos 𝜋 − H

]
𝜋 − IY

Z
	𝜙 + \aSaH

I
IY
Z
− 𝑙 ≤ 𝜙 ≤ IY

Z

𝑚 − H
I

𝜙 < IY
Z
− 𝑙

 (S5) 

 
𝐻 𝜙 = cde If aH

I
 (S6) 

 
For sp3 hybridized acceptors, the potential is modeled as a composition of sine and cosine functions. If 
the acceptor is attached to a ring, the potential is modeled with a simple cosine function. The overall 
energy is given in Eq. S7.  
 

𝐸hbond
OPO76 𝜌, 𝜙OPO76	, 𝜃O76 = 	

𝐻 𝜙OPO76 𝐹 𝜙OPO76 + 1 − 𝐻 𝜙OPO76 𝐺 𝜙OPO76 𝜌	~	spI

𝑓poly cos 𝜃O76 + H
i
1 + cos 𝜙OPO76 	 𝜌	~	spZ

𝑓poly cos 𝜃O76 𝜌	~	ring

 (S7) 
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Figure S2: Analytic form of the hydrogen bonding BA𝝌 potential for sp2 hybridized acceptors  
(A) Plot of the function 𝐹 𝜃  that models the energy of the BAH angle for an in-plane acceptor (B) Plot of the function 
𝐺 𝜃  that models the energy of the BAH angle for an out-of-plane acceptor. (C) Switch function 𝐻 𝜃  that controls 
contributions from 𝐹 𝜃  and 𝐺 𝜃  at a specified value of the BA𝜒 torsion, 𝜙. 
 
Analytical form of the disulfide bonding potential 
 
Like the hydrogen bonding potential, the component disulfide bonding energies are defined by analytical 
forms. As defined by Eq. 23 in the main text, the disulfide is computed given four component energies. 
First, the sulfur-sulfur distance energy 𝐸dslfnn 𝑑nn  is defined by Eq. S8 given the sulfur-sulfur distance, 𝑑, 
mean distance 𝑑oo, standard deviation 𝜎oo, and fitting parameters 𝛼Sdslf,	𝜖\ and 𝑤nn. 
 

𝐸dslf
nn 𝑑nn = 𝑤nn

SLSss
tss

I
+ ln erf 𝛼Sdslf

SLSss
tdslf
uu + 𝜖\ 		  (S8) 

 
Next, the energy of the angle formed by a 𝐶v and two sulfur atoms 𝐸dslfwnn 𝜃wnn  is defined by Eq. S9 given 
the angle 𝜃 and von Mises parameters 𝐴wnn, 𝑤wnn, 𝜅wnn, and 𝜇wnn. 
 

𝐸dslf
w{nn 𝜃wnn = 𝑤wnn	 – ln 𝐴wnn − 𝜅wnn	cos 𝜃 − 𝜇wnn   (S9) 

 
The energy of the torsion formed by 𝐶vH, 𝐶vI and the two sulfur atoms 𝐸dslf

w{nnw{ 𝜙wnnw  is defined by Eq. 
S10 given the torsion angle 𝜙 and the von Mises parameters 𝐴},w{nnw{, 𝜅},w{nnw{, 𝜇},w{nnw{ and ϵ�.  
 

𝐸dslf
w{nnw{ 𝜙wnnw = 𝑤w{nnw{ ln exp 𝐴},w{nnw{ + 𝜅},w{nnw{	cos 𝜙 − 𝜇},w{nnw{}�I + 		 ϵ�  (S10) 

 
Finally, the energy of the torsion formed by 𝐶�, 𝐶v and the two adjacent sulfur atoms 𝐸dslf

w�w{n,n 𝜃wwnn  is 
defined by Eq. S11 given the torsion angle 𝜙 and the von Mises fitting parameters 𝐴},w�w{nn, 𝜅},w�w{nn, 
𝜇},w�w{nn and ϵ�.  
 

𝐸dslf
w�w{n,n 𝜃wwnn = −𝑤w�w{nn ln exp 𝐴},w�w{nn + 𝜅},w�w{nn	cos 𝜃 − 𝜇},w�w{nn��Z + 		 ϵ�  (S11) 
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Statistical potentials: Interpolation of energies rather than probabilities 
 
The Rosetta energy function uses probabilities from the Dunbrack backbone-dependent rotamer 
library18 to derive torsional energies 𝐸 using the inverted Boltzmann relation the probability 𝑃 (Eq. S12):  
 

𝐸 = −𝑘𝑇 ln 𝑃  (S12) 
 
Prior to 2012, the probabilities for the 𝜙, 𝜓-dependent terms were stored on a 10° x 10° grid used for 
energy calculations. These probabilities were calculated using bilinear interpolation and then converted 
to energies using Eq. S12 and the derivatives were calculated by linearly interpolating 1/𝑃 and 𝑑𝑃/𝑑𝑥 
to compute 𝑑 − log 𝑃 𝑑𝑥 = −(1/𝑃)	𝑑𝑃/𝑑𝑥 with 𝑥 = 𝜙 or	𝜓. This method resulted in large inaccuracies 
because 𝑃 can vary by orders of magnitude over very short ranges of 𝜙 and	𝜓. In addition, the linearly 
interpolated derivatives are constant between grid points, so that gradient-based minimization results 
in moving structures to the nearest grid point where the derivative changes sign. Therefore, it is more 
accurate to provide 𝑃 and 𝐸 = − ln 𝑃 at each grid point and then interpolate the energies using bicubic 
interpolation.  
 
Here we demonstrate why interpolating energies is better than interpolating the probabilities. Figure S3 
compares the different interpolation strategies for a toy problem: a one-dimensional probability 
distribution with a discrete rotamer modeled with the following von Mises function (Eq. S13). Here, the 
location constant 𝜇 = 180˚, the concentration constant 𝜅 = 20, 𝑥 = 𝜙 or	𝜓 and 𝐼F(𝜅) is the modified 
Bessel function of order zero needed to normalize the distribution. 
 

𝑃 𝑥 = ��� �Lcde �L�
IY��(�)

   (S13) 
 
First, Figure S3A shows the probability distribution, 𝑃 and its linear interpolation based on the 10° x 10° 
grid. Here, the difference between the curves demonstrate the effect of approximating 𝑃 by linear 
interpolation. This effect would be more severe for steeper functions such as the Ramachandran 
probability density function. Figure S3B compares the 𝐸 = − ln 𝑃 calculation with two approaches to 
interpolating the function: interpolate 𝑃 and then compute the energies versus compute the energies at 
the grid points and then interpolate. The second scenario clearly mitigates several errors which can be 
further improved using cubic rather than linear interpolation. Like the first panel, the benefits of cubic 
interpolation are clearer with steeper functions.  
 
Figures S3C and S3D demonstrate that the effects of interpolating energies are more pronounced for 
the derivatives of 𝑃 and 𝐸 respectively. Previously, Rosetta computed the derivative of 𝑃 as 𝑑𝑃/𝑑𝑥 =
[𝑃(𝑥 + 10) − 𝑃(𝑥)]/10 (Fig. S3C). The linear interpolation of this derivative includes noticeable artifacts. 
Figure S3D shows the four energy derivative curves: (1) the exact analytical expression 𝑑𝐸/𝑑𝑥 =
−(1/𝑃)	𝑑𝑃/𝑑𝑥 where 𝑃 is interpolated and 𝑑𝑃/𝑑𝑥 is the step function shown in Fig. S3C (2) 𝑑𝐸/𝑑𝑥 =
−(1/𝑃)	𝑑𝑃/𝑑𝑥 where 𝑃 and 𝑑𝑃/𝑑𝑥 are interpolated from the grid values, (3) 𝑑𝐸/𝑑𝑥 = −(1/𝑃)	𝑑𝑃/𝑑𝑥 
where both 𝑃 and 𝑑𝑃/𝑑𝑥 are interpolated from the grid values and (4) calculation of 𝐸 and 𝑑𝐸/𝑑𝑥 on the 
grid followed by interpolation of 𝑑𝐸/𝑑𝑥	 in between the grid points. The linear interpolation of 
𝑑𝐸/𝑑𝑥	provides the closest match to the analytical expression. The current Rosetta energy function 
interpolates energies rather than probabilities: both 𝑃 and 𝐸 are stored in database files, 𝑑𝐸/𝑑𝑥 is 
calculated on the grid points, and then 𝑃, 𝐸 and 𝑑𝐸/𝑑𝑥 are computed by bicubic spline interpolation. 
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Figure S3. Approximating the energy and energy derivatives for torsional potentials 
Comparison between the old and new approach of approximating the energy and energy derivatives using a toy 
example in one dimension. (A) Exact analytical expression of the probability distribution P(X) (black) compared to 
approximation of the grid (green). (B) Exact energy expression, -log p(x) (black) compared to interpolated 
probabilities (green) and interpolation on the grid (red). (C) Probability first-order derivatives: analytical expression 
(black), derivative approximation with no interpolation (blue), and derivative with linear interpolation (green). (D) 
Energy derivatives: exact (black), calculation as a step function (blue), calculation by linear interpolation (green), 
calculation from grid values (red).  
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Methods for energy-based analysis examples 
 
∆∆G of Mutation. The coordinate file for 1kgj was downloaded from the Protein Data Bank19 and cleaned 
to remove any non-canonical amino acids. The PDB was refined with fast relax constrained to native 
coordinates using Cartesian-space refinement and the REF2015 energy function using the following 
command line:  
 
relax.linuxgccrelease –s 1kgj.pdb –use_input_sc \ 
–constrain_relax_to_start_coords –ignore_unrecognized_res –nstruct 1000 \ 
–relax:coord_constrain_to_sidechains –relax:ram_constraints false \ 
–relax:Cartesian –relax:min_type lbfgs_armijo_nonmonotone 
 
After refinement, the lowest scoring model was used to generate five structures of the native conformation 
and five structures of the T193V mutated conformation using a Cartesian version of Rosetta’s ddg 
protocol.20 
 
cartesian_ddg.linuxgccrelease –s 1kgj_refined_lowest.pdb –ddg:mut_file \ 
$MUT_FILE –ddg:iterations 5 –optimization:default-max_cycles 200 –bbnbr 1 \ 
–relax:min_type lbfgs_armijo_nonmonotone –fa_max_dis 9.0 
 
The energies were averaged for each ensemble of five structures. The ∆∆G was then calculated as the 
difference between the average energy of the mutated ensemble and the average energy of the native 
ensemble.  
 
To determine which specific interactions underlie the observed differences in solvation, we first needed 
to identify which residue-pair interactions contribute most to the change in solvation energy. Because the 
mutation is taking place at residue 193, we can safely restrict our search to residue-pair interactions 
involving residue 193. Now, we use the PyRosetta21 tool print_residue_pair_energies() to 
obtain a list of all residue pair interactions involving residue 193. Inspecting the output in 
native_residue_pair_interactions.csv and mutant_residue_pair_interactions.csv 
we can find a list of significant pair energy changes between residue 193 and other surrounding residues.    
 
PyRosetta tools can also be used to analyze atom-pair interactions that contribute most strongly to the 
critical residue-pair interactions. The scoring machinery in Rosetta treats a residue (protein amino acid, 
sugar monosaccharide, nucleic acid base) as the simplest unit for calculating pairwise energies. All two 
body energy terms must define residue_pair_energy() to calculate the pairwise energy between 
two residues. For energies such as hydrogen bonding this is necessary because scoring an individual 
hydrogen bond using the distance and orientation dependent potential described in the main text requires 
knowledge of not only the donor hydrogen and the acceptor atoms but also the acceptor and donor base 
atoms to calculate an energy. However, for other terms in the Rosetta score function (such as Lennard 
Jones attraction/repulsion, implicit solvation, and electrostatics) the residue_pair_energy() method 
simply sums up all of the pairwise interactions between all atoms in each of the residues. These atom 
pair energies are not normally reported by the scoring function, however in some situations they can 
assist in pinpointing which specific atom pair interactions are influencing the residue pair energy most 
strongly. 
 
The PyRosetta toolkit provides two tools for analyzing specific atom pair energies. First, the 
etable_atom_pair_energies() method takes two residues (res1, res2) and atom indices 
specifying one atom on each residue (atom_index_1, atom_index_2) and calculates atom pair 
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energies for Lennard Jones attractive/repulsive, implicit solvation, and electrostatics using a specified 
score function (sfxn). 
 
The second tool, print_atom_pair_energy_table(), is designed to output energies for all pairwise 
atom pair interactions between two specified residues. For ease of viewing this tool outputs the pairwise 
energies as a table formatted in a .csv file. The tool takes a score_type and score function (sfxn) as 
inputs in addition to two specified residues (res1, res2) and a specified output_filename. 
 
Docking. The coordinate file for 1ztx was downloaded from the Protein Data Bank and cleaned to remove 
any non-canonical amino acids. The structure was first refined to remove significant clashes in the 
structure using the following command line:  
 
relax.linuxgccrelease -s 1ztx_unbound.pdb -relax:ramp_constriants false \ 
-relax:constrain_relax_to_start_coords -ex1 -ex2 -use_input_sc -flip_HNQ \ 
-no_optH false 
 
Next, the structure was prepacked and then docked using the procedure described in Chaudhury et al.22 
using the REF2015 energy function.  
 
docking_prepack_protocollinux -s 1ztx_relaxed.pdb -partners LH_G \ 
-dock_rtmin -docking:sc_min 
 
docking_protocol.linuxgccrelease –s 1ztx_unbound_prepacked.pdb –native \ 
1ztx_native.pdb -ignore_unrecognized_res -ex1 -ex2aro -dock_pert 3 8 \ 
-partners LH_G -nstruct 1000 
 
Finally, the interface scores were extracted from the output score file for analysis.  
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Energy terms for biomolecules other than proteins 
 
An active research area is the development of energy functions compatible for biomolecules other than 
proteins containing the 20 canonical amino acids. So far, this has involved two approaches: (1) 
generalizing terms to score non-l amino acids and (2) developing new terms to accommodate other 
biomolecules. Below, we provide details of the main non-protein energy functions currently being 
developed in Rosetta.  
 
Generalizing the Existing Energy Terms 
 
The physically-derived terms in the Rosetta energy function capture forces that are general to all 
biomolecules. Therefore, these terms were generalized to be compatible will D-amino acids, nucleic 
acids, carbohydrates, and other biomolecules.  
 
Table S7: Summary of energy term compatibility with other biomolecules 
Term Can score 
fa_atr All molecules 
fa_rep All molecules 
fa_intra_rep All molecules 
fa_sol All molecules 
lk_ball All molecules 
fa_inra_sol All molecules 
fa_elec All molecules 
hbond_sr_bb All molecules 
hbond_lr_bb All molecules 
hbond_bb_sc All molecules 
hbond_sc All molecules 
dslf_fa13 L-, D-, and mixed D/L disulfide bonds between cysteine or cysteine-like 

residues (e.g., homocysteine, penacillamine) 
rama_prepro Glycine, canonical L-amino acids, their D-counterparts, and similar 

alpha-amino acids that can use canonical rama tables. 
p_aa_pp Glycine, canonical L-amino acids, their D-counterparts, and similar 

alpha-amino acids that can use canonical rama tables. 
omega All α-amino acids, or β-amino acids. 
fa_dun All polymer building blocks. 
pro_close L- and D-proline. 
yhh_planarity L- and D-tyrosine. 
ref Glycine, canonical L-amino acids, and their D-counterparts. 

 
Compatibility with D-amino acids 
 
To make the energy terms compatible with D-amino acids, several modifications were made to the 
torsional terms.23 First, the 𝜙, 𝜓 values were inverted in the rama_prepro, omega, and p_aa_p terms 
to accommodate the chirality of the backbone. Accordingly, the derivatives were inverted to ensure that 
mirror-image structures energy-minimize identically. Second, the fa_dun score term was modified to 
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invert main chain and side-chain torsional values.  Special amino acid-specific score terms, such as 
pro_close and yhh_planarity, were updated to recognize D-proline and D-tyrosine, respectively.  
The dslf_fa13 term was symmetrized to ensure that mirror-image conformations of mixed D/L 
disulfides score identically. Finally, the ref term was altered to ensure that D-amino acids have a 
reference energy penalty or bonus identical to that of their L-counterparts. All other score terms were 
compatible with arbitrary molecules without modification. 
 
Energy terms for non-canonical amino acids 
 
Toward the goal of designing proteins with non-canonical amino acids, Renfrew et al. implemented an 
energy function with terms derived from molecular mechanics. This energy function, called mm_std, 
removes the terms that depend on residue identity (i.e. rama_prepro, p_aa_pp, omega, and fa_dun) 
and replaces them with terms that capture the internal and torsional energy preferences: 
mm_lj_intra_rep, mm_lj_intra_atr, and mm_twist. The ref term is replaced by either a term 
that explicitly models the unfolded state, (unfolded), or a pair of terms that capture the change in 
energy experienced by an atom of a specific type going from an unfolded to folded environment 
(split_unfolded_1b and split_unfolded_2b). These terms were developed toward the goal of 
designing proteins containing non-canonical alpha-amino acid residues. It has also been used to model 
oligo-oxypiperizines (OOPs),24 hydrogen bond surrogates (HBS), oligo-peptoids,25 and hybrid molecules.  
 
Intra-residue van der Waals interactions are calculated between atom pairs from the same residue 
using a Lennard-Jones 6-12 potential. Like fa_rep and fa_atr, the potential is divided between 
attractive (mm_lj_intra_atr) and repulsive (mm_lj_intra_rep) components that can be weighted 
separately. The two terms have the same functional form as the inter-reside terms (Eq. 3 and 4 in the 
main text) but with the following differences. The summed atomic radii, 𝜎��, and the geometric mean of 
atomic well-depths, 𝜖��, are based on the CHARMM 2426 parameters. The terms are applied to all atom 
pairs in a residue with a bond separation of 3 or more. Some atom-type pairs have different parameters 
when separated by 3 bonds (and involved in a proper torsion) and when separated by 4 of more bonds, 
but no connectivity weight is applied. Both attractive and repulsive energies are calculated for hydrogens. 
The attractive potential is not smoothed and consequently is evaluated to 8 Å. 
 
The torsional term, called mm_twist (Eq. S14), is a molecular mechanics torsion term. It is evaluated 
for all atom quads involved in proper torsions. To match the intra-residue van der Waals term the 
parameters for 𝐾� and 𝑛 come from CHARMM 24. A given set of 4 atoms types may have multiple 𝐾� 
and 𝑛 parameters that are summed in a Fourier series to more accurately describe the rotation about the 
central bond of the torsion.  
 

𝐸twist = 𝐾� 1 − cos 𝑛𝜃�  (S14) 
 
Explicit Unfolded State Energy (EUSE) represents the unfolded energy of the protein and compensates 
for the difficultly in packing large side chains (Eq. S15). The ref term is fit during the weight optimization 
protocol which is only trained on protein data and therefore incompatible with non-protein residues. The 
EUSE is the sum over each residue and each term in the energy function where 𝑈 AA�, 𝑡 	is the unfolded 
reference value of residue type, AA�, of residue, 𝑟, and energy term 𝑡. The unfolded reference values are 
the Boltzmann weighted average energies of the central residue of 5-mer fragments of high quality protein 
structures. The central residue of each fragment was mutated to the residue of choice, repacked and 
scored and the Boltzmann weighted average for each energy term, 𝑡, for each residue type is stored. For 
peptoids, only XXGPX fragments were used to mimic an oligo-peptoid environment.27 



 16 

 
𝐸unfolded = 𝑊¤𝑈(𝐴𝐴�, 𝑡)¤�  (S15) 

 
Two-Component Reference Energy (TCRE) is a reference energy that compensates for some of the 
shortcomings of the EUSE; primarily the dependence of the EUSE on short peptide fragments which 
limits the types of oligomer chemistry to those that contain an a-amino acid backbone (e.g. OOPs, HBS, 
peptoids; Eq. S16). The one-body component is the sum over each residue and each one-body energy 
term in the energy function where 𝑅1B AA�, 𝑡1b 	is the one-body reference value of the residue type, AA�, 
of residue, 𝑟, and one-body scoring term 𝑡1𝑏. The one-body reference values are the unweighted 𝑡1𝑏 
energies for each energy term, taken from lowest energy conformation of that residue type in the context 
of a didpeptide model system. The two-body component is the sum over each atom and each two-body 
energy term in the energy function where 𝑅2B 𝑇�, 𝑡2b  is the two-body reference value for atom type, 𝑇�, 
of atom, 𝑖, and two-body energy term 𝑡2𝑏. The two-body reference values are the median 𝑡2𝑏 energy of 
an atom of type 𝑇� in the context of a folded protein. 
 

𝐸TCRE = 𝑊¤1b𝑅1B AA�, 𝑡1b¤H­�

one-body

+ 𝑊¤2b𝑅2B 𝑇�, 𝑡2b¤I­�

two-body

 (S16) 
 
Reference values were determined using structures from the Top8000 database.28 The effect is to 
produce a single reference value for a residue type just like the ref and unfolded terms. The term is a 
measure of the difference between the base energy of inherent to a peptide sequence and the average 
interaction that sequence would make with itself when folded. Currently 𝑊¤H­ and 𝑊¤H­ are set to the 
weight of that term in the energy function but could be modified. 
 
Energy terms for carbohydrates 
 
To model realistic carbohydrate geometries, Rosetta implements the sugar_bb term which rewards 
preferred glycosidic torsion angles.29 The sugar_bb term is a mixture of functions specific to glycosidic 
torsions and linkage types. For most torsion/linkage types, Rosetta uses the CHarbohydrate-Intrinsic 
(CHI) energy functions developed from quantum mechanical calculations with isomers of O-linked 
tetrahydropyran oligomers.30,31 The data were fit to Gaussian functions and matched with statistical data. 
Together, they are used to compute the energy, given as a function of some torsion angle x in degrees, 
magnitude of the Gaussian distribution a, midpoint of the distribution b, the intercept of the distribution d, 
and a constant c which is twice the square width of the distribution (Eq. S17).  
 

𝐸sugar_bb = 𝑑 + 𝑎�𝑒L �L­³ P ´³�  (S17) 
 
For ω torsions, the energy is instead modeled using a series of parabolic functions with coefficients fit to 
statistical data and centered around the ideal staggered and Gauche conformations. This energy is 
defined as a function of the torsion angle x (in degrees), a constant to define the parabola width, k, the 
vertex of the parabola θ, and the energy difference relative to the minimum b (Eq. S18). This function 
approximates the so-called Gauche effect. 
 

𝐸sugar_bb = 𝑘 𝑥 − 𝜃 I + 𝑏 (S18) 
 

The sugar_bb score per residue is the sum of each function for each glycosidic torsion in the residue. 
Table S8 lists the functional form for each torsion and linkage type. (The functions assume that D-sugars 
are in the 4C1 chair conformation and that L-sugars are in the 1C4 chair conformation.) 
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Table S8: Functional form of the sugar backbone energy for each torsion and linkage type 
Angle Ax./eq. designation Stereoisomer Exocyclic Range Functional form 

φ 

axial (α) D — −180°–
180° 

Gaussian 

eqiuatorial (β) D — −180°–
180° 

Gaussian 

axial (α) L — −180°–
180° 

Gaussian, x=−φ 

equatorial (β) L — −180°–
180° 

Gaussian, x=−φ 

ψ 

ax. (parent at odd O) D (parent) no 0–360° Gaussian 
eq. (parent at odd O) D (parent) no 0–360° Gaussian 
ax. (parent at even O) D (parent) no 0–360° Gaussian 
eq. (parent at even O) D (parent) no 0–360° Gaussian 
ax. (parent at odd O) L (parent) no 0–360° Gaussian, 360°−ψ 
eq. (parent at odd O) L (parent) no 0–360° Gaussian, 360°−ψ 
ax. (parent at even O) L (parent) no 0–360° Gaussian, 360°−ψ 
eq. (parent at even O) L (parent) no 0–360° Gaussian, 360°−ψ 
axial (α) D yes 0–360° Gaussian 
equatorial (β) D yes 0–360° Gaussian 
axial (α) L yes 0–360° Gaussian, 360°−ψ 
equatorial (β) L yes 0–360° Gaussian, 360°−ψ 

ω 

axial (parent O4) D (parent) yes 0–120° parabolic 
axial (parent O4) D (parent) yes 120°–240° parabolic 
axial (parent O4) D (parent) yes 240°–360° parabolic 
eq. (parent O4) D (parent) yes 0–120° parabolic 
eq. (parent O4) D (parent) yes 120°–240° parabolic 
eq. (parent O4) D (parent) yes 240°–360° parabolic 
axial (parent O4) L (parent) yes 0–360° parabolic, 360°−ω 
axial (parent O4) L (parent) yes 120°–240° parabolic, 360°−ω 
axial (parent O4) L (parent) yes 240°–360° parabolic, 360°−ω 
eq. (parent O4) L (parent) yes 0–120° parabolic, 360°−ω 
eq. (parent O4) L (parent) yes 120°–240° parabolic, 360°−ω 
eq. (parent O4) L (parent) yes 240°–360° parabolic, 360°−ω 
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Energy terms for nucleic acids 
 
The Rosetta energy function captures van der Waals and electrostatic forces general to all biomolecules. 
However, these terms do not capture rules specific to the geometry and pairing of nucleic acid bases. 
Therefore, Das and coworkers have implemented terms to explicitly capture these rules.  
 
Electrostatics. The standard Rosetta electrostatic potential (fa_elec) disfavors Watson-Crick base 
pairs due to repulsion between the fixed positive charges on the hydrogen atoms in close proximity in G-
C and A-U pairs. To alleviate this problem, Rosetta uses two modified terms to evaluate electrostatics 
involving RNA bases. First, electrostatic interactions between phosphate atoms are evaluated using the 
standard fa_elec potential (Eq. 10 in the main text), via a term called fa_elec_rna_phos_phos. 
Second, electrostatic interactions between RNA bases are captured using the stack_elec term.32 This 
term scales the fa_elec potential as a function of the angle (𝜅�) between the normal to the plane of the 
base (𝑧�) and the vector 𝑑�,� between base heavy atoms 𝑖 and 𝑗 in residues 𝑟H and 𝑟I, respectively (Figure 
S4). The equation for stack_elec is given by Eq. S19.  
 

𝐸stack_elec = 𝑓(�,��̧ ¹�P 𝜅�, 𝜅�)𝐸fa_elec   (S19) 
 
The scaling function 𝑓(𝜅�, 𝜅�) suppresses the electrostatic energy to zero when the bases are coplanar 
and maintains the full value of the energy when the bases are stacked (Eq. S20; Fig. S4B).  
 

𝑓 𝜅�, 𝜅� = 𝑐𝑜𝑠I 𝜅� + 𝑐𝑜𝑠I 𝜅�  (S20) 
 

 
Figure S4. Electrostatic and stacking energies for RNA.  
(A) fa_stack and stack_elec are scaled as a function of the angle, κi, between the normal to the base, 𝑧�, and 
the distance vector between atoms 𝑖 and 𝑗. (B) The scaling function takes the form 𝑓 𝜅� = cosI(𝜅𝑖), such that the 
weight is equal to 1.0 when the bases are stacked and 0 when they are coplanar. (C) The fa_stack energy for 
stacked bases (when 𝑓 𝜅� = 1.0). 
 
Base stacking. 𝜋 − 𝜋 stacking interactions are not explicitly captured by fa_atr; thus, Rosetta includes 
an additional stacking bonus term, called fa_stack.33 The fa_stack term applies a constant bonus for 
base atoms less than 4 Å from each other to reward neighboring stacked bases.  Like the stack_elec 
term, fa_stack also depends on the angle (𝜅�) between the normal to the plane of the base (𝑧�) and the 
distance vector from atoms i to j (𝑑�,�), such that stacked, but not coplanar bases receive this bonus (Eq. 
S19: Fig. 4C). The potential is smoothed to zero between 4 Å and 6 Å using a smoothing function given 
in Eq. S21-S23.  
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𝐸fa_stack = 𝑓 𝜅�, 𝜅� 𝑔 𝑑�,��,��̧ ¹�P   (S21) 
 

𝑔 |𝑑�,�| =
−0.2,																																				|𝑑�,�| ≤ 4.0
−0.2ℎ(|𝑑�,�|)									4.0 < |𝑑�,�| < 6.0
0.0,																																					|𝑑�,�| ≥ 6.0

 (S22) 

 

ℎ 𝑑�,� = 	−0.2 2 S³,Ä Li
I

Z
− 3 S³,Ä Li

I

I
+ 1  (S23) 

 
RNA torsions. Like carbohydrates and non-canonical amino acids, nucleic acids require a separate term 
to evaluate specific torsional energies. For RNA, the rna_torsion term evaluates the energies for the 
nucleic acid backbone and side chain torsions: α, β, γ, δ, ε, ζ, ν1, ν2, χ, O2’. The torsional energies are 
computed as a function of the frequency of some general torsion A found in RNA structures in the PDB 
(Eq. S24, Fig. S5).  
 

𝐸rna_torsion = −ln	(𝑃 𝐴} )}   (S24) 
 
To accommodate special cases, separate potentials were derived for each of the δ, ε, ν1, ν2, χ, O2’ 
torsions depending on whether the sugar pucker is 2’-endo or 3’-endo. Additionally, a separate χ potential 
was derived for purines and pyrimidines. For ζ, there are three separate potentials depending on whether 
the α torsion of the following residue is gauche–, trans, or gauche+. Additionally, a set of four harmonic 
restraints, together comprising rna_sugar_close, are applied to ensure that the RNA sugar ring 
remains closed: a bond distance restraint between atoms O4’ and C1’, and three angle restraints for the 
O4’-C1’-C2’, C4’-O4’-C1’, and O4’-C1’-first base atom angles. 
 
Solvation. The full atom RNA potential contains an orientation-dependent desolvation penalty for polar 
atoms (geom_sol). The penalty is equal to the sum of the values of the orientation-dependent Rosetta 
hydrogen bonding energies for virtual water molecules placed at the positions of each occluding atom. 
The form of this term is given by Eq. S25.  
 

𝐸geom_sol = 𝐸hbond(𝑟��,��̧ ¹�P − 𝑣�)   (S25) 
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Figure S5. Torsion potentials for RNA  
RNA torsional potential for (A) α, (B) β, (C) γ, (D) δ, (E) ε, (F) ζ when the α torsion of the following residue is 
gauche– (orange), trans (cyan), or gauche+ (purple) (G) χ for purines (lighter red and blue) and pyrimidines (darker 
red and blue), (H) ν1, (I) ν2. Potentials when the sugar pucker is C2’-endo are shown in red and C3’-endo shown in 
blue. 
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