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Interactions between RNA and proteins are pervasive in biology,
driving fundamental processes such as protein translation and
participating in the regulation of gene expression. Modeling the
energies of RNA–protein interactions is therefore critical for under-
standing and repurposing living systems but has been hindered by
complexities unique to RNA–protein binding. Here, we bring together
several advances to complete a calculation framework for RNA–pro-
tein binding affinities, including a unified free energy function for
bound complexes, automated Rosetta modeling of mutations, and
use of secondary structure-based energetic calculations to model un-
bound RNA states. The resulting Rosetta-Vienna RNP-ΔΔG method
achieves root-mean-squared errors (RMSEs) of 1.3 kcal/mol on high-
throughput MS2 coat protein–RNA measurements and 1.5 kcal/mol
on an independent test set involving the signal recognition particle,
human U1A, PUM1, and FOX-1. As a stringent test, the method
achieves RMSE accuracy of 1.4 kcal/mol in blind predictions of hun-
dreds of human PUM2–RNA relative binding affinities. Overall, these
RMSE accuracies are significantly better than those attained by prior
structure-based approaches applied to the same systems. Importantly,
Rosetta-Vienna RNP-ΔΔG establishes a framework for further im-
provements in modeling RNA–protein binding that can be tested by
prospective high-throughput measurements on new systems.

RNA–protein complex | conformational change | binding affinity | blind
prediction | energetic prediction

RNA binding proteins (RBPs) affect nearly all aspects of RNA
biology, including alternative splicing, localization, trans-

lation, and stability (1, 2), and novel RNA–protein biophysical
phenomena, ranging from in vivo phase separations to helicase-
induced rearrangements, are being discovered at a rapid pace (3,
4). The function of an RBP depends on its ability to identify a
specific target RNA sequence and structure, a process governed by
the energetics of the interactions between each RNA and every RBP
in its biological milieu (5). Recently developed high-throughput ex-
perimental methods have been used to quantitatively characterize
the binding landscapes of a handful of RBPs (6–11), improving our
understanding of the relationship between RNA sequence, structure,
and binding affinity. However, these empirically derived landscapes
are limited to specific systems with solubilities and affinities within
the concentration windows accessible to these methods. To un-
derstand RNA–protein systems inaccessible to experimental char-
acterization and to rationally design new RNA–protein interactions,
a general physical model is needed to predict RNA–protein binding
energies. Physical models have proved useful for predicting changes
in binding free energies (ΔΔG) for macromolecular interactions
that do not involve RNA, including protein–protein, protein–small
molecule, and protein–DNA interactions (12–16). The best meth-
ods for these other macromolecular interactions report accuracies
of between 1 and 2 kcal/mol and include rigorous blind studies,
validating their use for applications that range from drug discovery
to protein–protein interface design (14, 16, 17). However, the ac-
curacy of these methods deteriorates when molecules are highly
flexible or undergo large conformational changes (18, 19), factors
common in RNA–protein binding events (20, 21). Accurate pre-
diction of RNA–protein binding affinities is therefore challenging,

and a complete prediction framework for RNA–protein complexes
has yet to be developed and systematically tested.
Existing computational methods that attempt to quantitatively

predict relative RNA–protein binding affinities have achieved lim-
ited success, likely as a result of neglecting key features of the binding
process such as intramolecular interactions and the unbound states. A
previously developed method to predict relative RNA–protein bind-
ing affinities from a database-derived statistical potential produced
significant correlations with experimental measurements for protein
mutants, but for RNA mutants the calculations exhibited no detect-
able correlation with experiment (22). Another approach used mo-
lecular dynamics simulations in combination with a nonlinear Poisson
Boltzmann model and linear response approximation. Despite the
complexity of the method and computation exerted on a single model
system, statistical uncertainties in relative binding affinity calculations
were reported to be 1 to 3 kcal/mol (23). More recently, a machine-
learning method, GLM-Score, developed to predict absolute nucleic
acid–protein binding affinities from structures of bound complexes
reported excellent accuracies (R2 = 0.75), but has not been tested in
its ability to predict relative binding affinities on independent RNA–
protein complexes (14).
The propensity of RNA to adopt multiple stable conformations

in the unbound state makes it problematic to predict binding af-
finities with standard approaches that typically neglect the unbound
state altogether. However, RNA is also distinctive from other
molecules in that its unbound energetics can be predicted from a
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simple secondary structure-based model derived from dozens of
optical melting experiments (24–26). One straightforward but pre-
viously untested solution for the treatment of unbound RNA en-
ergetics in RNA–protein binding affinity calculations is to use these
secondary structure-based calculations. RNA secondary and tertiary
structure modeling are commonly integrated to increase the accu-
racy of RNA 3D structure prediction (27), but this combination has
yet to be tested for quantitatively predicting binding affinities.
Here we present a complete structure-based computational

framework, Rosetta-Vienna RNP-ΔΔG, for predicting RNA–protein
relative binding affinities, bringing together secondary structure-
based energetic calculations of unbound RNA free energies and a
unified energy function for bound RNA–protein complexes. Rosetta-
Vienna RNP-ΔΔG achieves root-mean-squared errors (RMSEs) of
1.3 kcal/mol on a dataset of binding affinities of the MS2 coat protein
with thousands of variants of its partner RNA hairpin (6) and 1.5
kcal/mol on a diverse, independent set of RNA–protein complexes.
Additionally, we rigorously evaluated the accuracy of the method
through a blind challenge that involved making predictions and
separately measuring binding affinities of the human PUF family
protein PUM2 with hundreds of RNA sequences using the high-
throughput RNA MaP technology (28). On all tests, the prediction
accuracy of Rosetta-Vienna RNP-ΔΔG appreciably exceeds that of
previous structure-based energetic calculation methods and ap-
proaches the kilocalorie-per-mole accuracy seen for protein–pro-
tein and other well-studied complexes. Rosetta-Vienna RNP-ΔΔG
establishes a framework for using high-throughput experimental
data that will likely continue to be collected in the next several years
to test further improvements in modeling RNA–protein binding.

Results
Rosetta-Vienna RNP-ΔΔG: A Framework for RNA–Protein Relative
Binding Affinity Calculation. Before developing a framework for
calculating relative RNA–protein binding affinities, we first tested
a previously published structure-based machine learning method,
GLM-Score (14). This method was specifically developed to calculate
absolute binding affinities for which it was reported to achieve strong
correlation with experimental measurements (R2 = 0.75). This
method has not, however, been systematically tested in its ability to
calculate relative RNA–protein binding affinities (i.e., affinity
predictions have not been made for multiple mutations of a single
system). As an initial test, we used the MS2 coat protein system
because experimental binding affinities of MS2 for thousands of
RNA mutants have recently been measured (6) and crystal
structures of the protein with several mutant RNA hairpins have
been determined (29). These crystal structures are between 0.37 and
0.87 Å rmsd of each other (SI Appendix, Fig. S1A), suggesting that
structures of the mutants are highly similar to the wild-type struc-
ture. We then used the wild-type MS2 coat protein–RNA hairpin
crystal structure as a template to generate complex structures (Fig.
1B) for 74 RNA mutants that preserve the wild-type RNA sec-
ondary structure (canonical mutants) and 660 mutants that in-
troduce a single noncanonical base pair into the RNA hairpin
(single noncanonical mutants; Methods). The GLM-Score calcu-
lations exhibited RMSEs of 2.52 kcal/mol for the canonical
mutants (R2 = 0.04) and 2.35 kcal/mol for the single noncanonical
mutants (R2 = 0.07; Fig. 2B). We reasoned that the substantially
worse accuracy of the relative binding affinity calculations com-
pared with the previously reported absolute binding affinity
calculations may be due to the fact that GLM-Score neglects
intramolecular interactions and does not model the unbound states,
factors which can play a large role in determining the relative
favorability of RNA binding. We did not test other structure-based
methods that have previously been shown to have poor accuracy for
predicting relative RNA–protein binding affinities (22, 23).
To further assess whether a simple model that considers only

intermolecular interactions is insufficient to accurately model
relative binding affinities, we tested a simple hydrogen bond

scoring model in Rosetta (30). This model considers only the
hydrogen bonding scores between the RNA and the protein in
the bound complexes (Methods). This is not intended to be a test
of the Rosetta hydrogen bonding score term but rather a test of a
simple calculation framework that considers only a single type of
intermolecular interaction. For the MS2 canonical and single
noncanonical mutants, these calculations gave RMSEs of 2.31
kcal/mol and 2.44 kcal/mol, respectively (Fig. 2C). These calcu-
lations are less accurate than the GLM-Score calculations of
absolute binding affinities and are outside the 1 to 2 kcal/mol
accuracy range that methods for other macromolecular systems
have achieved.
Motivated by these results, we sought to develop a more complete

framework for relative RNA–protein binding affinity calculations
that includes the effects of mutations in the unbound ensembles and
treatment of intramolecular interactions. Our method takes as input
a structure of an RNA–protein complex and predicts the change in
binding affinity that would result from mutating RNA or protein
residues in the complex. Briefly, structures of the mutant complexes
were generated from the input structure by computationally
mutating specified residues and then allowing neighboring residues
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Fig. 1. Rosetta-Vienna RNP-ΔΔG framework for calculating relative binding
affinities for RNA–protein complexes. (A) Schematic overview of relative binding
affinity calculation (RNA colored blue, protein colored gray, MS2 coat protein/
RNA hairpin complex shown here). The right panel depicts the conformational
ensemble of the unbound RNA. All free energies were calculated at standard
state. (B) Free energies of the complex (ΔGcomplex) are calculated by first relaxing
the wild-type experimental structure in Rosetta to generate an ensemble of 100
highly similar conformations. The 20 lowest-scoring conformations are then
mutated (mutated residues shown as red spheres) as directed by a user-inputted
list of mutants then relaxed and scored. ΔGmut

complex is the average of these 20
scores. (C) ΔGmut

unbound protein is calculated by removing the RNA from the mu-
tant structure, then relaxing and scoring the protein structure in Rosetta. (D) The
free energy of the unbound RNA (ΔGmut

unbound RNA) is calculated as the Boltz-
mann sum over all possible nonpseudoknotted secondary structures, with en-
ergies calculated using the nearest-neighbor energy model in Vienna RNA. The
reference states for each of the components ΔGmut

complex, ΔGmut
unbound protein,

and ΔGmut
unbound RNA are fully unfolded states of the macromolecules, as as-

sumed in Rosetta and Vienna RNA packages.
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to relax in response to the mutation in Rosetta (Fig. 1; see Methods
for additional details). The free energy of this complex was then
approximated with an all-atom energy function that includes terms
describing hydrogen bonding, electrostatics, torsional energy, van
der Waals interactions, and solvation (31). Details are provided in
SI Appendix. The free energy of the unbound protein was similarly

calculated from the protein structure in the absence of the RNA
(Fig. 1C), while the unbound RNA free energy was calculated either
in Rosetta from the RNA structure in the absence of the protein
(similar to conventional prediction schemes) or from a secondary
structure ensemble-based method (Fig. 1D; discussed below). Rel-
ative binding affinity was then computed as the difference in bound
and unbound energies relative to this difference for the initial input
structure.
Because unbound RNA is highly flexible and often exists in

heterogeneous conformational ensembles, we hypothesized that
the treatment of unbound RNA energetics would substantially
impact the accuracy of our relative binding affinity calculations.
We therefore tested two different methods for calculating these
free energies. First, unbound RNA free energies were calculated
using a 3D structure-based approach that is standard in protein–
protein and protein–small molecule relative binding affinity
calculations (18, 32). The structure of each partner RNA was
taken from the RNA–protein complex and relaxed then scored
in the absence of the protein. We hypothesized that this “stan-
dard Rosetta ΔΔG” 3D structure-based approach, in which a
single 3D structure is used to represent the unbound confor-
mational ensemble, may not work as well for RNA as it does for
proteins due to the relative flexibility of RNA in unbound states,
and because of the likelihood of mutations to introduce alter-
native secondary structures. Our second approach, which we
called “Rosetta-Vienna RNP-ΔΔG,” was to instead calculate
unbound RNA free energies using partition function calculations
enumerating all possible unbound secondary structures. These
calculations used the nearest-neighbor energy model as encoded
in the ViennaRNA package, frequently used to predict RNA
secondary structure (24, 25). The nearest-neighbor energy model
offers the potential of efficiently capturing the effects of numerous
unbound structures whose component free energies have been
probed and tested in dozens of empirical studies. The applicability
of Rosetta-Vienna RNP-ΔΔG for the unbound RNA state is
highlighted by two illustrative examples that show how changes in
binding affinity are determined by both stability of the complex
and the stability of the unbound RNA (Fig. 2D and SI Appendix).
Over all of the measurements, the Rosetta-Vienna RNP-ΔΔG

model significantly outperformed the standard Rosetta ΔΔG ap-
proach for calculating unbound RNA free energies (Fig. 2 E and F
and SI Appendix, Tables S1–S3). For the 74 canonical mutants and
660 single noncanonical mutants, RMSEs for calculations made
with the Rosetta-Vienna RNP-ΔΔGmodel, which uses a secondary
structure ensemble model to calculate unbound RNA free energies,
were 1.11 and 1.28 kcal/mol, respectively, compared with 2.03 and
2.15 kcal/mol, respectively, for calculations performed with the
standard Rosetta ΔΔG approach, which uses a single 3D structure
to represent the unbound RNA conformational ensemble. These
Rosetta-Vienna RNP-ΔΔG correlations were statistically significant
(P < 0.01; SI Appendix, Table S3). Additionally, calculations that
included both ΔΔGcomplex and ΔΔGunbound RNA were more accu-
rate than either term alone (SI Appendix).

Calculations Across Additional Diverse RNA–Protein Systems. To as-
sess the accuracy and applicability of Rosetta-Vienna RNP-ΔΔG
for systems other than the MS2 coat protein, we calculated relative
binding affinities for four additional diverse RNA–protein systems:
a conserved component of the signal recognition particle (SRP)
(Fig. 3A); the A protein of the human U1 snRNP (U1A), a widely
studied model system for RNA recognition motifs (Fig. 3C);
Pumilio homolog 1 (PUM1), a single-stranded RBP made up of
eight repeats that each specifically recognize a single nucleotide
(Fig. 3B); and FOX-1 (Fig. 3D), which recognizes a five-nucleotide
single-stranded consensus sequence. These systems were chosen
because experimental structures and quantitative affinities for
protein mutants and for RNA mutants are available in the litera-
ture for each of these systems (33–38). We expected that the ΔΔG
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Fig. 2. Calculation of relative RNA–protein binding affinities for 734mutants of
the MS2 coat protein RNA hairpin. (A) Crystal structure of the MS2 coat protein–
RNA hairpin complex [Protein Data Bank (PDB) ID code 1ZDH]. Experimental
ΔΔG versus ΔΔG calculations for canonical and single-noncanonical RNA hairpin
mutants using (B) GLM-Score and (C) the Rosetta hydrogen bond scoring model.
Note that the reference states for ΔGcomplex, ΔGunbound RNA, and ΔGunbound protein

are the fully unfolded states and that ΔΔG refers to the free energy of a mutant
relative to wild type. Positive ΔΔG indicates a mutant with a free energy that is
less stable than the wild type, while negative ΔΔG indicates a mutant with more
stability than the wild type. (D) Decomposition of the binding affinity calculation
for the wild-type complex (top row) and two example mutants (-12G,-7C,0C
mutant, middle row; -8U,-3A,1A mutant, bottom row). The first column shows
the mutated complex structures, with mutated residues shownwith spheres, and
calculated ΔΔGmut

complex values. The second column shows calculated ΔΔGmut
unboundRNA

values and the predicted secondary structures of the unbound RNA, with mutated
residues colored red, the third column shows the final calculated ΔΔGmut

bind, and the
fourth column shows the experimental ΔΔGmut

bind values. (E) Calculations for RNA
hairpin mutants using the standard Rosetta ΔΔG approach for unbound RNA free
energies. (F) Calculations for the same RNA hairpin mutants with Rosetta-Vienna
RNP-ΔΔG, in which unbound RNA free energies were computed from the par-
tition function of all possible secondary structures. The violin plots show
calculations for the canonical hairpins that have experimental relative binding
free energies greater than 4 kcal/mol. Pearson correlation coefficients for all
calculations are given in SI Appendix, Table S3.

Kappel et al. PNAS Latest Articles | 3 of 6

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819047116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819047116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819047116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819047116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819047116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819047116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819047116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1819047116/-/DCSupplemental


calculations for these systems would be less accurate than those for
the MS2 system because we did not train any part of the method
using these systems (discussed further in SI Appendix).
We first calculated relative binding affinities for these four sys-

tems using GLM-Score, the Rosetta hydrogen bond scoring model,
and the standard Rosetta ΔΔG approach described previously.
The RMSEs for the GLM-Score calculations ranged from 1.09 to
4.47 kcal/mol, the hydrogen bond scoring model RMSEs ranged
from 0.82 to 3.28 kcal/mol, and the standard Rosetta ΔΔGmethod
gave RMSEs ranging from 0.89 to 4.17 kcal/mol across the four
systems (SI Appendix, Fig. S3 and Tables S1 and S3).
The Rosetta-Vienna RNP-ΔΔG method gave significantly better

accuracies, recovering relative binding affinities with RMSE accu-
racies of 1.47 kcal/mol for the 14 SRPmutants, 0.75 kcal/mol for the
19 U1A mutants, 1.35 kcal/mol for the 17 PUM1 mutants, and 2.13
kcal/mol for the 17 FOX-1 mutants. These RMSE accuracies are
better than all prior approaches for each of the four tested systems.
Additionally, the correlations between Rosetta-Vienna RNP-ΔΔG
calculations and experimentally measured values were statistically
significant (P < 0.01; SI Appendix, Table S3). The RMSE over all
systems was 1.48 kcal/mol, with overall protein mutant RMSE of
1.21 kcal/mol (36 sequences) and overall RNA mutant RMSE of
1.73 kcal/mol (37 sequences) (Fig. 3E and Table 1). Decomposing
the calculations into the contributions from ΔΔGcomplex and
ΔΔGunbound RNA suggested again that the combination of these
terms provides the most accurate results, as expected from basic
thermodynamic principles (Fig. 1 and SI Appendix, Table S2). These
calculations suggest the range of accuracies that the Rosetta-Vienna
RNP-ΔΔGmethod will give for arbitrary RNA–protein systems and
suggest that the accuracy of these calculations will be worse for
systems with flexible bound ensembles, like FOX-1. A modified
framework that allowed significant structural changes in the RNA–
protein complex upon mutation did not further improve the accu-
racy of the calculations (SI Appendix).

Blind Predictions of PUM2 Binding Affinities. To evaluate the pre-
dictive power of this method, we made blind predictions of PUM2–
RNA binding affinities. PUM2 is a single-stranded RBP that binds
an eight-nucleotide consensus sequence (Fig. 4A). PUM2 is ho-
mologous to PUM1, which was included in our previous tests.
However, at the time that these predictions were made, the de-
tailed binding preferences of PUM1 versus PUM2 were unknown.
Additionally, our blind tests included substantially more sequences
than the previous tests on PUM1 (17 data points for previous
PUM1 tests and >1,000 data points for PUM2 blind tests). To
ensure that the tests were blind, the predictions and measurements
were carried out separately by different authors (SI Appendix, Fig.
S4). While K.K. made Rosetta-Vienna RNP-ΔΔG predictions, I.J.
and P.P.V. used the high-throughput RNA MaP platform to in-
dependently measure binding affinities for PUM2 with single and

double mutants of the consensus sequence in the context of four
different scaffolds. In scaffolds S1 and S3 the PUM2 binding se-
quence was flanked by short single-stranded sequences, while in
scaffolds S2 and S4 the PUM2 sequence was embedded inside long
hairpin loops (Fig. 4A).
Three crystal structures of PUM2 with RNA sequences differing

at the positions of the fifth and eighth bases have previously been
solved (39). There are large differences in the backbone confor-
mations between these structures at the fifth position (SI Appendix,
Fig. S1 B andC and Table S4). Because our prediction method does
not account for such large backbone conformational changes be-
tween mutants within the bound complex, we used all three of the
crystal structures to make the predictions (see Methods for details).
We unblinded the experimental data in two successive rounds,

each containing data for approximately half of the single and
double mutants of the consensus sequence, to allow potential
modifications of the prediction procedure to be evaluated in a
separate blind test (SI Appendix, Fig. S4). The RMSE for the first
round of predictions for 509 sequences was 1.94 kcal/mol (SI
Appendix, Fig. S5 and Table S5). This accuracy suggested that the
method had some predictive power for the system and the cor-
relation was statistically significant (P < 0.01), but the accuracy
was poorer than the overall RMSE for the previously tested sys-
tems. Further analysis of the predictions revealed a common fea-
ture of most of the worst prediction outliers. Sequences with
mutations at the fifth position, plotted with open markers in SI
Appendix, Fig. S5, clustered off the line of equality; removing these
variants gave RMSE accuracy of 1.47 kcal/mol for the remaining
363 sequences. We hypothesized that these deviations were the
result of high backbone flexibility allowing different base orienta-
tions and interactions at the fifth position, an effect that our
method would not capture. This hypothesis was supported by the
different backbone conformations observed in the three crystal
structures with A, C, and G bases at the fifth position (SI Appendix,
Fig. S1). To fully account for the conformational flexibility at this
position would require sampling a properly Boltzmann-weighted
ensemble of all bound conformations, which is not currently fea-
sible. Because the Rosetta-Vienna RNP-ΔΔG method relies in-
stead on one or a few representative conformations, we sought to
improve the accuracy of these predictions by including an addi-
tional representative structure. We looked to homologous proteins
to evaluate whether the backbone might adopt yet another con-
formation when U is bound at this position. Indeed, a PUM1
structure (91% identity of the RNA-binding domain with PUM2)
with a U at the fifth position exhibits alternate conformations of
both the base and the backbone (SI Appendix, Fig. S1 and Table
S4) (39). When we included this PUM1 structure along with the
three PUM2 structures as starting structures in our prediction
method, the accuracy of the calculations improved from 2.78 kcal/mol
RMSE for sequences with mutations at the fifth position initially
to 1.88 kcal/mol RMSE (Fig. 4B, open symbols), although this
value still exceeded the RMSE over mutants that preserved the
fifth position (1.32 kcal/mol; SI Appendix, Table S6). Even with the
inclusion of the PUM1 structure, the Rosetta-Vienna RNP-ΔΔG
calculations were significantly more accurate for sequences without
mutations at the fifth position (Fig. 4 and SI Appendix, Table S6).
We additionally assessed the effect of including alternative struc-
tures with different conformations of the fifth position U in our
calculations; however, the inclusion of the PUM1 structure gave
the most accurate results (SI Appendix, Fig. S8 and Table S5).
For the second round of blind predictions, we used the same

Rosetta-Vienna RNP-ΔΔGmethod and again included the PUM1
“U5” structure because it significantly improved the accuracy of
the first round of predictions. Based on the first-round calculations,
we also anticipated that the predictions for sequences without
mutations at the fifth position would be more accurate than pre-
dictions for sequences containing mutations at the fifth position.
The RMSE of the predictions for 528 sequences across the four

A B

C D

E

Fig. 3. Recovery of relative binding affinities in independent RNA–protein sys-
tems. Structures of (A) a conserved component of SRP (PDB ID code 1HQ1) (33), (B)
PUM1 (PDB ID code 1M8W) (37), (C) U1A (PDB ID code 1URN) (38), and (D) FOX-1
(PDB ID code 2ERR) (35). (E) Calculations ofΔΔGbind using Rosetta-Vienna RNP-ΔΔG.
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scaffolds in two replicate experiments was 1.60 kcal/mol (Fig. 4B,
filled symbols and Table 1). For the 385 sequences without mu-
tations at the fifth position, the RMSE improved to 1.40 kcal/mol
(SI Appendix, Table S6). The correlation coefficients for the PUM2
calculations were slightly worse than for the comparisons for other
systems (R = 0.51 for round 1 and R = 0.43 for round 2; SI Ap-
pendix, Table S3) but remained statistically significant (P < 0.01).
Furthermore, as before, the Rosetta-Vienna RNP-ΔΔG calcula-
tions were more accurate than calculations made with GLM-Score,
the Rosetta hydrogen bond scoring model, and the standard
Rosetta ΔΔG approach (SI Appendix, Fig. S3 and Table S1).
Overall, these blind tests on PUM2 confirmed the predictive power
of our method: The accuracy of the Rosetta-Vienna RNP-ΔΔG
method is better than 1.5 kcal/mol when bound complexes do not
undergo large conformational changes upon RNA mutation.

Discussion
We report a framework for RNA–protein relative binding affinity
calculation that computationally models the energetics of all states
in the process (Fig. 1). We have demonstrated that accurate cal-
culations require computing free energies of unbound RNA struc-
tural ensembles, here estimated using the nearest-neighbor energy
model. The overall RMSE accuracy for Rosetta-Vienna RNP-ΔΔG
over all six tested systems was 1.38 kcal/mol, comparable to the 1 to
2 kcal/mol accuracy achieved for protein–protein, protein–small
molecule, and protein–DNA systems. The method presented here
combines the nearest-neighbor energy framework, developed for
secondary structure prediction, with Rosetta 3D structure-based
energy calculations for RNA and proteins. The inclusion of RNA
secondary structure-based energy calculations is straightforward, but
previous work on secondary structure-based energy prediction has
advanced independently and it has therefore remained an open
question whether the two fields could intersect synergistically.
Our results constitute a major improvement over past computa-

tional methods, with twofold decreases in RMSE (Table 1). Nev-
ertheless, the tests presented here also highlight several aspects of
our method for future improvement. First, our calculations lack
explicit treatment of counterions and the electrostatic effects of
different salt conditions, effects known to impact RNA structure
and protein binding. Second, the nearest-neighbor energies, used to
calculate the unbound RNA free energies, introduce potential er-
rors into this method. The accuracy of these energies is on the order
of 0.5 kcal/mol for motifs that have been extensively measured and
is worse for other motifs such as loops and junctions (40). Unbound
RNA free energies for longer RNAs containing many long loops

and junctions are therefore likely to be less accurate. Additionally,
because the unbound RNA free energies calculated with Vienna do
not include pseudoknots, the Rosetta-Vienna RNP-ΔΔG values for
complexes containing pseudoknots are likely to be less accurate.
Rosetta-Vienna RNP-ΔΔG also requires an experimental structure
of the RNA–protein complex of interest and therefore cannot be
applied to the many RNA–protein complexes that have not yet
been structurally characterized. This limitation could be addressed
by computationally predicting structures of RNA–protein com-
plexes de novo, although existing structure prediction methods are
not likely to be accurate enough for this approach (41). Finally,
while Rosetta-Vienna RNP-ΔΔG models conformational changes
in the unbound state, it models only very limited conformational
changes in the bound state. Our blind tests on PUM2 binding af-
finities show that including several conformations as starting struc-
tures can partially reduce inaccuracies resulting from nucleotide
resolution conformational changes, but treatment of RNA flexibility
in the bound complex is an area open for significant improvement.
Future work will likely benefit from including conformational en-
sembles of the bound complexes, including possible register shifts (SI
Appendix, Fig. S7) (28), although it will be a challenge to model these
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Fig. 4. Blind predictions of PUM2 binding affinities. (A) The structure of
PUM2 (PDB ID code 3Q0Q) and the four scaffold sequences in which the
consensus sequence mutants were embedded. (B) Calculations of ΔΔGbind

using Rosetta-Vienna RNP-ΔΔG. Round 1 predictions including a PUM1
structural template with U at the fifth position are shown as open symbols,
and round 2 predictions are filled. Red and blue points indicate sequences
with and without mutations at the fifth position, respectively.

Table 1. Modeling accuracies across multiple systems

System
No. of data

points
RNA length

(no. of nucleotides)
Rosetta-Vienna

RNP-ΔΔG RMSE, kcal/mol

MS2 canonical (training) 37 19 1.22
MS2 canonical (test) 37 19 0.99
MS2 single-noncanonical (training) 330 19 1.27
MS2 single-noncanonical (test) 330 19 1.28
PUM1 17 8 1.35
SRP 14 47 1.47
U1A 19 21 0.75
FOX-1 17 7 2.13
PUM2 (round 1) 509 20–62 1.50*
PUM2, no fifth-position mutants (round 1) 363 20–62 1.32*
PUM2 (round 2, blind) 528 20–62 1.60
PUM2, no fifth-positions mutants (round 2, blind) 385 20–62 1.40
Overall 1,838 1.44

Pearson correlation coefficients are given in SI Appendix, Table S3.
*These predictions were made using a PUM1 crystal structure in addition to the three PUM2 crystal structures. The RMSE
accuracy of the initial blind predictions in round 1 was 1.94 kcal/mol and 1.47 kcal/mol without fifth-position mutants.
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bound ensembles with the same computational efficiency as the
nearest-neighbor model for unbound RNAs.
We expect the Rosetta-Vienna RNP-ΔΔG method to prove

useful for emergent applications such as RNA structure prediction
in the context of complex protein mixtures and within concentrated
RNA–protein liquid-like phases (1, 4, 42). In cellular contexts,
RNA is frequently bound to a multitude of different proteins, and
therefore accurate RNA structure prediction for these contexts
requires including relevant protein binding energetics (1). While
high-throughput methods have been developed for measuring such
interactions in vitro, it is unlikely that in the near future we will
obtain quantitative experimental data for the binding landscapes of
the thousands of RBPs relevant to human biology to all biologically
important RNA sequences; computationally predicted protein bind-
ing energies may allow initial expansion of RNA structure prediction
to include the effects of protein binding. These predictions
may also be useful for a variety of applications such as RNP
redesign to alter specificity, de novo design of RNA–protein
complexes, or design of membraneless RNA–protein bodies
(43, 44). Notably, the Rosetta-Vienna RNP-ΔΔG method ap-
pears to underpredict the effects of some deleterious sequence
mutations, suggesting that these predictions could effectively
be used as part of an initial computational filtering procedure

before experimentally testing binding. We hope the availability
of our method on a freely available server will help accelerate
these applications.

Methods
The software used to calculate the relative binding affinities described here is
freely available as a ROSIE webserver at rosie.rosettacommons.org/rnp_ddg.
Additionally, the software is available to academic users as part of the Rosetta
software suite at https://www.rosettacommons.org/. Documentation is available
at https://www.rosettacommons.org/docs/latest/application_documentation/
rna/rnp-ddg, and a demonstration is available at https://www.rosettacommons.
org/demos/latest/public/rnp_ddg/README. Additional details are available in
SI Appendix.

Relative binding affinities calculated with Rosetta-Vienna RNP-ΔΔG are
available in Datasets S1–S6 for all systems tested here.
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