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Abstract

The three-dimensional structures of RNA molecules provide rich and often critical infor-
mation for understanding their functions, including how they recognize small molecule
and protein partners. Computational modeling of RNA 3D structure is becoming
increasingly accurate, particularly with the availability of growing numbers of template
structures already solved experimentally and the development of sequence alignment
and 3D modeling tools to take advantage of this database. For several recent “RNA
puzzle” blind modeling challenges, we have successfully identified useful template
structures and achieved accurate structure predictions through homology modeling
tools developed in the Rosetta software suite. We describe our semi-automated meth-
odology here and walk through two illustrative examples: an adenine riboswitch
aptamer, modeled from a template guanine riboswitch structure, and a SAM I/IV
riboswitch aptamer, modeled from a template SAM I riboswitch structure.
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1. Introduction

RNA plays a host of critical functional roles in cells, from translation

regulation to catalysis (Gesteland, Cech, & Atkins, 2005). To achieve these

functions, many noncoding RNAs (ncRNAs) take on complex 3D folds,

with secondary structure helical elements positioned by structured junc-

tions and tertiary contacts. As experimental characterization of these struc-

tures can be challenging and time-consuming, there is strong interest

in developing computational strategies to predict these structures using

physical modeling or knowledge-based fragment and motif sampling

(Das, Karanicolas, & Baker, 2010; Ditzler, Otyepka, Sponer, & Walter,

2010; Laing & Schlick, 2011; Sim, Minary, & Levitt, 2012; Xu & Chen,

2018). To make better use of available information, these computational

strategies can be augmented with homology modeling, where a portion

of the modeled coordinates is built based on a previously solved homolo-

gous structure (Piatkowski et al., 2016; Rother, Rother, Boniecki,

Puton, & Bujnicki, 2011).

As the number of experimentally characterized RNA structures grows,

the potential for accurate homology modeling for new molecules increases

as well. The Protein Data Bank now has over 1500 non-redundant RNA

structures at high or medium resolution (4.0 Å resolution or better)

(Leontis & Zirbel, 2012), and these deposited structures represent 87 differ-

ent Rfam families and 21 different Rfam clans (Kalvari et al., 2018). These

structures provide a wealth of diverse potential templates for new modeling

challenges. Furthermore, the availability of large databases of RNA sequences

across species has generated more opportunities to discover homologous

sequences. Alignment software can account for covariation in RNA second-

ary structure, providing more accurate alignments than those based exclu-

sively on sequence (Kalvari et al., 2018; Nawrocki & Eddy, 2013). Expert

inspection and biochemical analysis routinely reveal homology between dis-

tantly related ncRNA classes even prior to structural characterization.

Recent examples include the lariat capping ribozyme, whose catalytic core

is homologous to the group I self-splicing intron (Einvik, Nielsen,Westhof,

Michel, & Johansen, 1998); the group II self-splicing introns, homologous

to the eukaryotic spliceosome (Toor, Keating, Taylor, & Pyle, 2008);

extended “sub-motifs” shared between adenosylcobalamin (AdoCbl) and

flavin mononucleotide (FMN) riboswitches (Barrick & Breaker, 2007;

Jaeger, Verzemnieks, & Geary, 2009); homology between glutamine and
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“downstream peptide” riboswitches (Ames & Breaker, 2014); and shared

binding sites for S-adenosyl methionine (SAM) across distinct riboswitch

classes (Mirihana Arachchilage, Sherlock, Weinberg, & Breaker, 2018;

Weinberg et al., 2008).

We have found that riboswitches—genetic control elements that

respond to the presence of small molecules (Serganov & Patel, 2012)—

are particularly amenable to template identification and then computational

homolog modeling of structure. Often, multiple classes of riboswitches bind

the same or similar ligand and possess identifiable sequence homology to

each other and to solved riboswitch structures. Riboswitches are also excel-

lent use cases for homology modeling because their functional state requires

a stably-folded ligand binding site, entailing intricate 3D folds in ligand-

recognition domains—folds that are unlikely to be recovered by de novo

RNA modeling. If ligand binding sites from previously solved riboswitches

can be identified for a new riboswitch, borrowing that structural informa-

tion can greatly improve modeling accuracy.

Recent blind modeling challenges in the RNA Puzzles trials (Miao et al.,

2017) support the view that RNA homology modeling can be accurate and

biologically useful. We have used identifiable but at times distant homolo-

gies to previously solved structures to achieve accurate blind models of

numerous riboswitch and other ncRNA targets, including the GIR1

lariat-capping ribozyme, the adenosylcobalamin riboswitch, the glutamine

riboswitch, the Zika xrRNA, and the SAM I/IV riboswitch (RNA Puzzles

5, 6, 8, 14, 18; Fig. 1). In several cases, we were further able to correctly

predict ligand-binding sites, based on clustering of conserved residues in

these 3D folds (Miao et al., 2017). While addressing these blind challenges,

we have developed a framework for homology modeling of RNA structures

with Rosetta computational tools. Depending on the target and modeling

sub-problem, either a fragment assembly algorithm (Fragment Assembly

of RNA with Full-Atom Refinement, or FARFAR) (Cheng, Chou, &

Das, 2015; Das et al., 2010) or a high resolution fragment-free algorithm

called stepwise Monte Carlo (SWM) (Watkins et al., 2018) are best suited

to the modeling challenge. FARFARmodeling is the more well-developed

approach and the method has been previously reviewed (Cheng, Chou, &

Das, 2015), albeit not yet for homology modeling problems. SWM is a

newer method that seeks higher resolution. In the case of Zika xrRNA,

recent homology modeling with SWM correctly predicted all noncanonical

base pairs of theRNA, a previously unmet challenge inRNA computational

structural modeling (Fig. 1D) (Watkins et al., 2018).
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Fig. 1 Prior use of homology modeling in blind challenges using Rosetta algorithms. In
RNA Puzzles 5, 6, 14, 18, and 8, previously solved structures provided substantial insight
that guided modeling. Each subpanel displays the template structure (left; portion
employed in red), the best submitted model (middle), and the eventual crystal structure
(right). (A) The GIR1 ribozyme contained a helix arrangement found in the related
Azoarcus group I intron. PDB codes: 3BO3 (Lipchock & Strobel, 2008) and 4P8Z
(Meyer et al., 2014). (B) The AdoCbl riboswitch contained a T-loop architecture also
found in earlier structures of FMN riboswitches, and a kink-turn motif that we obtained
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In this review, we describe our approach for homology modeling, from

obtaining an appropriate template to the computational strategies for com-

pleting missing coordinates, as outlined in Fig. 2. We then illustrate this

approach by walking through worked examples for two challenges: first,

an artificial challenge modeling an adenine riboswitch based on a well-

known guanine riboswitch structure; second, an actual blind challenge

(RNA Puzzle 8) where we modeled the SAM I/IV riboswitch. Before

describing this Rosetta-focused methodology, we note that other groups

have also developed excellent tools outside Rosetta for RNA homology

modeling, and we advise the reader to try multiple tools and check for con-

sensus (Piatkowski et al., 2016; Popenda et al., 2012; Xu&Chen, 2018).We

also note that current homology modeling methods can be computationally

expensive, especially if only a fraction of a target RNA has an identifiable

template in a previously solved structure and the rest must be modeled de

novo. Readers should be aware that computer clusters with �100 CPUs

are therefore required for the methods below. Last, we note that, at this time,

computational strategies for RNA structural modeling must be augmented

with human insight to identify and best use homology information; several

specific examples of the value of expert inspection are described below.

2. Method

Identifying a homologous solved structure can substantially reduce the

unknown portion of a structure that must be modeled through computa-

tionally expensive algorithms, allowing for the generation of models with

higher accuracy with the same amount of computer time. For illustration,

in the allied field of protein structural modeling, modeling based on

from the structure of the MBP-L30e-mRNA complex. PDB codes: 2YIE (Vicens,
Mondragon, & Batey, 2011); 4GXY (Peselis & Serganov, 2012); and 1T0K (Chao &
Williamson, 2004). (C) Both bound (top) and unbound (bottom) structures of the gluta-
mine riboswitch contain a sarcin-ricin loop. PDB codes: 1Q9A (Correll, Beneken,
Plantinga, Lubbers, & Chen, 2003); 5DDO (Ren et al., 2015); and 5DDP (Ren et al.,
2015). (D) The Zika xrRNA features substantial homology to Murray Valley Encephalitis
xrRNA, but the presence of a pseudoknot not found in the original crystal changes the
overall fold architecture. PDB codes: 4PQV (Chapman et al., 2014) and 5TPY (Akiyama
et al., 2016). (E) The SAM I/IV riboswitch, later discussed as a “worked example” here,
was RNA Puzzle 8; in the original blind modeling, we used a template region around
the SAM binding site. PDB codes: 2GIS (Montange & Batey, 2006) and 4OQU (Trausch
et al., 2014).
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templates has yielded substantially more accurate models than de novomodel-

ing, even for proteins with limited similarity to existing structures (Moult,

Fidelis, Kryshtafovych, Schwede, & Tramontano, 2018). However, after

identifying a solved structure with substantial homology, modeling a new

RNA molecule remains challenging. Judgments must be made as to which

portions of the template should be used for the new structure, and significant

portions of the structure may remain incomplete, requiring de novo model-

ing. Indeed, sequence discrepancies between the modeled structure and

Fig. 2 Workflow for homology modeling with the Rosetta framework. Preparing homol-
ogous regions requires selecting an appropriate template structure and refining that
structure within the Rosetta score function using ERRASER-Phenix. Here, the template
is colored at helical regions (shades of purple and pink) and in an elaborately folded
ligand-binding core (red) that serves to seed modeling runs. The secondary structure
of the target sequence should be estimated. Useable template regions should be
selected that lack experimental artifacts and are sufficiently similar to the modeled
structure. The desired sequence is then threaded onto the template structure. Finally,
remaining regions of the structure are modeled de novo in the context of this threaded
structure using modeling with either FARFAR or SWM. New non-template coordinates
are shown in teal.
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template in non-helical regions can critically impact the global fold. In this

section, we provide guidelines to help address these challenges, describing a

series of steps for homology modeling from selecting a template structure to

retrieving final coordinates.

2.1 Selecting candidate template structures
Homology modeling begins with identifying a candidate template struc-

ture. Often the target molecule is already known to fall into a known

ncRNA family, and a literature search can provide an expert sequence

alignment for that family based on manual curation. This scenario is typi-

cally the case for new riboswitches, which are indeed often identified on the

basis of such sequence alignments and careful, manual detective work

leveraging expert knowledge of biochemistry and molecular biology

(Weinberg et al., 2017). If the function of the target molecule is known,

a simple PDB search (https://www.rcsb.org) for the name of the riboswitch

class, e.g., “guanine riboswitch,” will often uncover templates with previ-

ously solved structure.

If homologies of the target molecule to previously solved structures are

not immediately apparent, an automated back-up method is to use the

PDB’s advanced search, which includes an option to BLAST a target

sequence. If any structures result, the PDB will automatically identify an

approximate sequence alignment. If a PDB-BLAST fails, the Rfam data-

base can carry out a sophisticated search of an input sequence against its

large archive of ncRNA families and return a sequence alignment. The

Rfam alignment can also help identify additional members of the same fam-

ily from the PDB.

Sometimes these homology searches result in multiple possible template

structures for the target. Although multiple templates may be used to seed

parallel modeling runs, it is still a good idea to choose one template, or at

least a subset of those available to optimize use of computational time.

The twomost important parameters in making this choice are the resolution

of the structure in question and the sequence similarity to the target. As a rule

of thumb, as long as the resolution is sufficient to place atomic coordinates, it

should be a secondary concern; sequence similarity is more important in

choosing between possible templates.

Finally, we note that template structures do not have to be large or

complex to substantially improve or accelerate modeling. Many RNA sub-

sequences form structural modules which form extremely similar folds,
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varying little with their structural context (Miao &Westhof, 2017;Westhof,

Masquida, & Jossinet, 2011). As a result, small sub-structures of a handful of

nucleotides, which would never appear in any homology search, may still be

of use. By far the most valuable such sub-structures to identify are tertiary

contacts, because they can anchor the relative orientation of local structures

that are distal in the RNA sequence and secondary structure. Two common

tertiary contact modules are the intercalated T-loop (Chan, Chetnani, &

Mondragon, 2013) and the tetraloop/receptor interaction ( Jaeger,

Michel, & Westhof, 1994; Wu, Chai, Fraser, & Zimmerly, 2012). If

sequences compatible with either of these interactions may be found, it is

likely worthwhile to attempt some modeling runs with these interactions

seeded in, using a T-loop containing PDB (such as a tRNA structure) or

a tetraloop/receptor (such as the Tetrahymena ribozyme’s P4–P6 domain)

as a miniature template. Packages like RMdetect and FR3D can discover

some simple RNA motifs automatically, including kink turns (Cruz &

Westhof, 2011; Sarver, Zirbel, Stombaugh, Mokdad, & Leontis, 2008),

although we typically still recommend inspecting sequence-conserved

regions of the predicted secondary structure of target molecules for evidence

of tertiary motifs like T-loops and tetraloop receptors, which are not well-

captured by any currently available automated program.

2.2 Optimizing the templates
Due to the challenges associated with manually fitting atomic coordinates,

especially with the medium resolution (2.5–3.5 Å diffraction resolution)

often obtained for RNA structures, experimental structures almost always

contain flaws and geometric errors that can impede accurate modeling.

These errors are particularly pervasive for coordinates deposited before

2014, after which the PDB began its new deposition and validation system

(Chou, Echols, Terwilliger, & Das, 2016; Chou, Sripakdeevong, Dibrov,

Hermann, & Das, 2013; Keating & Pyle, 2012; Read et al., 2011; Wang

et al., 2008). Sometimes these flaws are innocuous, but other times they

can change functional conclusions, and it is difficult to identify what will

happen a priori. While the PDB keeps records of MolProbity analyses to cat-

alog clashes and geometrical outliers (Chen et al., 2010), rather than merely

selecting the least flawed option, there are facilities to eliminate geometrical

outliers while maintaining minimal deviations from the parent structure.

These include ERRASER-Phenix (Chou et al., 2013, 2016), RNABC

(Wang et al., 2008), and RCrane (Keating & Pyle, 2012). For the Rosetta

184 Andrew M. Watkins et al.



homology modeling methods described herein, we recommend application

of ERRASER-Phenix as at least a final step, because ERRASER can refine

the structure into the same force field as used in subsequent Rosetta

modeling.

2.3 Estimating target secondary structure
To choose relevant regions of the template structure and to complete 3D

modeling of new regions of the target structure, the target’s secondary struc-

ture provides important, often critical, constraints. For regions of the target

molecule homologous to a template of known structure, the secondary

structure can be inferred through homology. For other parts, various tools

are available for predicting the secondary structure of an RNA from its

sequence. The most powerful source of secondary structure information

are expert analyses in the literature, which typically integrates all available

biochemical, evolutionary, and prior structure information about the target.

If experimental facilities are available, multidimensional chemical mapping

experiments offer reliable RNA secondary structures (Tian & Das, 2016;

Cheng, Kladwang, Yesselman, & Das, 2017); it is worth noting here that

SHAPE and DMS-guided approaches are simpler but have been less reliable

(Kladwang, VanLang, Cordero, & Das, 2011; Tian &Das, 2016; Miao et al.,

2017, 2015). If an Rfam family or an expert-curated sequence alignment

exists for the target sequence, the secondary structure constructed from a

sequence alignment by tools like Infernal (Nawrocki & Eddy, 2013) will

be the most reliable estimate for the target secondary structure. If an Rfam

family or extensive sequence alignment is not available, tools for secondary

structure prediction including RNAstructure (Reuter & Mathews, 2010),

NUPACK (Dirks & Pierce, 2003), ViennaRNA (Lorenz et al., 2011),

and CONTRAfold (Do, Woods, & Batzoglou, 2006) are appropriate

although none reliably return information on pseudoknots. All these tools

can be used to generate secondary structures for the sequence at hand,

and the resulting predictions should be compared to find consensus helices.

2.4 Identifying useable portions of the template
Once a template structure is optimized and the target’s secondary structure is

predicted, sections of the template that will be used for further modeling

should be identified. One possible template inaccuracy is the difference

between crystallization and biologically relevant conditions. Regions of

the template with crystal artifacts should be excluded in further modeling.
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For instance, in our homology modeling of the Zika xrRNA (Fig. 1D)

(Watkins et al., 2018), we identified a previously solved structure of the

Murray Valley Encephalitis xrRNA, but it crystallized as a dimer, replacing

an internal pseudoknot with an intermolecular contact, meaning that despite

high sequence similarity, almost half of the template structure had to be

discarded.

The sequence match to the homologous structure will be the primary

determinant for which remaining regions of the template structure to keep.

In addition, any sections in which the new sequence’s assumed secondary

structure disagrees with the template structure should not be included, as

illustrated by the Zika xrRNA case described above. Any non-helical

regions should be left out if replacing with the new sequence would break

hydrogen bonding patterns. For example, if a GCAA tetraloop in the tem-

plate is replaced with a UUCG tetraloop, it is better to model this tetraloop

de novo or to find a template from another structure, for instance by

searching the RNA 3D motif atlas (Petrov, Zirbel, & Leontis, 2013). With

these exclusions, some regions of the structure may no longer be connected

by conserved tertiary contacts or junctions; an example occurred in the

adenosylcobalamin riboswitch where a kink turn and a complex T-loop/

pseudoknot motif were drawn from two unconnected templates (separate

red regions in Fig. 1B). Separated regions can be included as distinct rigid

bodies in later modeling steps and allowed to reorient with respect to each

other as intervening loops and helices are remodeled.

In deciding on useable portions of the template, it is helpful to addition-

ally consider all available data on the sequence to be modeled. Biochemical

data such as mutational analyses may point to divergence from the homol-

ogous structure. If a sequence alignment is available, covariance analysis can

suggest new contacts or delineate regions in which the template is not appli-

cable. Last, chemical mapping data, particularly new multidimensional

experiments (Tian & Das, 2016), can be informative in detecting or con-

firming homologies of the target molecule to previously solved structures.

As noted above for secondary structure, literature analyses of the RNA class,

if available, remain the most valuable source for template identification.

2.5 Threading the target sequence onto template structure
Even for regions of the template that can be retained for the modeling task,

the target sequence being modeled may deviate from the template struc-

ture’s sequence. For example, an AU base pair in the template structure
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may be replaced with a GC base pair in the target molecule. As a first step,

the target sequence must be threaded onto the template, such that the

RNA backbone remains constant while the corresponding nucleotides

change to the target sequence. If the sequence alignment is ambiguous, this

step and further steps should be applied to each reasonable threading—or

correspondence—of the modeled sequence to the template. To obtain the

threaded structure, one can use the rna_thread Rosetta application (see

Appendix for example command-line).

Depending on the sequence changes being made, small-scale optimiza-

tion of the threaded structure may be necessary prior to further modeling. If

all the changes are in helix sequences, then the local geometry is likely agnos-

tic to threading. In particular, helix structure will be unaltered when the

sequence changes between Watson Crick pairs. For helix sequence changes

that convert Watson-Crick pairs to G-U wobble pairs and vice versa, the user

may wish to leave those base pairs or the entire helix out of the template so

that they are rebuilt in the next step.

2.6 Modeling the target structure
Once the threaded template is optimized, the task remaining is to model the

regions of the structure that lack homology to the template; doing so will set

the relative orientation of any templated sections and provide 3D coordi-

nates for every atom in the target RNA. As noted in the Introduction,

two algorithms are available in Rosetta for modeling RNA folds: a

medium-resolution method (Fragment Assembly of RNA with Full-Atom

Refinement, or FARFAR) (Das et al., 2010) and a method that can achieve

higher resolution but at high computational expense (stepwiseMonte Carlo,

or SWM) (Watkins et al., 2018). Detailed command-lines for these two

approaches will be presented when discussing the worked examples.

Choosing between these algorithms involves three considerations:

a. The size of the target complex, and of the region that requires new

modeling.

If high resolution is desired, SWM is the method of choice, but

involves significantly more computation per model than FARFAR.

Large structures and extensive remodeling challenges are possible but

computationally expensive with SWM. As a rule of thumb, SWM

modeling scales with the number of nucleotides or fixed helices that

need to be rebuilt. Each such element requires 50 cycles of SWM sim-

ulation (typically a few minutes) to solve, up to problems with around
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20 elements (several hours) per model. For example, if a problem

involves three helices of known structure, interconnected by three loops

with a total of 10 nucleotides, 650 cycles will be required to complete

SWM models, corresponding to about an hour of simulation time per

model. Ideally, hundreds of models need to be created, so even with

a computer cluster with 100 CPUs, such a SWMmodeling problemwill

require overnight runs. Challenges of more than 30 residues are better

approached using FARFAR, as the lower resolution achieved will be

offset by the greater number of completed trajectories.

b. The number of helices with length changes between template and target.

FARFAR has an efficient method for accurately recapitulating real-

istic helix flexibility; SWM samples one residue at a time and has an inef-

ficient method for adding base-paired residues. Therefore, if there are

major helix length changes between template and target, FARFAR is

currently recommended.

c. The presence of multiway junctions and tertiary contacts.

Multiway junctions or tertiary contacts often form the structural core

of complex RNA folds and can feature intricate combinations of non-

Watson-Crick base pairs whose high-resolution geometry is essential to

an accurate global fold. Ideally, as many as possible of these interactions

may be found in the template structure. Otherwise, these features should

be modeled using SWM. If there are many such complex interactions in

a fold, one may decompose the structure into independent SWM jobs,

and subsequently assemble successful sub-problem solutions using

FARFAR or SWM.

A combination of FARFAR and SWM can be helpful for achieving high

accuracy models. Initial FARFAR modeling may provide hypotheses for

regions of the global structure that should be proximal; these proximal heli-

ces and junction residues can be modeled in more detail in separate smaller

SWM runs. Alternatively, if a multiway junction or tertiary contact is essen-

tial for achieving the correct global fold, it is feasible to first generate models

for this region with SWM, and then seed these elements into a FARFAR

modeling round as rigid bodies to generate more accurate global models.

During modeling runs, a choice needs to be made for whether to allow

regions drawn from templates to be optimized away from their starting

structures. Usually, it is best to keep these regions fixed so as to preserve

the structural information from the starting template; however, we typically

allow for minimization of nucleotides near the edges of these regions to allow

for small changes that can propagate and “relax” newly built regions into
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more energetically favored configurations (see Appendix for example

command-lines and explanations). In some cases, including the walk-

through examples below, we also carry out pre-optimization of template

segments through the rna_minimize command; this step automatically uses

coordinate constraints to the structure’s initial coordinates for its first

round of minimization, ensuring that any large clashes are relieved without

major global changes to the RNA structure (see Appendix for example

command-lines).

2.7 Model selection
For both FARFAR and SWM algorithms, hundreds to thousands of inde-

pendent trajectories that stochastically build the new regions are carried

out. With either sampling strategy, the presence of numerous indepen-

dently built models with low RMSD to the top-scoring model suggests

sufficient sampling. A plot of Rosetta score versus the RMSD to the top

scoring model can be used to quickly assess the conformational space

accessed over all modeling runs. For any given Rosetta score cutoff

(say, a cutoff for the top 10 models), observing multiple structures close

in RMSD to the top structure indicates support for the best scoring model.

In addition to score v. RMSD plots, inspection of the top 10 or 20 models

in 3Dmolecular viewers like Pymol allows for visual assessment of whether

any subset of these models have converged to the same global fold, a hall-

mark of convergence of the modeling and typically a good sign of accuracy

(Cheng, Chou, Kladwang, et al., 2015; Kappel et al., 2018; Shortle,

Simons, & Baker, 1998). The resulting collection of top-scoring models

are then the candidates for the predicted structure. More quantitatively,

the mutual RMSD between the top scoring models can help assess conver-

gence to the native structure, with lower mutual RMSD indicating more

accurate models (Kappel et al., 2018).

3. Worked examples

This section briefly describes two worked examples of Rosetta RNA

homology modeling, following the steps outlined above and in Fig. 2.

For both examples, we test both alternatives for the de novo modeling step

(SWM vs. FARFAR) to illustrate the rationale and outcomes involved in

that choice. Readers wishing to work through these examples may also

be interested in command-lines and a publicly available repository of com-

puter files; see Appendix.
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3.1 The adenine riboswitch
Riboswitches fold to form selective, tight pockets to bind their target ligands.

A classic example is the purine riboswitch (Fig. 3), where a Watson-Crick

base pair between the ligand and nucleotide 74,which is always a pyrimidine,

defines the binding selectivity of the riboswitch. As a first example of Rosetta

homology modeling, we model the V. vulnificus adenine riboswitch struc-

ture, comparing modeling using the FARFAR and SWM approaches.

The first steps in the method are to select and optimize an appropriate

template structure. For this test, we select the B. subtilis guanine riboswitch

(PDB ID 1Y27) (Serganov et al., 2004) and we run the structure through the

ERRASER-Phenix pipeline. In the third step, we estimate the secondary

structure for the target adenine riboswitch, which has only small deviations

from the template’s secondary structure (Fig. 3). In the fourth step of the

method, we identify homologous regions in the template and target to

determine which regions of the template structure to use. Here, there

are sequence changes in RNA helices, and while these can affect the

ensemble of favored structures for each helix (Yesselman et al., 2018), those

changes are typically overwhelmed by a well-conserved tertiary context, as

we see here. We excise the residues whose mutations fall in loops or that

break or form Watson-Crick pairs (as in P2), marked as mismatches in

Fig. 3. In the fifth step, we thread the target sequence onto the remaining

backbone.

Fig. 3 The secondary structure and sequence of two purine riboswitches are highly sim-
ilar, with sequence deviations outside of helices marked in blue.
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Now we can move to the sixth step of the method, as outlined in Fig. 2:

modeling the remaining residues in the target structure. We compare two

simulation approaches for completing the modeling. We perform a simula-

tion with SWM to build in the mutated residues, followed by a simulation

with FARFAR just to extend the P1 helix. In the second approach, we per-

form a simulation where we model in both the mutated residues and

the P1 helix extension with FARFAR. For the ligand in each simulation

case, we place a new adenine in a perfect Watson-Crick orientation with

U74, mapped from a C in the template guanine riboswitch structure.

(While SWM can explicitly remodel ligand binding modes, this may not

be necessary for an initial simulation or for a simple binding mode like a sin-

gle Watson-Crick base pair.) For each type of simulation, we observed

convergence by comparing the top 10models (as ranked byRosetta energy),

and we chose the top model as our best structure (Fig. 4). We note that in
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Fig. 4 On the left, plots comparing model score to the RMSD of the lowest energy
model for SWM simulations (A) and FARFAR simulations (B) show convergence to the
lowest energy structure. In the middle column are the lowest energy models from
the SWM (top) and FARFAR (bottom) simulations. In the right column, the top scoring
structures (salmon) are overlaid on the crystal structure of the target (blue, PDB ID: 4TZY)
(Zhang & Ferre-D’Amare, 2014), which was not used in homology modeling.
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both cases, the mutual RMSD between the top 10 structures is<0.5 Å, indi-

cating strong convergence and suggesting that the lowest energy model will

likely be close to the actual structure of this adenine riboswitch. In the sev-

enth step, we therefore choose the lowest energy model from each run as the

final model.

In this case, the experimental structure of the adenine riboswitch is

known, and so the accuracy of the Rosetta homology models can be

assessed. Compared to a crystal structure of this RNA (PDB ID: 4TZY)

(Zhang & Ferre-D’Amare, 2014), the numerical values of the RMSD of

the homology model to the experimental structure are around 1.4 Å

(Fig. 4, Table 1). This RMSD is not quite atomic accuracy (which would

be sub-Angstrom) and is greater than the deviation between crystal structures

of the same molecule solved by independent laboratories (e.g., <0.5 Å

RMSD between the adenine riboswitch structures 4TZY (Zhang &

Ferre-D’Amare, 2014) and 1Y26 (Serganov et al., 2004)). Nevertheless,

the modeling confirms that the guanine and adenine riboswitch aptamers

can adopt the same fold around distinct purines, and the deviation is much

smaller than the length scale of nucleotides (�6Å from one nucleotide to

the next). Indeed, not much flexibility had to be modeled; there was little

chance with either SWM or FARFAR of the riboswitches adopting a fold

with substantial deviations. Remodeling the binding site across similar bind-

ing modes is a task to which either SWM or FARFAR is comfortably

amenable.

3.2 SAM I/IV riboswitch
The prior example was an illustration of what can be done for a ligand bind-

ing RNA with a well-conserved global architecture with small sequence

changes in helices, loops, and the ligand binding site that contribute to selec-

tivity. Modeling within a single family of folds, as above, is a very different

scale of challenge from modeling one fold family based on another, which

Table 1 Accuracy achieved in 200 CPU-hour simulations, using either SWM for
mutations and FARFAR for helix extension or using exclusively FARFAR, achieve
high-resolution models of the adenine riboswitch. RMSD (in Å) is to the actual crystal
structure of the adenine riboswitch (PDB ID: 4TZY) (Zhang & Ferre-D’Amare, 2014).
Simulation RMSD (low-E) RMSD (best of 5) Best RMSD # structures

SWM 1.485 1.477 1.404 5000

FARFAR 1.479 1.478 1.393 4960
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can involve global “rewiring” of the strands connecting otherwise homol-

ogous core structural elements. We illustrate the case of cross-family model-

ing with the SAM I/IV riboswitch.

As the first step of homology modeling, we must identify a candidate

template structure. The SAM I/IV riboswitch was proposed as an RNA-

puzzle (Miao et al., 2017) at a time when multiple structures of the SAM

I riboswitch had already been solved by crystallography, but no riboswitches

of the SAM IV or SAM I/IV class had been solved (Schroeder, Daldrop, &

Lilley, 2011). The most conserved region of the SAM I/IV riboswitch

appeared highly homologous to the SAM I riboswitch, and the literature

proposed homologies at the family level (Weinberg et al., 2008) (Fig. 5).

Taking the next two steps, we optimize the structure for SAM I riboswitch

(2YGH) (Schroeder et al., 2011) with ERRASER-Phenix, and we draw

out the secondary structure of SAM I/IV (Fig. 5). Then, we isolate template

regions homologous to the target structure. Specifically, the red region of

Fig. 5, which contains the ligand binding site as well as three of the four heli-

ces comprising the core junctional architecture of the riboswitch, is highly

Fig. 5 The secondary structure and sequence of SAM I and SAM I/IV riboswitches are
highly dissimilar, except for a well-conserved ligand binding site (red).
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conserved. To model the SAM I/IV riboswitch “puzzle,” we take this con-

served binding site exactly, excising it from the SAM I riboswitch structure

and threading on the target sequence, the fifth step of our homology model-

ing procedure (Fig. 2).

For the next step, we need to plan out how to model new regions of the

target SAM I/V riboswitch de novo that are not shared with the SAM I tem-

plate. The two families appear quite different outside the core (Fig. 5). Com-

pared to the template SAM I riboswitch, in the SAM I/IV riboswitch there is a

16-nt deletion around P2, a 10-nt insertion in P3, the J3/4 loop truncated by

6 nt, and P1 is shortened by 6nt but with an additional 4bp helix P5 added

(Fig. 5).We first summarize the regions that remain for de novomodeling after

using the SAMIbinding site homology, andwe thenoutline the specific com-

mands and Rosetta utilities that can be employed to carry out the modeling.

Compared to the SAM I structure, in the SAM I/IV riboswitch, P2a

needs be truncated and then a GNRA tetraloop needs to be added to the

remaining four Watson-Crick base pairs; this addition can be completed

with FARFAR or SWM modeling. For a change in J3/4, the problem

amounts to solving for the best orientation of two nucleotides (the CA loop).

P4 is a 5bp helix capped with a GNRA tetraloop and thus involves well-

known RNA structures. That segment could be threaded from P4 in the

template, but given its conventional structure, here we separately build it

and let it be placed relative to the core as a fixed body in the next stage

of de novo sampling of J3/4. These transformations occur on the “top” side

of the template (Fig. 5) and are strictly independent of the other required

modifications, described next.

On the “bottom” side of the template are the P3b and P5 modifications,

which must be considered jointly and are the bulk of the challenge. P3b is

extended bymultiple base pairs and terminates in a loop implicated in a pseu-

doknot (PK3). At the same time, P5 is appended to the 30 end of P1, termi-

nating in a seven-residue loop, four bases in PK3, and a final nucleotide.

Solving the joint fold of L3b, PK3, P5, and the 30 loop is the major challenge.

Wemay solve these two challenges using either stepwiseMonte Carlo or

FARFAR. For the user, the requirements for running each method are

broadly similar, including specification of a FASTA file (see Appendix)

and a PDB file of input RNA coordinates representing the template region,

renumbered to correspond to the SAM I/IV system (sequence in Appendix).

Additionally, a FARFAR run requires the specification of an explicit sec-

ondary structure in “dot-bracket” notation. In FARFAR, the secondary

structure may be used to impose energetic restraints to encourage base pair

formation, or to guide the generation of fixed helical inputs. In contrast,
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SWM currently requires the additional provision of fixed helical input struc-

tures. The secondary structure files and fixed helical inputs for use in

FARFAR and SWM modeling are included in the Appendix.

With the sequence, secondary structure, and initial structure files on

hand, we run simulations using two approaches, each with either FARFAR

or SWM. In the first approach, we conduct a nearly naı̈ve simulation,

starting from the correct binding site but providing the rest of the structure

simply as helices. In the second approach, we conduct strategic simulations

which subdivided the problem into separate, more tractable modeling

challenges—we first truncate P2a and complete the tetraloops capping

P2a, P4, and P5. We then include the best-scoring models made for each

of these sub-problems as rigid bodies in a subsequent simulation that tackles

the P3b and P5 modifications. These strategic simulations reduce the scope

of the problem from a problem that is very large for the SWM method (27

nucleotides to be built, seven input pieces of RNA) to something more

manageable (15 nucleotides, 6 input pieces of RNA). We expected that

the latter simulations would perform better because they can focus more

computational power for the harder parts of the problem.

We used equal computational time for each case. The complexity of the

naı̈ve SWM challenge required simulations of five thousand Monte Carlo

cycles. These simulations required on average 88,491 s, or almost 25h,

for each generated structure. Accordingly, we limited ourselves to 6000

CPU-hours to the other simulation conditions as well (Table 2). FARFAR

completed an order of magnitude more total trajectories in the same amount

of CPU time than SWM, for either style of problem specification. The top

10 structures from each simulation showed adequate convergence, with

numerous independently modeled structures within 4 Å of the top scoring

model, and with the top 10 structures having mutual RMSD <4Å for the

FARFAR simulations. As expected from this convergence level (Kappel

et al., 2018), the models were also accurate compared to the actual

Table 2 6000 CPU-hour simulations with diverse starting assumptions achieve high-
resolution models of the SAM I/IV riboswitch.
Simulation RMSD (low-E) RMSD (best of 5) Best RMSD # structures

SWM_naı̈ve 10.914 3.137 3.137 222

FARFAR_naı̈ve 5.050 4.344 3.495 12,966

SWM_strategic 4.077 3.932 2.931 691

FARFAR_strategic 5.379 4.195 3.106 17,755
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experimental structure of the SAM I/IV riboswitch aptamer (PDB ID:

4L81) (Trausch et al., 2014), with the correct global fold of the RNA even

in the newly modeled regions outside the ligand-binding core (Fig. 6).

The best RMSD to native for the top five lowest scoring structures fell under

5 Å (Fig. 6). The RMSDs of the lowest energy models to the native structure
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Fig. 6 Rosetta score in the default rna_res_level_energy4.wts scoring function, plotted
against heavyatom RMSD to the lowest energy generated structure, comparing
(A) SWM_naive, (B) FARFAR_naive, (C) SWM_strategic, and (D) FARFAR_strategic (blue).
Top scoring structures for each simulation setting are depicted in the middle column
with coloring corresponding to the secondary structure diagram (Fig. 4). In the right
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the target (PDB ID: 4L81) (Trausch et al., 2014) which was not used in homology
modeling (blue).
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suggest that both SWM and FARFAR can achieve acceptable convergence

and acceptable accuracy on this challenge, with FARFAR’s ability to com-

plete more trajectories making up for any shortcomings relative to the

“high-resolution” SWM method.

4. Summary

Rosetta provides useful tools for RNA homology modeling, and their

performance is well-suited to common challenges arising in current RNA

structural biology. In the future, more of the steps discussed above for effec-

tive homology modeling will be automated. Very large or complex struc-

tures, for which homologous regions are limited or for which sequence/

structure similarity to prior solved structures is hard to parse, currently

remain inaccessible. With the acceleration of experimental methods such

as cryo-EM and multidimensional chemical mapping, additional data may

be employed to further accelerate these particularly challenging cases

(Kappel et al., 2018; Tian & Das, 2016).

Appendix

Installation and setup
Documentation for installing Rosetta can be found here: https://www.

rosettacommons.org/demos/latest/tutorials/install_build/install_build

After installing Rosetta, to install the python scripts distributed with

Rosetta as rna_tools, execute the shell script Rosetta/tools/rna_tools/

INSTALL (or add it to .bashrc).

In the next two Appendix sections, we will include command lines used

for homology modeling simulations of the adenine riboswitch and SAM

I/IV riboswitch. The command lines were run with Rosetta 3.10.

For each simulation step, we have included input files, output files, and

command lines in the Github repository here:

https://github.com/everyday847/rosetta_rna_homology_modeling_

examples

Note that when running the command lines in the following sections, it

might be necessary to append “.macosclangrelease” or “.linuxgccrelease”

to each executable name. Typing the executable as written below (for

instance, rna_thread) and tab completing will show the name of the execut-

able on your machine upon installation.
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Adenine riboswitch simulation files and command lines
• The template structure used is the guanine riboswitch PDB structure

1Y27 (Serganov et al., 2004). For simplicity, we remove the ligand,

water molecules, and metal ions.

• Threading the adenine riboswitch sequence onto the guanine riboswitch

template. Template structures are passed in with the -s flag, and -seq

indicates the sequence to place onto the template:

rna_thread -s 1y27_start_culled.pdb -seq ggaagauauaauccuaauga

uaugguuugggaguuucuaccaagagccuuaaacucuugauuaucuuc

• Minimizing the threaded template to relieve any clashes. The -score:

weights flag here specifies the current best performing RNA scoring

function, rna_res_level_energy4.wts. The -restore_talaris_behavior

flag ensures that the score function exactly reproduces the default settings

from when the weights were first optimized.

rna_minimize -s threaded.pdb -score:weights

stepwise/rna/rna_res_level_energy4.wts -

restore_talaris_behavior

• Since the threading application by default changes residue numbering to

chain A, numbered sequentially from 1, at this point we restore standard

purine riboswitch numbering. In this case, since the target structure has

already been deposited with a particular numbering scheme, we can

further confirm that our numbering matches up.

renumber_pdb_in_place.py threaded_minimize.pdb X:14-81

• Mismatched residues, including part of the P1 stem, are deleted from

threaded_minimize.pdb via text editor: specifically, residues X:14-15,

X:26, X:31, X:39, X:44, X:62, X:74, and X:81 are removed.

• FASTA file which defines the sequence for the complete adenine

riboswitch system to be modeled, which includes a longer P1 stem than

is present in the template. Note here that this FASTA file sequencing

numbering must be consistent with the threaded template structure

numbering after the steps above.

>4tzy_target.pdb X:13-83

gggaagauauaauccuaaugauaugguuugggaguuucuaccaagagccuuaaacucuug

auuaucuuccc

• Running FARFAR simulation for building remaining residues, left out

from the template. The flags used here are as follows. The -s flag specifies

the starting structure, which here is the threaded template structure.

The -native flag specifies the native structure, only used for scoring
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the models for later RMSD analysis. The -minimize_rna flag indicates

that the modeling will include energy minimization steps. As before,

the -score:weights flag specifies the current best performing RNA scor-

ing function, and the -restore_talaris_behavior flag includes global

scoring corrections necessary for that score function. With the

-extra_minimize_res flag, we can allow residues in the template structure

that are near de novo modeled residues to resample and minimize their

energies. Finally, -use_legacy_job_distributor is necessary for cluster

execution using the rosetta_submit.py script, as described in the Github

repository.

rna_denovo -s threaded_minimize_culled.pdb -native

4tzy_target.pdb -fasta target.fasta -minimize_rna true -

nstruct 50 -score:weights

stepwise/rna/rna_res_level_energy4.wts -

restore_talaris_behavior -use_legacy_job_distributor -

extra_minimize_res X:25 X:27 X:30 X:32 X:38 X:40 X:42 X:45

X:61 X:63 X:73 X:75 -out:file:silent farna_rebuild.out

• Running SWM simulation. The flags here are analogous to those in the

FARFAR simulation above, with the addition of the -cycles flag which

indicates the number of stepwise Monte Carlo cycles to perform.

stepwise -s threaded_minimize_culled.pdb -native

4tzy_target.pdb -fasta target.fasta -cycles 50 -nstruct 5 -

score:weights stepwise/rna/rna_res_level_energy4.wts -

restore_talaris_behavior

-use_legacy_stepwise_job_distributor -extra_min_res X:25

X:27 X:30 X:32 X:38 X:40 X:42 X:45 X:61 X:63 X:73 X:75 -

out:file:silent swm_rebuild.out

Each of the resulting 500models are extracted to individual PDB files

using extract_lowscore_decoys.py swm_rebuild.out 500 and subse-

quently finished (the P1 helix is extended) by FARFAR, generating

10 models each:

rna_denovo -s swm_rebuild.out.1.pdb -native 4tzy_target.pdb

-fasta target.fasta -minimize_rna true -nstruct 10 -

score:weights stepwise/rna/rna_res_level_energy4.wts -

restore_talaris_behavior -use_legacy_job_distributor -

extra_minimize_res X:25 X:27 X:30 X:32 X:38 X:40 X:42 X:45

X:61 X:63 X:73 X:75 -out:file:silent

threaded_minimize_stepwise_finished_by_farfar.out
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• Retrieving topmodels. The extract_lowscore_decoys utility can be used

to retrieve the top ten scoring models from each simulation:

extract_lowscore_decoys.py

threaded_minimize_stepwise_finished_by_farfar.out 10

extract_lowscore_decoys.py farna_rebuild.out 10

SAM I/IV simulation files and command lines
Many of the flags used in the command lines below are explained in more

detail above in the adenine riboswitch appendix.

• The template structure for this example is the SAM I riboswitch struc-

ture (PDB ID: 2YGH) (Schroeder et al., 2011). For both FARFAR and

SWM simulations, we input as a PDB file the section of the template that

is homologous to the target, threaded with the target sequence. Below is

the FASTA file corresponding to the inputted homology structure. As

described above, this PDB file must be renumbered; for this, we use

the standard numbering for the SAM I/IV riboswitch family. Command

lines for these steps are analogous to the adenine riboswitch example

above.

>start.pdb A:1-10 A:21-28 A:45-50 A:67-71

ggaucacgagcggcaaccggugcugaucc

• FASTA file for complete SAM I/IV riboswitch system to be modeled:

>sam_I/IV A:1-96

ggaucacgagggggagaccccggcaaccugggacggacacccaaggugcucacaccggag

acgguggauccggcccgagagggcaacgaaguccgu

• PDB files for non-template helices. For modeling helices of SAM I/IV

that are not taken from the template structure, we can include PDB files

corresponding to idealizedA-formhelices. These PDBsmay be generated

automatically by passing the corresponding sequence to rna_helix.py and

renumbering (example below). Below,we list FASTA files for all the non-

template helices used as inputs for FARFAR and SWM modeling.

rna_helix.py -o HELIX2.pdb -seq ggg ccc

renumber_pdb_in_place.py HELIX2.pdb A:11-13 A:18-20

All FASTA files for the input helix PDB files:

>HELIX2.pdb A:11-13 A:18-20

gggccc

>HELIX4.pdb A:29 A:44

ua
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>HELIX5.pdb A:30-32 A:40-42

gggccc

>HELIX6.pdb A:53-57 A:62-66

caccgcggug

>HELIX7.pdb A:73-76 A:81-84

gcccgggc

>HELIX8.pdb A:34-37 A:92-95

cggauccg

• Secondary structure file for the SAM I/IV riboswitch in dot-bracket

notation:

(((((....((((....))))(((..((((((.[[[[..))).))).)))..

(((((....)))))))))).((((....)))).......]]]].

Note: FARFAR supports traditional “dot-bracket” notation as

well as the use of square, curly, and angular brackets for first through

third order pseudoknots, and matching letters for higher order

pseudoknots.

• Running naı̈ve FARFAR simulation. In addition to the flags used above in

the adenine riboswitch example, we use the flag -allow_complex_

loop_graph to allow accurate scoring for the pseudoknotted structure being

modeled, and we include -superimpose_over_all to compute RMSDs by

aligning over all residues in this extensive modeling challenge:

rna_denovo -s starting_puzzle8_chunk.pdb HELIX2.pdb

HELIX4.pdb HELIX5.pdb HELIX6.pdb HELIX7.pdb HELIX8.pdb

-native 4L81.pdb -fasta target.fasta -save_times

-allow_complex_loop_graph true -superimpose_over_all

-cycles 100000 -nstruct 50 -use_legacy_job_distributor true

-score:weights stepwise/rna/rna_res_level_energy4.wts

-restore_talaris_behavior -minimize_rna true

-out:file:silent farna_rebuild.out

• Running naı̈ve SWM simulation. Here and in later command lines,

-motif_mode ensures that nucleotides on the ends of input structures

may be energy-minimized along with newly built residues during

simulation:

stepwise -s starting_puzzle8_chunk.pdb HELIX2.pdb

HELIX4.pdb HELIX5.pdb HELIX6.pdb HELIX7.pdb HELIX8.pdb -

native 4L81.pdb -fasta target.fasta -save_times -motif_mode

-allow_complex_loop_graph true -superimpose_over_all
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-cycles 5000 -nstruct 5

-use_legacy_stepwise_job_distributor true

-score:weights stepwise/rna/rna_res_level_energy4.wts

-restore_talaris_behavior -out:file:silent swm_rebuild.out

• Generating intermediate inputs for strategic simulations:

The template-P2 combination:

target_1.fasta:

>starting_puzzle8_chunk.pdb A:1-28 A:45-50 A:67-71

ggaucacgagggggagaccccggcaaccgugcugaucc

stepwise -s starting_puzzle8_chunk.pdb HELIX2.pdb -native

4L81.pdb -fasta target_1.fasta -save_times -motif_mode

-allow_complex_loop_graph true -superimpose_over_all

-cycles 200 -nstruct 5000 -

use_legacy_stepwise_job_distributor true

-score:weights stepwise/rna/rna_res_level_energy4.wts

-restore_talaris_behavior

-out:file:silent swm_rebuild1.out

Finishing the P4 tetraloop:

rna_denovo -s HELIX6.pdb -working_res A:53-66 -native 4L81.pdb

-fasta target.fasta -save_times -motif_mode

-allow_complex_loop_graph true -superimpose_over_all

-cycles 10000 -nstruct 5000 -use_legacy_job_distributor true

-score:weights stepwise/rna/rna_res_level_energy4.wts

-restore_talaris_behavior -minimize_rna true

-out:file:silent farna_rebuild2.out

Finishing the P5 tetraloop:

rna_denovo -s HELIX7.pdb -working_res A:73-84 -native 4L81.pdb

-fasta rna_puzzle_8.fasta -save_times -motif_mode

-allow_complex_loop_graph true -superimpose_over_all

-cycles 10000 -nstruct 5000 -use_legacy_job_distributor true

-score:weights stepwise/rna/rna_res_level_energy4.wts

-restore_talaris_behavior -minimize_rna true

-out:file:silent farna_rebuild3.out

Extracting the top-scoring model from each simulation to seed the

final simulation:

extract_lowscore_decoys.py swm_rebuild1.out 1

extract_lowscore_decoys.py farna_rebuild2.out 1

extract_lowscore_decoys.py farna_rebuild3.out 1
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• Running strategic FARFAR simulation:

rna_denovo -s farna_rebuild3.out.1.pdb farna_rebuild2.out.1.

pdb swm_rebuild1.out.1.pdb HELIX4.pdb HELIX5.pdb HELIX8.pdb

-native 4L81.pdb -fasta target.fasta

-secstruct_file secstruct -save_times

-allow_complex_loop_graph true -superimpose_over_all

-cycles 100000 -nstruct 5000 -use_legacy_job_distributor true

-score:weights stepwise/rna/rna_res_level_energy4.wts

-restore_talaris_behavior -minimize_rna true

-out:file:silent farna_rebuild_final.out

• Running strategic SWM simulation:

stepwise -s farna_rebuild3.out.1.pdb farna_rebuild2.out.1.pdb

swm_rebuild1.out.1.pdb HELIX4.pdb HELIX5.pdb HELIX8.pdb

-native 4L81.pdb -fasta target.fasta -save_times -motif_mode

-allow_complex_loop_graph true

-superimpose_over_all -cycles 2000 -nstruct 5000

-use_legacy_stepwise_job_distributor true -score:weights step-

wise/rna/rna_res_level_energy4.wts

-restore_talaris_behavior -out:file:silent swm_rebuild_final.

out

• Obtaining low-energy models. To choose a subset of these models, we

can use the following commands:

extract_lowscore_decoys.py farna_rebuild.out 10

extract_lowscore_decoys.py swm_rebuild.out 10

extract_lowscore_decoys.py farna_rebuild_final.out 10

extract_lowscore_decoys.py swm_rebuild_final.out 10
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