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Structured RNAs and RNA complexes underlie biological processes
ranging from control of gene expression to protein translation.
Approximately 50% of nucleotides within known structured RNAs
are folded intoWatson–Crick (WC) base pairs, and sequence changes
that preserve these pairs are typically assumed to preserve higher-
order RNA structure and binding of macromolecule partners. Here,
we report that indirect effects of the helix sequence on RNA tertiary
stability are, in fact, significant but are nevertheless predictable from
a simple computational model called RNAMake-ΔΔG. When tested
through the RNA on a massively parallel array (RNA-MaP) experi-
mental platform, blind predictions for >1500 variants of the tectoRNA
heterodimer model system achieve high accuracy (rmsd 0.34 and
0.77 kcal/mol for sequence and length changes, respectively). Detailed
comparison of predictions to experiments support a microscopic picture
of how helix sequence changes subtly modulate conformational fluc-
tuations at each base-pair step, which accumulate to impact RNA ter-
tiary structure stability. Our study reveals a previously overlooked
phenomenon in RNA structure formation and provides a framework
of computation and experiment for understanding helix conforma-
tional preferences and their impact across biological RNA and RNA-
protein assemblies.
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Structured RNAs perform a wealth of essential biological
functions, including the catalysis of peptide bond formation,

gene expression regulation, and genome maintenance. In each
case, the RNA folds into a complex 3D structure whose ther-
modynamics governs its function (1–5). Interrogation of the
folding process has yielded a general picture in which the RNA
structure generally forms hierarchically, first through the for-
mation of Watson–Crick (WC) double helices—the RNA sec-
ondary structure—and then through assembly of these helices
through non-WC interactions into tertiary structures (6–8). Ex-
tensive in vitro measurements have enabled a thermodynamic
model that can generally predict the RNA secondary structure
from the RNA sequence (9, 10). However, no thermodynamic
model exists to predict tertiary structure formation from a sec-
ondary structure, even though this final step is fundamental to
RNA function.
Understanding RNA tertiary structure requires methods to

predict possible 3D structures and to estimate their relative en-
ergetics; both steps require careful accounting of the geometric
preferences and flexibility of the individual elements that com-
pose the RNA (6–8, 11–14). In recent years, the major focus of
RNA modeling groups has been outside canonical base-paired
helices and instead on noncanonical motifs, such as structured
junctions and tertiary contacts, which are the hallmarks of
complex tertiary structure (11–13, 15–20). Nevertheless, within
structured RNAs, over 50% of residues are still contained within

WC base-paired helices (21), implying that even subtle confor-
mational variation in WC base pairs (as observed in refs. 22–24)
might accumulate to substantially influence tertiary structure
folding. Several lines of evidence suggest that such sequence-
dependent conformational variations in RNA helices could ex-
ist. Depending on their sequences, RNA helices have different
mechanical properties (22) and distinct chemical shift profiles as
determined by NMR (25). In addition, there is extensive work on
sequence-dependent conformational preferences of nucleic acid
helices in the related field of DNA-protein assembly. Such
preferences underlie "indirect readout" effects in which sequence
changes in double helix segments in between, but not directly at,
protein-DNA contacts can change DNA-protein binding affini-
ties by up to 200-fold (3 kcal/mol at 37 °C), and modeling studies
that explicitly consider conformational ensembles can partially
reproduce these data (26–28). For RNA tertiary structure, analogous
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changes in RNA double helix conformational ensembles in
between, but not directly at, tertiary contacts could impact the
stability of RNA tertiary structure assemblies (27, 29). However,
such effects have not yet been tested, partially due to the difficulty
of separating out such effects from other complicating factors in
RNA structure formation, including possible changes in secondary
structure, the typical presence of multiple tertiary contacts, and the
involvement of single-stranded RNA regions.
Overcoming these difficulties, the tectoRNA model system

involves binding 2 RNA pieces with well-defined secondary
structures through 2 well-understood tetraloop/receptor tertiary
contacts that are connected by 10 base-pair helices (Fig. 1A) (30–
32). We recently reported that the tectoRNA is amenable to
quantitative experiments involving thousands of distinct variants
through the RNA-MaP technology (14, 33). Here, we describe
how serendipitous early observations of helix-dependent effects
in tectoRNA RNA-MaP measurements led us to develop a com-
putational method that models the sequence-dependent confor-
mations of WC base-pair steps and uses these conformations
to quantitatively predict the energetics of the tertiary assembly.
Computational simulations generated blind predictions of

the relative affinity of all possible helix sequence variants of
one piece of the tectoRNA heterodimer (>105 predictions).
We then measured >1500 of these previously uncharacterized
tectoRNA variants, including comprehensive changes in base-
pair sequence and length of 1 helix. Our results establish that
sequence- and length-dependent conformational effects of helical
elements influence the thermodynamic stability of tertiary struc-
tures over unexpectedly wide ranges of 40-fold and 2,000-fold,
respectively, and that these effects can be predicted with high
accuracy.

Results
High-Throughput Platform to Measure Thermodynamic Stability of
TectoRNAs. Our model system is shown in Fig. 1A. Each piece
of the tectoRNA heterodimer is composed of a 10-bp RNA helix
flanked by a tetraloop (TL) and by a tetraloop receptor (TLR)
(30). The TL of 1 monomer binds selectively to the TLR of the
other monomer, forming 2 tertiary contacts that stabilize the
heterodimer (Fig. 1A). Suboptimal positioning of the 2 tertiary
contact interfaces by the intervening helices destabilizes the
heterodimer (32, 34). The tectoRNA system is thus sensitive to
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Fig. 1. Free energy of tectoRNA binding depends on helix sequence. (A) Structure of tectoRNA homodimer [Protein Data Bank (PDB): 2ADT] with 2 tertiary
contacts (GAAA-11nt). One of these tertiary contacts is replaced (GGAA-R1; blue) to convert the complex to the heterodimer used in this study (32). On the
right is the sequence and secondary structure of the wild-type tectoRNA interaction. Numbers indicate the “position” within the chip-piece helix. (B) In our
experimental setup, one piece of the heterodimer was fluorescently labeled and free in solution (the “flow piece”), while the other was immobilized on the
surface of a sequencing chip (chip piece). Quantification of the bound flow piece to the chip surface allowed determination of the free energy of binding (ΔG)
to form the bound tectoRNA. (C) Free energy of binding of the flow piece to 7 distinct chip-piece variants. Error bars are 95% CI on the measured ΔG. The
sequence of the flow- and chip-piece helices is indicated (Bottom).
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the conformational preferences of RNA helices and provides a
quantitative thermodynamic readout in the form of heterodimer
binding affinity.
A library of sequence variants of one piece of the tectoRNA

heterodimer was designed, synthesized, and sequenced (Fig. 1B
and SI Appendix, Fig. S1A). We leveraged a modified sequencing
platform to in situ transcribe the library into RNA directly on the
surface of the sequencing chip (Methods), enabling the display of
sequence-identified clusters of RNA (SI Appendix, Fig. S1B)
(33). This piece of the tectoRNA heterodimer was thus called
the chip piece. The binding partner of the chip piece (the flow
piece) was fluorescently labeled and introduced to the sequencing
chip flow cell at a series of increasing concentrations, and the
amount of bound fluorescence to each cluster of RNA was
quantified after equilibration (Methods). These fluorescence val-
ues were used to derive the affinity of the flow piece to each chip
piece variant in terms of the equilibrium dissociation constant

(Kd) and binding free energy (ΔG = RT log Kd). Values for ΔG
obtained in 2 independent experiments were highly reproducible
(R2 = 0.92; rmsd = 0.15 kcal/mol; SI Appendix, Fig. S2A). Each
chip piece variant was present in multiple locations per chip (n ≥
5), allowing estimation of confidence intervals for each affinity
measurement [median uncertainty on ΔG = 0.16 kcal/mol (95%
CI); SI Appendix, Fig. S2B]. In previously tested systems, RNA-MaP
measurements correspond directly to gel-shift assays (33, 35), and
the binding affinities for the tectoRNA are similar to those mea-
sured for the original constructs (4 nM for the 10-bp heterodimer
measured in ref. 32 compared with 6–30 nM measured for 10-bp
heterodimers in our experiment) (32).
A preliminary experiment measured 7 chip-piece RNA vari-

ants with different arbitrarily chosen WC base-pair compositions.
We observed a 5-fold range of binding affinities (1 kcal/mol; Fig.
1C), contrary to our initial expectation that these assemblies
would have the same affinity and thereby act as controls. The
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serendipitous observation of these affinity differences inspired
the development of a computational model (described below) to
relate helix structure to tectoRNA stability, based on structural
differences between WC base pairs.

Conformational Ensembles of RNA Helices Predict TectoRNA Stability
in RNAMake-ΔΔG. We developed a computational model for
tectoRNA stability that explicitly models the conformational
ensemble for each RNA helix sequence, i.e., the distribution of
conformations that the unconstrained helix explores in solution.
Inspired by previous modeling procedures pioneered by Olson
and colleagues (see refs. 22 and 36), we divided each helix into a
set of base-pair steps (i.e., 2 sequential base pairs) (Fig. 2A).
Decomposition of helices in this manner allows for modeling of
arbitrary helix sequences using a minimal set of structural states.
Base-pair step conformational ensembles were determined by
compiling all instances of that base-pair step in structured RNAs
from the RNA crystal structure database (Fig. 2A, Right and
Methods) (22, 37–39). These base-pair step structures were then
clustered based on structural similarity to form a set of 50–250
discrete conformational states, each weighted according to its
frequency (Methods and SI Appendix, Table S1).
Modeling the tectoRNA additionally required structures for

each of the TL/TLR tertiary contacts, which we modeled as single
structural conformations, as this type of tertiary contact appears
nearly structurally identical across all extant crystallographic
structures (40). These conformations were derived from a crystal
structure and Rosetta modeling (41) for the GAAA-11nt and
GGAA-R1 TL/TLR interactions, respectively (see Methods).
With this model we generated the “unconstrained” tectoRNA—

i.e., the intermediate state of tectoRNA binding where only a
single tertiary contact is formed (Fig. 2A). In this unconstrained
state, the helices explore their full sterically allowed conforma-
tional ensembles and occasionally bring the loop and receptor of
the second tertiary contact in close enough proximity to form the
closed tectoRNA assembly (Fig. 2B). We sampled conformations
explored by the unconstrained tectoRNA with a Monte Carlo
simulation by swapping the conformation of one randomly
chosen base-pair step per simulation iteration. Each sampled
conformation of the tectoRNA was assessed for whether the
closing base pair of the unbound TL was in close proximity to its
position in the bound TL/TLR (Fig. 2B), based on a proximity
threshold of 5 Å and a rotational alignment term (see Methods
and refinement below), to define whether the structure was
closed with both contacts formed (bound) or not (unbound) (Fig.
2B). This assessment was used to calculate the free energy of
conformational alignment of the tertiary contacts,

ΔGconf =−RT   logðNbound=NunboundÞ,

where T is the temperature, R is the universal gas constant, and
Nbound and Nunbound are the number of simulated structures an-
notated as bound or unbound, respectively. We attributed differences
in binding affinity between any 2 tectoRNA variants (ΔΔGbinding) to
differences in this conformational alignment term,

ΔΔGbinding =ΔGconf,2 −ΔGconf,1,

where ΔGconf,1 and ΔGconf,2 are the conformational alignment
terms for 2 variants (indicated by 1 and 2, respectively). For a
more detailed justification of how other physical effects cancel
out in this difference, see ref. 40. This model was built as an
extension of RNAMake, a toolkit for the design of the RNA
3D structure (42), to predict thermodynamics of tertiary struc-
ture formation; thus we call the method RNAMake-ΔΔG.
We generated ΔGconf for all possible sequences of the 4 ca-

nonical base pairs within the chip-piece helix using RNAMake-
ΔΔG (Methods), and these calculations predicted a substantial

effect of helix sequence on tectoRNA assembly of 2.5 kcal/mol,
corresponding to a 70-fold effect on affinity (SI Appendix, Fig. S3).

Blind Tests of Sequence-Dependent TectoRNA Stability. We next
tested the predictions of RNAMake-ΔΔG in a blind prediction
challenge. We selected 2000 tectoRNA sequences that were
predicted (by author J.D.Y.) to uniformly span the predicted
range of affinity. Two authors (S.K.D. and N.B.) then carried out
high-precision measurements for 1,596 of these sequences (the
remaining sequences were not sufficiently represented in our li-
brary). The tested sequences gave experimental tertiary stabilities
spanning a range of affinity of 2.1 kcal/mol (corresponding to a 40-
fold effect on Kd) between the lowest and the highest affinity
binders, similar to the predicted range of 2.5 kcal/mol (a 70-fold
range in Kd). These data confirmed that sequence-dependent con-
formations of RNA helices can have a substantial effect on tertiary
structure formation.
Strikingly, we observed a high correlation between the observed

and the predicted affinities (R2 = 0.71) with rmsd of 0.34 kcal/mol to
the predicted line of fixed slope = 1 (Fig. 3A). Allowing the slope to
vary gave a slightly better prediction (rmsd = 0.21 kcal/mol; best-fit
slope = 0.54) (Fig. 3A). The accuracy of these blind predictions of
tertiary energetics was better than the scale of thermal fluctuations
(RT = 0.6 kcal/mol). The good agreement between our observed and
the predicted values suggests that this computational model captures
structural differences among helices that, in turn, influence the
thermodynamics of tertiary structure formation.
After our blind predictions, we investigated whether the

magnitude of the proximity threshold used to evaluate base-pair
overlap, the choice of base pair at which to evaluate overlap, and
the choice of starting conformation affected the accuracy of the
model. There is a large range of proximity thresholds that give
similar R2 values, although the slope between our predictions
and the observed values changes slightly (SI Appendix, Fig. S4).
In addition, our predictions are largely independent of the base
pair at which we evaluated overlap as well as the starting con-
formation for simulations (SI Appendix, Fig. S5).
To help visualize the formation of the tectoRNA assembly, we

present in Fig. 3 B and C the modeled conformational ensembles
of 2 tectoRNA variants from the extremes of the range of tec-
toRNA affinity measurements (magenta = −10.2 kcal/mol,
cyan = −12.0 kcal/mol). Fig. 3B shows a subset of the chip-piece
helix trajectories, while Fig. 3C shows the modeled distribution
of the final base pair of the flow and chip-piece helix, projected
on the x-y plane. Both the low- and the high-affinity chip-piece
helices sample a wide range of RNA backbone trajectories in the
unconstrained tectoRNA ensembles with variation in the posi-
tion of the final base pair of more than 7 Å (full width at half
maximum in the x and y directions; Fig. 3C). The median posi-
tion of the final base pair differed by 5.3 Å between the 2 chip-
piece helices with the end of the helix being substantially farther
from the flow piece for the low-affinity variant (Fig. 3C). For
both cases and especially the destabilized case (magenta), our
modeling suggested that the chip piece was bound to the flow
piece only in the subset of conformational states making more
extreme conformational excursions (i.e., compare black and gray
trajectories in Fig. 3B). Further supporting this picture, attempting
to model binding affinity using only a single most populated
structure for each base-pair step produced worse predictions (R2 =
0.42; SI Appendix, Fig. S6 A and B). Finally, our modeling sug-
gested that certain structural differences between helix sequences
had large effects on thermodynamic stability, while others had
minimal effects (SI Appendix, Fig. S6 C and D and the next sec-
tion). By taking the difference between the centroid of the bound
states and the unconstrained states, we determined a spatial
projection of the structural differences most coupled to thermo-
dynamic effects. Differences between helices along this projection
were highly correlated to the observed ΔΔG values (R2 = 0.71),
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while differences along a perpendicular axis were uncorrelated (SI
Appendix, Fig. S6D). Thus, specific differences between static struc-
tures may be used to predict and understand thermodynamic effects,
albeit less directly than with the full computational model.

Base-Pair Elements Adopt Distinct Structures at Different Positions.
To gain insight into the how primary sequence affects binding
probability in this system, we determined the average effect on
tectoRNA affinity (ΔΔG) of having any given base pair at each
position within the helix, compared with the average affinity of
all 1,594 tested variants (Fig. 3D and SI Appendix, Fig. S7). These
effects were highly correlated between the observed and the
predicted values (R2 = 0.93; SI Appendix, Fig. S7A and Fig. 3D).
Each base pair has either stabilizing or destabilizing effects

depending on its position within the helix (Fig. 3D). Base pairs
with a purine residue on the 5′ side of the helix (i.e., A-U and
G-C base pairs) were destabilizing when placed closer to the
receptor (positions 1–3) but stabilizing when placed closer to the
loop (positions 6–8), while the reverse was true for base pairs
with a purine on the 3′ side of the helix (i.e., U-A and C-G base
pairs; Fig. 3D). This observed position dependence of sequence
preference strongly contrasts with the “nearest-neighbor rules”
governing secondary structure energetics in which each base-pair
step contributes an additive free energy term toward the overall
free energy of folding, regardless of its position within a helix
(43). This observation also suggests that partial unfolding of the
secondary structure is not responsible for the differences in
tectoRNA assembly formation (see also SI Appendix, Fig. S8).
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smoothing of ∼1,000 bound or partially bound structures sampled from the simulation. The centroids of the distributions are shown as open circles; the black
lines connect the centroid of the partially bound structures to the centroid of the bound structures (black dot). (D) Observed (Left) and predicted (Right)
affinities for chip-piece helices with the indicated base pair at each position within the helix. Affinities are given as the deviation from the median observed or
predicted affinity across all 1,536 variants.
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The overall trend in position dependence suggests a simpli-
fying rule that conformational preferences of purine pyrimidine
base pairs are similar but are distinct from pyrimidine purine
base pairs. However, an exception to this rule is evident at po-
sition 9 where A-U and U-A were both destabilizing. This base
pair is adjacent to the closing base pair of the loop, leading us to
consider whether this base pair adopted substantially different
conformations in the bound tectoRNA due to the proximity of
the tertiary contact. However, the observed effect was highly
correlated with the effect predicted by the RNAMake-ΔΔG
model (Fig. 3 D, position 9 row). Therefore, even at this loop-
proximal base-pair step, our data can be understood without
invoking any physical effects beyond the intrinsic base-pair step
conformational preferences used in RNAMake-ΔΔG.
To achieve a more granular understanding of the position-

dependent structural preferences of base-pair steps, we quanti-
fied the contribution of each of the base-pair step’s conforma-
tional states in the bound tectoRNA. States with an increased
representation (over and above the expected sampling frequency
from the Monte Carlo simulation) in the bound tectoRNA
should correspond to the states that promote binding and vice
versa for those with a decrease in representation (SI Appendix,
Fig. S9). We observed disproportionate representation of certain
states within each base-pair step’s ensemble in the bound tec-
toRNA (illustrated for the AU/AU ensemble in Fig. 4A and for
all base pairs in SI Appendix, Fig. S10). Notably, these changes
were highly position dependent such that the majority of states
could be over-represented or under-represented, depending on
their position within the chip-piece helix (Fig. 4A). To illustrate
further, conformational states of the AU/AU ensemble were
clustered based on their position-dependent representation
(shown in a dendrogram and colors in Fig. 4A). Conformational
states in different clusters were each associated with distinct

structural behaviors with small but consistent structural differ-
ences between structures in different clusters (>1-Å differences;
Fig. 4 B and C). For example, conformers in class 6, which
promote binding in positions 1–3 in the helix, are more twisted
and thus span less translational distance than conformers in class
1, which promote binding only in the very first or last base pair in
the helix (Fig. 4 B and C). These results would predict that the
same base-pair element adopts different conformations in the
bound state depending on its location within the helix, thereby
accounting for the differential base-pair preferences along the
helix (Fig. 3D). These different conformational preferences
further underscore the necessity of an ensemble to account for
thermodynamic effects in RNA tertiary structure formation.

Testing RNAMake-ΔΔG at More Extreme Helical Distortions.We next
explored RNAMake-ΔΔG’s capacity to predict the thermody-
namic effects of helix length changes by adding or deleting base
pairs on both the flow and the chip RNAs. We generated chip
RNAs with helix lengths of 8–12 bp (n = 32–96 sequence variants
per length) and tested each chip RNA against flow RNAs with
helix lengths of 9–11 bp, yielding 15 length-pair combinations
(Fig. 5A). For each of these complexes, we calculated ΔΔG
values relative to the original assemblies with 10-bp flow and 10-
bp chip helices, which we abbreviate as “10/10 bp.” Certain
highly mismatched length combinations were so destabilizing
that no binding was detectable (ΔΔG > 4.4 kcal/mol relative to
10/10 bp; 8 length-pair combinations; SI Appendix, Fig. S11). The
remaining length-pair combinations had effects spanning this
4.4 kcal/mol range. The thermodynamic stability of each length-
pair complex with observable binding was calculated with
RNAMake-ΔΔG. Comparisons to measurements demonstrated
a correlation of R2 = 0.66 and rmsd = 0.72 kcal/mol for these
predictions, with the best-fit line having a slope indistinguishable
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Fig. 4. Base-pair conformations differ by position within the helix. (A) Change in sampling frequency of conformational states in the AU/AU ensemble in the
bound versus the partially bound. (B) Example structures of base-pair step conformations that are enriched and depleted at 2 positions. (C) Change in po-
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from 1 (Fig. 5A). The larger rmsd compared with the 10/10-bp
sequence predictions appears due to systematic deviations be-
tween the observed and the predicted effects for specific length
pairs. For example, the 10/11-bp flow/chip complexes uniformly
bound more weakly than predicted, while the 9/9-bp flow/chip
complexes were bound slightly tighter than predicted.
One possible explanation for predicting stronger binding than

is observed is an overly accommodating proximity threshold for
determining bound tectoRNA structures during prediction. Such
a loose threshold would allow unrealistic structures to be con-
sidered bound during the RNAMake-ΔΔG simulation. To assess
this possibility, we analyzed the distribution of bound tectoRNA
conformations in the 6 values describing the overlap in our
proximity threshold [the difference in position (x,y,z) and alignment
Euler angles (α,β,γ)]. There was a striking difference in the distri-
butions in bound tectoRNA of a 10/11-bp flow/chip complex
compared with other topologies with respect to the twist Euler
angle γ: conformations with γ < −10 were significantly enriched
(Fig. 5B and SI Appendix, Fig. S12). We hypothesized that these
states were binding incompetent, leading to the discrepancy be-
tween observed and predicted values for these length-pair com-
plexes. To avoid classifying these states as bound, we tested a more
stringent cutoff by implementing an additional criteria that the helix
within the bound complex cannot be substantially undertwisted
(Euler angle γ > −10°; see Fig. 5 B and C). With this additional

constraint, the agreement between our calculated and the ob-
served ΔΔG for all length pairs improved significantly (R2 = 0.71;
rmsd = 0.65 kcal/mol; Fig. 5D). Additionally, we applied this
cutoff to the sequence-dependent set and observed no significant
difference in predictions (SI Appendix, Fig. S13).
To test this refined proximity threshold, we carried out a

second blind prediction challenge with calculations and experi-
ments carried out independently by authors J.D.Y. and S.K.D.,
respectively. The affinity of additional 300 chip variants of 3 dif-
ferent lengths (9, 10, and 11 bp) were measured against a distinct
10-bp flow piece. These tectoRNA variants represented a wider
diversity of sequences than those used to refine the proximity cri-
terion. The blind predictions using the additional constraint dem-
onstrated a significantly improved relationship between the observed
and the predicted binding affinities, although it did not completely
account for the destabilizing effect of this length-pair complex (rmse,
original model = 1.08 kcal/mol; rmse updated model = 0.77 kcal/mol;
Fig. 5E). The development of this additional constraint on the
bound conformation suggests the utility of an iterative protocol for
refining the anisotropic binding landscape of a tertiary contact.

Discussion
A major goal in understanding the many fundamental biological
complexes containing RNA has been to develop a model for
predicting RNA structure and energetics from a primary sequence.
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We have presented here extensive experimental and computa-
tional evidence for a factor that has largely been neglected in
these studies: RNA double helix conformational preferences that
depend on helix sequence can impact RNA tertiary structure
energetics. RNAMake-ΔΔG gives quantitative estimates for how
helix sequence and length can change the favorability of bringing
together segments that make RNA–RNA tertiary contacts and
makes thousands of testable predictions for the tectoRNA hetero-
dimer model system for tertiary assembly. High-throughput mea-
surements with RNA-MaP allowed rigorous blind tests of this
model and confirmed its predictions with accuracies of 0.34 and
0.77 kcal/mol for effects of sequence and length changes, respec-
tively. These RNAMake-ΔΔG accuracies are somewhat better
than those achieved in post hoc modeling efforts for protein-DNA
indirect readout (0.9 kcal/mol, ref. 26) and are similar to those
achieved in recent blind prediction of nearest-neighbor parameters
for the RNA secondary structure (44, 45).
The conformational ensembles arising from RNAMake-ΔΔG

modeling gives a detailed physical description of how RNA he-
lices "look" inside tertiary assemblies. For example, the same

base-pair sequence is predicted to have different physical struc-
tures when embedded at different positions in the tertiary as-
sembly, and this phenomenon explains the qualitatively different
sequence preferences at each position, observed in both com-
putation and experiment (Fig. 3). The model gives a view of such
structural effects as spread throughout the helix and not focused
at 1 particular “kink” within the helix, providing support that
small deviations can accumulate to cause larger energetic effects.
Importantly, this view implies that most current schemes to model
the RNA tertiary structure through optimization of local pairwise
interactions will be unable to model such long-range cumulative
effects without including a new term analogous to the RNAMake-
ΔΔG calculations herein. It will be important to expand the
RNAMake model to include conformational ensembles for RNA
structural elements beyond helices; preliminary work on G•U
wobble pairs and other "mismatches" suggests that such modeling
will be feasible (SI Appendix, Table S2).
We anticipate that our computational framework will be

useful for understanding the energetic costs and sequence pref-
erences associated with RNA double helix distortions that occur
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Fig. 6. Prediction of RNA double helix distortions that occur during ribosomal A-site accommodation and amino acid charging. (A) When complexed with EF-
Tu and being loaded into the A-site of the ribosome (the A/T state), Thermus thermophilus tRNAThr appears bent (cyan, PDB: 4V5G) compared with Escheria
coli tRNAPhe only complexed with EF-Tu (red, PDB: 1OB2); (B) Overlay of the target fully A/T-bound configuration of the anticodon helix (cyan) and example
RNAMake-modeled configuration (gray); Inset shows how scoring occurs between the target base pair from the bound tRNA and the last base pair in the
RNAMake built model. (C) The secondary structure of tRNA and the location of the anticodon helix and acceptor helix (boxed). (D) Predicted dependence of
A/T-tRNAThr binding free energy on the sequence of the anticodon helix with the indicated base pair at each position within the helix. Additional heat maps
from independently solved structures give indistinguishable sequence dependences (SI Appendix, Fig. S14). RNAMake-calculations were performed over all 45

anticodon helix sequences (Dataset S4). Rigorous tests of the RNAMake predictions will require high-precision presteady-state or single molecule mea-
surements that isolate the binding equilibrium of EF-Tu-bound tRNA into the A/T state. (E) tRNAasp from either E. coli (cyan, 1C0A) or yeast (green, 1IL2) form
similar conformations when bound to E. coli aspartyl-tRNA synthetase (AspRS). This conformation is bent at the acceptor helix compared with a structure of a
partially bound yeast tRNAasp that does not make contact to the synthetase at its acceptor end and was cocrystallized with the bound conformation (red,
1IL2). (F) Overlay of the target fully bound configuration (green) and example RNAMake-modeled configuration (gray); the inset shows how scoring occurs
between the target base pair from the bound tRNA and the last base pair in the RNAMake built model. (G–I) Predicted dependence of tRNA-AspRS binding
free energy on the acceptor stem sequence with the indicated base pair at each position within the helix. RNAMake calculations were performed over all 47

acceptor helix sequences (Dataset S3). While the predicted effects are small in magnitude, calculations with target-bound conformations drawn from (G) E.
coli tRNA/E. coli AspRS (1C0A) and (H) yeast tRNA/E. coli AspRS (1IL2) give similar predicted preferences with slight differences arising from the slightly
different sequences and AspRS-bound structures taken by the 2 tRNAs in nucleotides outside the acceptor stem. The sequence preference map for (F) binding
of yeast tRNAasp to the yeast aspartyl-tRNA synthetase (1ASZ) is quite distinct. Reference binding free energies for ΔΔG are based on RNAMake calculations
with the E. coli tRNAasp sequence (G and H) and the yeast tRNAasp sequence (I). Note that the scale of effects (0.2 kcal/mol or less) is smaller than the dif-
ferences in enzymatic rates (1 to 2 kcal/mol) for the few tRNA combinations reported in refs. 29 and 47, suggesting that effects beyond conformational
bending account for those results, such as the differences in chemical modification or processing in tRNAs prepared in vivo. Rigorous tests of the RNAMake
predictions will require high-precision thermodynamic measurements using in vitro prepared tRNA substrates.
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throughout RNA biological processes, such as the amino acid
charging and multistage ribosomal readout of tRNAs (27, 29,
46). However, the effects of changing any single helix base pair
on the energetics of RNA structure or complex formation may
be <1 kcal/mol, and so qualitative, low-throughput measure-
ments will not be sufficient for understanding the energetics of
such distortions. Indeed, in our own paper, it has been critical to
make predictions and measurements across thousands of se-
quences to convincingly demonstrate our model of helix con-
formational preferences as well as its quantitative limits.
To aid future studies, we have made extensive predictions for

2 RNA systems in which "indirect readout" effects have been
previously hypothesized (29, 46): anticodon helix sequence ef-
fects on aminoacyl-tRNA•EF-Tu accommodation during ribo-
some codon recognition (Fig. 6 A–D and SI Appendix, Fig. S14)
and acceptor helix sequence effects on tRNAAsp aminoacylation
(Fig. 6 E–I). We look forward to upcoming advances in RNA-
MaP and other high-throughput biophysical methods that will

enable stringent tests of these quantitative predictions for fun-
damental events in RNA molecular biology.

Methods
Detailed methods for the design, preparation, and experimental measure-
ments of binding affinities for the tectoRNA library as well as the simulation
protocol of RNAMake-ΔΔG (including basic equations, simulation parame-
ters, and scoring function) are presented in the SI Appendix.

ACKNOWLEDGMENTS. We thank Curtis Layton and Johan Andreasson for
developing, building, and maintaining the imaging station and W.J.G., D.H.,
and R.D. laboratory members for reagents and critical feedback. This work
was supported by the National Institute of Health (Grant P01 GM066275 to
D.H.; R01 GM111990 to W.J.G.; R01 GM100953 and R35 GM122579 to R.D.;
and R01 GM121487 to P. Bradley [lead principal investigator], supporting
W.J.G.). W.J.G. acknowledges support as a Chan-Zuckerberg Investigator.
S.K.D. was supported, in part, by the Stanford Biophysics training Grant (T32
GM008294) and by the NSF Graduate Research Fellowship Program (GRFP).
N.B. was supported, in part, by the NSF GRFP. J.D.Y. was supported by the
Ruth L. Kirschstein National Research Service Award Postdoctoral Fellowships
GM112294.

1. M. J. Moore, From birth to death: The complex lives of eukaryotic mRNAs. Science
309, 1514–1518 (2005).

2. J. L. Rinn, H. Y. Chang, Genome regulation by long noncoding RNAs. Annu. Rev.
Biochem. 81, 145–166 (2012).

3. H. F. Noller, RNA structure: Reading the ribosome. Science 309, 1508–1514 (2005).
4. P. Nissen, J. Hansen, N. Ban, P. B. Moore, T. A. Steitz, The structural basis of ribosome

activity in peptide bond synthesis. Science 289, 920–930 (2000).
5. T. H. D. Nguyen et al., The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Na-

ture 523, 47–52 (2015).
6. I. Tinoco, Jr, C. Bustamante, How RNA folds. J. Mol. Biol. 293, 271–281 (1999).
7. P. Brion, E. Westhof, Hierarchy and dynamics of RNA folding. Annu. Rev. Biophys.

Biomol. Struct. 26, 113–137 (1997).
8. D. Herschlag, S. Bonilla, N. Bisaria, The story of RNA folding, as told in epochs. Cold

Spring Harb. Perspect. Biol. 10, a032433 (2018).
9. M. G. Seetin, D. H. Mathews, RNA structure prediction: An overview of methods.

Methods Mol. Biol. 905, 99–122 (2012).
10. P. P. Gardner, R. Giegerich, A comprehensive comparison of comparative RNA struc-

ture prediction approaches. BMC Bioinformatics 5, 140 (2004).
11. R. Das, J. Karanicolas, D. Baker, Atomic accuracy in predicting and designing non-

canonical RNA structure. Nat. Methods 7, 291–294 (2010).
12. J. Bernauer, X. Huang, A. Y. L. Sim, M. Levitt, Fully differentiable coarse-grained and

all-atom knowledge-based potentials for RNA structure evaluation. RNA 17, 1066–
1075 (2011).

13. M. J. Boniecki et al., SimRNA: A coarse-grained method for RNA folding simulations
and 3D structure prediction. Nucleic Acids Res. 44, e63 (2016).

14. S. K. Denny et al., High-throughput investigation of diverse junction elements in RNA
tertiary folding. Cell 174, 377–390.e20 (2018).

15. A. T. Frank, A. C. Stelzer, H. M. Al-Hashimi, I. Andricioaei, Constructing RNA dynamical
ensembles by combining MD and motionally decoupled NMR RDCs: New insights into
RNA dynamics and adaptive ligand recognition. Nucleic Acids Res. 37, 3670–3679
(2009).

16. X. Shi, P. Walker, P. B. Harbury, D. Herschlag, Determination of the conformational
ensemble of the TAR RNA by X-ray scattering interferometry. Nucleic Acids Res. 45,
e64 (2017).

17. X. Shi, L. Huang, D. M. J. Lilley, P. B. Harbury, D. Herschlag, The solution structural
ensembles of RNA kink-turn motifs and their protein complexes. Nat. Chem. Biol. 12,
146–152 (2016).

18. L. Salmon, G. Bascom, I. Andricioaei, H. M. Al-Hashimi, A general method for con-
structing atomic-resolution RNA ensembles using NMR residual dipolar couplings: The
basis for interhelical motions revealed. J. Am. Chem. Soc. 135, 5457–5466 (2013).

19. L. Salmon et al., Modulating RNA alignment using directional dynamic kinks: Appli-
cation in determining an atomic-resolution ensemble for a hairpin using NMR re-
sidual dipolar couplings. J. Am. Chem. Soc. 137, 12954–12965 (2015).

20. C. D. Eichhorn, H. M. Al-Hashimi, Structural dynamics of a single-stranded RNA-helix
junction using NMR. RNA 20, 782–791 (2014).

21. J. Stombaugh, C. L. Zirbel, E. Westhof, N. B. Leontis, Frequency and isostericity of RNA
base pairs. Nucleic Acids Res. 37, 2294–2312 (2009).

22. F.-C. Chou, J. Lipfert, R. Das, Blind predictions of DNA and RNA tweezers experiments
with force and torque. PLoS Comput. Biol. 10, e1003756 (2014).

23. J. A. Abels, F. Moreno-Herrero, T. van der Heijden, C. Dekker, N. H. Dekker, Single-
molecule measurements of the persistence length of double-stranded RNA. Biophys.
J. 88, 2737–2744 (2005).

24. J. Lipfert et al., Double-stranded RNA under force and torque: Similarities to and
striking differences from double-stranded DNA. Proc. Natl. Acad. Sci. U.S.A. 111,
15408–15413 (2014).

25. S. Barton, X. Heng, B. A. Johnson, M. F. Summers, Database proton NMR chemical
shifts for RNA signal assignment and validation. J. Biomol. NMR 55, 33–46 (2013).

26. N. B. Becker, L. Wolff, R. Everaers, Indirect readout: Detection of optimized subse-
quences and calculation of relative binding affinities using different DNA elastic
potentials. Nucleic Acids Res. 34, 5638–5649 (2006).

27. D. E. Draper, Protein-RNA recognition. Annu. Rev. Biochem. 64, 593–620 (1995).
28. R. Rohs et al., Origins of specificity in protein-DNA recognition. Annu. Rev. Biochem.

79, 233–269 (2010).
29. J. J. Perona, Y.-M. Hou, Indirect readout of tRNA for aminoacylation. Biochemistry 46,

10419–10432 (2007).
30. L. Jaeger, N. B. Leontis, Tecto-RNA: One-Dimensional Self-Assembly through Tertiary

Interactions. Angew. Chem. Int. Ed. Engl. 39, 2521–2524 (2000).
31. L. Nasalean, S. Baudrey, N. B. Leontis, L. Jaeger, Controlling RNA self-assembly to form

filaments. Nucleic Acids Res. 34, 1381–1392 (2006).
32. C. Geary, S. Baudrey, L. Jaeger, Comprehensive features of natural and in vitro se-

lected GNRA tetraloop-binding receptors. Nucleic Acids Res. 36, 1138–1152 (2008).
33. J. D. Buenrostro et al., Quantitative analysis of RNA-protein interactions on a mas-

sively parallel array reveals biophysical and evolutionary landscapes. Nat. Biotechnol.
32, 562–568 (2014).

34. L. Jaeger, E. Westhof, N. B. Leontis. TectoRNA: Modular assembly units for the con-
struction of RNA nano-objects. Nucleic Acids Res. 29, 455–463 (2001).

35. I. Jarmoskaite et al., A quantitative and predictive model for RNA binding by human
pumilio proteins. Mol. Cell 74, 966–981.e18 (2019).

36. W. Olson, A. Colasanti, L. Czapla, G. Zheng, “Insights into the sequence-dependent
macromolecular properties of DNA from base-pair level modeling” in Coarse-
Graining of Condensed Phase and Biomolecular Systems, Gregory A. Voth, Ed. (CRC
Press, 2009).

37. W. K. Olson, A. A. Gorin, X. J. Lu, L. M. Hock, V. B. Zhurkin, DNA sequence-dependent
deformability deduced from protein-DNA crystal complexes. Proc. Natl. Acad. Sci.
U.S.A. 95, 11163–11168 (1998).

38. H. M. Berman et al., The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).
39. A. I. Petrov, C. L. Zirbel, N. B. Leontis, Automated classification of RNA 3D motifs and

the RNA 3D Motif Atlas. RNA 19, 1327–1340 (2013).
40. N. Bisaria, M. Greenfeld, C. Limouse, H. Mabuchi, D. Herschlag, Quantitative tests of a

reconstitution model for RNA folding thermodynamics and kinetics. Proc. Natl. Acad.
Sci. U.S.A. 114, E7688–E7696 (2017).

41. A. M. Watkins et al., Blind prediction of noncanonical RNA structure at atomic ac-
curacy. Sci. Adv. 4, eaar5316 (2018).

42. J. D. Yesselman et al., Computational design of asymmetric three-dimensional RNA
structures and machines. bioRxiv:10.1101/223479 (21 November 2017).

43. D. H. Turner, N. Sugimoto, S. M. Freier. RNA structure prediction. Ann Rev Biophys
Biophys Chem. 17, 167–192 (1988).

44. F.-C. Chou, W. Kladwang, K. Kappel, R. Das, Blind tests of RNA nearest-neighbor
energy prediction. Proc. Natl. Acad. Sci. U.S.A. 113, 8430–8435 (2016).

45. D. J. Wright, C. R. Force, B. M. Znosko, Stability of RNA duplexes containing inosine·
cytosine pairs. Nucleic Acids Res. 46, 12099–12108 (2018).

46. T. M. Schmeing et al., The crystal structure of the ribosome bound to EF-Tu and
aminoacyl-tRNA. Science 326, 688–694 (2009).

Yesselman et al. PNAS Latest Articles | 9 of 9

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901530116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901530116/-/DCSupplemental


 

1 
 

Supporting Information 
Sequence-dependent RNA helix conformational preferences 

predictably impact tertiary structure formation 
 
 
Joseph D. Yesselman 
Sarah K. Denny 
Namita Bisaria 
Daniel Herschlag 
William J. Greenleaf 
Rhiju Das* 

 

*Correspondence should be addressed to R.D. (rhiju@stanford.edu). 
 
 
Table of Contents 
 

SI Methods 3	
Flow piece labeling. 3	
Chip piece library design, amplification, and sequencing. 3	
Experimental platform for parallel measurements on a sequencing chip. 4	
On chip experiments to determine tectoRNA affinity. 5	
Quantification of ΔG from image series. 5	
Combining experimental replicates. 6	
Building base pair step ensembles. 6	
Clustering procedure for base pair step ensembles. 7	
TectoRNA simulation protocol. 7	
Calculating the relative binding free energy of the tecto system. 8	
Generation of 2000 helix sequences for blind predictions. 9	
Estimating free energy of secondary structure formation. 9	
Computing ΔΔGs with mismatch base pairs. 9	
Computing ΔΔGs for RNA acceptor helix while bound to aspartyl-tRNA synthetase. 10	
Computing ΔΔGs for anticodon helix for aminoacyl-tRNA•EF-Tu accommodation during 
ribosome codon recognition. 11	

SI Figures and Tables 12	
Table S1. Base pair steps collected from RNA crystallographic structures. 12	
Table S2. Preliminary predictions of tectoRNA binding affinities with mismatched base 
pairs. 13	
Table S3. Flow piece sequences 14	
The name and sequence of each of the flow pieces used in this study. 14	
Table S4. Primers used to amplify library for sequencing 15	
The name and sequence of the primers used to amplify the library for sequencing. 15	
Figure S1.  Library construction and experimental setup. 16	
Figure S2. Measured ΔG values are reproducible and precise. 17	
Figure S3. Predicted effect of helix sequence on tectoRNA binding free energy. 18	
Figure S4. Simulation parameter sweeps 19	
Figure S5. Comparison of simulation topology and starting conformation 20	
Figure S6. Non-ensemble models for tectoRNA affinity do not consistently predict observed 
effects. 21	

www.pnas.org/cgi/doi/10.1073/pnas.1901530116



 

2 
 

Figure S7. Predicted effect of each base pair step at each position within the tectoRNA chip 
piece helix. 22	
Figure S8. Observed changes in tectoRNA affinity are not dependent on predicted changes 
in free energy of secondary structure formation. 23	
Figure S9. Structural preferences of conformational states across positions. 24	
Figure S10. Base pair step conformers have position-dependent sampling frequencies. 26	
Figure S11.  Measured binding affinity (ΔG) of different length-paired complexes. 27	
Figure S12. Distribution of six-dimensional values of bound conformation of for each 
tectoRNA length topology. 28	
Figure S13. Gamma corrected predictions of sequence-dependent set 29	
Figure S14. Prediction of helical sequence preference of anticodon helix for aminoacyl-
tRNA•EF-Tu accommodation during ribosome codon recognition. 30	

 
 



 

3 
 

SI Methods 
 
All software and source code used in this work are freely available for non-commercial use. 
RNAMake software and documentation are at https://github.com/jyesselm/RNAMake. 
 
Flow piece labeling. 
Three distinct flow pieces were used to probe the chip piece library, with helices of length 9, 10 
(wildtype), and 11 base pairs (see SI Appendix, Table S3). Flow pieces were ordered as RNA 
oligos from Integrated DNA Technologies (Coralville, Iowa) with a 5′-Amino Modifier C6  
modification, with HPLC purification. Each flow piece was ethanol precipitated at –20 °C 
overnight, followed by resuspension to a final concentration of 2 mM with 2 mM of NHS-
conjugated Cy3b dye in 50 mM phosphate buffer (pH 8.7). This reaction was incubated at 37 °C 
for 1 hour, followed by PAGE purification (8% PAGE, 8 M Urea, 1x TBE: 89 mM Tris-HCl, 89 mM 
Boric Acid, pH 7.4, 2 mM sodium EDTA). RNA was eluted from the gel in water using three freeze-
thaw cycles.  To reduce aggregation on the chip surface, flow piece solutions were spun in a 50K 
Amicon filter two times and collected on a 3K Amicon filter. Flow pieces were quantified after 
purification using Qubit RNA high sensitivity kit (Thermofisher). 
 

Chip piece library design, amplification, and sequencing.  
The tectoRNA library was designed by replacing the chip piece helix with a set of defined WC 
base pair sequences. This library of chip piece variants (~2000 sequences) was ordered together 
with other tectoRNA variants not discussed here, to form a final library of ~45,000 variants. The 
library was ordered with common priming sequences across chip piece variants from 
CustomArray (Bothell, WA). This pool of DNA oligonucleotides was PCR amplified with primers 
oligopool_left and oligopool_right (see  SI Appendix, Table S4 and Figure S1A), with 1:400 dilution 
of the synthesized oligo pool, 200 nM of each primer, 200 μM dNTPs, 3% DMSO, 1x Phusion HF 
buffer, 0.01U/μl of HS Phusion (NEB). Primers were purchased from Integrated DNA 
Technologies (Coralville, Iowa). The reaction proceeded for 9 cycles of 98 °C for 10 seconds, 62 
°C for 30 seconds, and 72 °C for 30 seconds, followed by cleanup of the reaction mixture using 
Qiagen PCR Cleanup Kit (elution into 20 μl). To append sequencing adapters to this PCR product 
as well as include unique molecular identifier (UMI, in the form of a 16 nt random N-mer), a five-
piece PCR assembly was performed, with 1 μl of the previous reaction, 137 nM of primers 
(short_C and short_D; SI Appendix, Table S4), 3.84 nM of the adapter sequences 
(C1_R1_BC_RNAP and D_Read2;  SI Appendix, Table S4), 200 μM dNTPs, 3% DMSO, 1x 
Phusion HF buffer, and 0.02U/μl of Phusion Hot Start Flex enzyme (NEB). The reaction 
proceeded for 14 cycles of 98 °C for 10 seconds, 63 °C for 30 seconds, and 72 °C for 30 seconds, 
followed by cleanup with Qiagen PCR Cleanup Kit, as above.  
 
After amplification and assembly, the library was bottlenecked to reduce the representation of 
UMIs to ~700K distinct 16 nt N-mers. First, the library was diluted 1:5000 in 0.1% Tween20, and 
this dilution was quantified against a standard library of PhiX (Illumina, Hayward, CA), which was 
diluted two-fold  seven times to form a dilution series from 25 pM to 0.2 pM. The standard series 
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and the library dilution were amplified in a qPCR assay to determine their relative cycle threshold 
(CT) values; these values were used to determine the concentration of the diluted library by linear 
regression analysis of the CT values against the known concentrations of the standards. The 
volume associated with 700K molecules was PCR amplified, with 1.25 μM of primers (short_C 
and short_D), and 1x NEBNext Master Mix (NEB, M0541S), for 21 cycles of 98 °C for 10 seconds, 
63 °C for 30 seconds, and 72 °C for 60 seconds, followed by cleanup with Qiagen PCR Cleanup 
Kit. The final library was sequenced on an Illumina Miseq instrument at 10-30% of the total 
sequencing chip, with the rest of the chip consisting of high-complexity genomic sequences. 
Sequencing cycles were performed as follows: 75 bases in read 1, 75 bases in read 2, and an 8 
bp i7 index read, resulting in demultiplexed, paired-end sequences. 
 
The output of the Illumina sequencing included the read1 and read2 sequence associated with 
each cluster ID. This information was processed to extract the UMI sequence from read1 for each 
cluster (by extracting the sequence preceding the RNAP initiation site; see SI Appendix, Figure 
S1A). Clusters with common UMI sequences were processed to obtain a consensus read2 
sequence, by taking the most common base at each position (i.e. per-base voting consensus). 
UMIs of poor quality, with poor representation or poor agreement across sequences, were 
removed, by assessing the number of clusters with read2 sequences matching the consensus 
sequence. Poor quality was defined if the number of matches (or successes) could be explained 
by a null model with p value > 0.01, where the null model was a binomial distribution with 
probability of success of 0.25. This filter removed UMIs associated with diverse unrelated 
sequences, or with relatively few reads per UMI.  
 
Finally, the consensus sequence of each UMI was associated with each designed library variant 
by searching for an exact match of the reverse complement of the designed sequence within the 
read2 consensus (starting at the first base). 
 

Experimental platform for parallel measurements on a sequencing 
chip. 
The sequencing chip used for Illumina Miseq sequencing was directly used on a custom-built 
imaging station, made from a combination of parts from an Illumina Genome Analyzer IIx and 
parts that were custom-designed, as described originally in (1), and modified as in (2). The flow 
cell surface was imaged with a total internal reflection fluorescence (TIRF) setup, allowing 
measurement of the bound fluorescence on the chip surface with minimal background from 
fluorescent molecules in solution. Custom scripts were used to control the laser power, stage, 
temperature, fluidics, and camera. Images could be taken in one of two channels, the “red” 
channel (660 nm laser, with 664 nm long pass filter from Semrock), and the “green” channel (530 
nm laser and a 590 (104) nm band pass filter from Semrock). To image the flow cell surface, 16 
images were taken to overlap tiles 1 through 16 taken of the Miseq sequencing output. Each 
image was taken for 400 ms exposure time with 200 mW input laser power.  
 
RNA was generated in situ on the surface of the Illumina Miseq chip by a series of enzymatic 
reactions carried out through fluidic application and temperature control, as described in (1–3). In 
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brief, covalently attached ssDNA was converted to dsDNA through extension of a biotinylated 
primer, followed by incubation with streptavidin to create a streptavidin roadblock (see SI 
Appendix, Figure S1B). E. coli RNA Polymerase (NEB M0551S) was applied to the flow cell with 
limiting concentrations of NTPs (2.5 μM each of ATP, GTP, and UTP), allowing only very limited 
extension and preventing initiation by more than one polymerase per molecule. Excess 
polymerase was washed out of the flow cell, followed by incubation with the full suite of NTPs at 
high concentration (1 mM each NTP) to allow extension. Encountering the streptavidin roadblock 
causes polymerases to stall, resulting in stable display of the nascent transcript (SI Appendix, 
Figure S1B). Detailed descriptions of each of these steps may be found in (3).  
 
After RNA extension, blocking oligos were annealed to common regions on the nascent transcript 
(see SI Appendix, Figure S1A) to limit the formation of alternate secondary structure, as well as 
to fluorescently label clusters of transcribed RNA (fluorescent_stall and dark_read2;  SI Appendix, 
Table S4). Oligos were purchased from Integrated DNA Technologies (Coralville, Iowa) with 
RNase-Free HPLC Purification.  
 
On chip experiments to determine tectoRNA affinity. 
For each experiment, a fluorescently-labeled tectoRNA flow piece was serially diluted three-fold 
to form a concentration series from 2000 nM to 0.91 nM in binding buffer (89 mM Tris-Borate, pH 
8.0, 30 mM MgCl2, 0.01 mg/ml yeast tRNAs (ThermoFisher Scientific AM7119), 0.01% Tween20. 
To fold the flow piece, it was initially diluted to 10 uM in water, and denatured by incubating for 1 
minute at 95 °C, followed by refolding for 2 minutes on ice (preceding the dilution to 2 uM and 
serial dilution). Each flow piece solution was applied to the flow cell, and after waiting for sufficient 
time for equilibration, the flow cell was imaged in the red and green channels, with the red channel 
capturing the annealed oligo corresponding to any transcribed RNA, and the green channel 
capturing the bound flow piece. Experiments were carried out at at 22 °C.  Equilibration times 
were as follows: 3 hours, 2 hours, 1 hour, 45 min, 30 min, 20 min, 20 min, and 20 min, for 0.91 
nM, 2.7 nM, 8.2 nM, 25 nM, 74 nM, 222 nM, 667 nM, and 2000 nM, respectively. These times 
were calculated to allow equilibration for the most stable variants (i.e. ΔG of –12 kcal/mol or Kd of 
1 nM), assuming a common association rate constant (kon) of ~6x104 M-1s-1 (3). 
 
Quantification of ΔG from image series. 
Each image taken during the course of an experiment was processed to extract the fluorescence 
values of the Illumina Miseq clusters. First, the Miseq tile and x-y-positions of each sequenced 
cluster was determined (from the Miseq output). Because of differences in the optics of the Miseq 
and the imaging station, these coordinates did not correspond 1:1 to the pixel values of our 
images. To account for this, sequence data coordinates were scaled by an overall scale factor (of 
10.96 imaging-station pixels to Miseq x-y position units). A global registration offset was 
determined by cross-correlation of the images and subsequent fitting of the cross-correlation 
matrix to a 2D Gaussian to obtain the x-y- position that maximized the cross correlation coefficient. 
Finally, to correct for nonlinear aberrations, this cross-correlation procedure was repeated for 256 
subdivisions of the overall image to obtain corrections on the global x-y- position as a function of 
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the location within the image. These corrections were fit to 2D surfaces for the x- and y- 
corrections, as a function of x- and y- position.  
 
In each of the 256 subtiles, all clusters within the subtile were fit to a sum of 2D Gaussians, with 
x-y- positions given by the sequencing data coordinates, nonlinearly corrected as described 
above, as in (1). The integrated fluorescence associated with each cluster is then: 2𝜋𝐴𝜎%, where 
A is the amplitude and σ the standard deviation of the 2D Gaussian. The fluorescence associated 
with the bound flow piece was normalized by dividing by the fluorescence in the red channel, to 
account for variability of cluster size. 
 
The series of concentration values for each cluster were fit to a binding isotherm, according to the 
equation:𝑓(𝑥) = 𝑓+,- + 𝑓+/0 1

0
02304(56/89)

:, where f is the normalized fluorescence, fmin, fmax, and 

ΔG are free parameters, x is the concentration, R is the gas constant, and T is the temperature in 
Kelvin. Following single cluster fits, the values for fmin, fmax, and ΔG per variant were obtained by 
finding the median of these values across single clusters associated with each variant. An 
additional fitting step refined these values by applying a distribution for fmax for those variants that 
did not achieve saturation, based on the values for fmax of variants that did, as described in (3), 
ultimately allowing consistent attribution of the change in fluorescence values to changes in ΔG 
rather than fmax. In brief, this fit refinement took the median fluorescence values across a set of 
clusters (resampled from all clusters associated with the variant). This set of median fluorescence 
values was fit to the binding isotherm equation, with fmin set to the median fluorescence value 
across clusters that did not achieve saturation, and fmax either allowed to float or set to a random 
value generated from the distribution of fmax, depending on if the maximum fluorescence in the 
binding series did or did not exceed the lower bound of the 95% confidence interval of the fmax 
distribution, respectively. This resampling and refitting was repeated 100 times for each variant, 
allowing determination of confidence intervals on the fit values of ΔG per variant. 
 
Combining experimental replicates. 
Data for the wildtype, 10-bp flow piece comes from two replicate experiments (shown in SI 
Appendix, Figure S2A). Values reported for this flow piece represent the average of the two 
replicate values, weighted by the inverse of the variance on each measurement. If the 95% 
confidence interval on ΔG is 𝛿𝛥𝐺, then the variance on the measurement is: 𝜎% =(𝛿𝛥𝐺/1.96)%. 

Thus, the weighted average on ΔG is then: 𝛥𝐺/BC = 156D
EDF
+ 56F

EFF
:	1 H

EDF
+ H

EFF
:
IH

. The combined error 

is then:   𝜎 = JK
H
EDF
+ H

EFF
L
IH

. 

 
Building base pair step ensembles. 
To build a curated library of base-pair step components, we obtained the set of non-redundant 
RNA crystal structures managed by the Leontis and Zirbel groups (4) (version 1.45: 
http://rna.bgsu.edu/rna3dhub/nrlist/release/1.45). This set specifically removes redundant RNA 
structures that are identical to previously solved structures, such as ribosomes crystallized with 
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different antibiotics. We processed each RNA structure to extract every motif using Dissecting the 
Spatial Structure of RNA (DSSR) (5) with the following command: 

x3dna-dssr –i file.pdb –o file_dssr.out 

We manually checked each extracted motif to confirm that it was the correct type, as DSSR 
sometimes classifies tertiary contacts as higher order junctions and vice versa. For each motif 
collected from DSSR, we ran the X3DNA find_pair and analyze programs to determine the 
reference frame for the first and last base pair of each motif to allow for alignment between motifs: 

find_pair file.pdb 2> /dev/null stdout | analyze stdin >& /dev/null  

We defined a base pair step as two consecutive residues on one chain base-paired to two 
consecutive residues on another chain, where both base pairs are in Watson-Crick orientation. 
Each instance of this pairing was collected from every structure. See SI Appendix, Table S1 for 
a summary of all total instances of each base-pair step. 
 
Clustering procedure for base pair step ensembles. 
To cluster the base-pair steps, all structures were first translated and rotated so that the first base 
pair was situated with its origin at (0,0,0) and its axes aligned with x, y and z orientation of the 
identity matrix, definition of base pair center and coordinate systems are as in (6). Fixed radius 
clustering was performed using a radius of a 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒 of 1.50, which was ideal according 
to optimization, although other radii did not greatly affect the final results. The 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒 
between a cluster center and a new base-pair step is calculated below, where 𝑑H and 𝑅H are the 
translation and orientation of the cluster center’s second base pair, respectively. 𝑑% and 𝑅% are 
the translation and orientation of the second base pair in the base-pair step to be clustered. 
 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒 = |𝑑HZZZZ⃗ − 𝑑%ZZZZ⃗ | + 2∑ ∑ 𝑎𝑏𝑠_
`

_
, (𝑅H,` − 𝑅%,`)          (1) 

 
The number of clusters generated for each base-pair step sequence is shown in SI Appendix, 
Table S1. Each cluster was assigned a relative energy (Eq. 2) based on its population. 𝑁+3+b3cd 
is the number of base-pair steps in a given cluster, and 𝑁efe/g is the number of base-pair steps of 
the current identity, i.e. AU/AU. This energy is used during our Monte Carlo simulations to allow 
swapping based on population. 
 

𝐸 =	−𝑅𝑇𝑙𝑛	(klmlnmop
kqrqst

)	                       (2) 
 
TectoRNA simulation protocol. 
The simulation is set up by supplying a sequence and secondary structure for both tecto 
heterodimers. With this information, a 3D system is built up by representing each base-pair step 
with a corresponding structural ensemble and representing both tertiary contacts as single 
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structures. The structure of the GAAA tetraloop/tetraloop-receptor (TTR) was isolated from the 
P4-P6 domain of the Tetrahymena ribozyme (PDB: 1GID). There is no known solved structure of 
the GGAA TTR; therefore, a structure was generated by modeling using stepwise Monte Carlo 
(7).  The simulation proceeds by attempting to swap a randomly selected base-pair step from 
one conformation to another. If the new conformation has a lower energy, it is accepted; if not, 
it is selected by the Metropolis criterion. All motifs are connected to each other by shared base 
pairs, so if a base-pair step is swapped from one conformation to another, the orientation change 
will propagate throughout the structure accordingly. In total, one million swaps are attempted 
during our standard simulation. To determine whether a conformation is bound, we calculate the 
distance_score (Eq. 1) between the final base pair of the chip helix and its original position (Figure 
2B). If this score is lower than 5, we consider the conformation to be bound.  
 
Calculating the relative binding free energy of the tecto system. 
rnamake_ddg_tecto is part of a larger toolkit known as RNAMake. For instructions on 
installing RNAMake as well as extensive documentation available at 
http://jyesselm.github.io/RNAMake/. An example of running rnamake_ddg_tecto is shown 
below. 

rnamake_ddg_tecto \ 
–fseq “CTAGGAATCTGGAAGTACCGAGGAAACTCGGTACTTCCTGTGTCCTAG” \ 
-fss  “((((((....((((((((((((....))))))))))))....))))))” \ 
-cseq “CTAGGATATGGAAGATCCTCGGGAACGAGGATCTTCCTAAGTCCTAG” \ 
-css  “(((((((..((((((((((((....))))))))))))...)))))))” \ 
-s 1000000 

 

The tecto system is composed of two distinct RNA molecules that dimerize. First is the “chip” 
piece, which is transcribed from the DNA on a MiSeq sequencing chip. There are up to one 
hundred thousand distinct sequences on each chip in a given experiment. The second sequence 
is the “flow” piece, which is titrated in during the experiment and can bind to all chip sequences. 
We maintain this nomenclature while running rnamake_ddg_tecto. “-fseq” specifies the 
sequence of the flow RNA, and “-fss” specifies the corresponding secondary structure in dot-
bracket notation. If a new sequence has the default secondary structure, “-fss” does not need 
to be used again. The flow sequence must include the GGAA tetraloop-receptor sequence and 
secondary structure or it will return an error. “-cseq” and “-css” are analogues to “-fseq” and 
“-fss”, but for the chip RNA. This RNA must include the GAAA tetraloop-receptor sequence or 
the output secondary structure will return an error. “-s” specifies the number of Monte Carlo 
steps to perform. The default is one million. The output of the program is the number of times 
that the Monte Carlo simulation sampled a “bound” conformation.  
 
Using the output of the rnamake_ddg_tecto program, it is possible to calculate the relative 
binding free energy of each sequence compared to the wild-type (WT) sequence where 𝑁_𝑏𝑜𝑢𝑛𝑑 
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values are evaluated as the number of simulated conformations given distance score (eq. 1) 
compared to the target conformation of 5. Alternative forms of the distance score in (1), including 
more standard rotationally invariant metrics to define rotation matrix differences (8) or base-pair-
to-base-pair RMSDs based on quaternions (9), but these were not tested in the current study. 
 
Generation of 2000 helix sequences for blind predictions. 
To computationally assess the effect of the primary sequences of helices on relative binding, we 
generated all possible Watson-Crick helices. We put an A-U, U-A, G-C or C-G base pair at 9 
positions in the chip sequence for a total of 49 (262,144) sequences. For each generated 
sequence, we utilized RNAFold from ViennaFold (10) to confirm that the sequence folds into the 
target secondary structure. Then, we ran rnamake_ddg_tecto on each new sequence with the 
following command.   
 
rnamake_ddg_tecto -cseq new_sequence 
 

Estimating free energy of secondary structure formation. 
Secondary structure of each tecto RNA sequence was calculated using RNAfold (v. 2.1.8) from 
ViennaFold (10) to obtain the free energy of the ensemble at 20 ºC, using the command:   
 
RNAfold --noPS -p0 -T20  

Computing ΔΔGs with mismatch base pairs.  
We utilized a set of 305 unique chip sequences with a single mismatched base pair (see SI 
Appendix, Table S2; ref:  (3) ) with measured binding affinities to bound to the 9 bp, 10 bp or 11 
bp flow piece leading to 628 unique measurements (SI Appendix, Dataset S2). For each chip 
peice / flow piece combination we ran rnamake_ddg_tecto with the following arguments 
shown below. 

rnamake_ddg_tecto \ 
–fseq “CTAGGAATCTGGAAGTACCGAGGAAACTCGGTACTTCCTGTGTCCTAG” \ 
-fss  “((((((....((((((((((((....))))))))))))....))))))” \ 
-cseq “CTAGGATATGGAAGATCCTCGGGAACGAGGATCTTCCTAAGTCCTAG” \ 
-css  “(((((((..((((((((((((....))))))))))))...)))))))” \ 
-s 1000000 

 
These are the same ones described in Method Section: Calculating the relative binding free 
energy of the tecto system. rnamake_ddg_tecto automated identifies if there is a non-
canonical motif and uses an ensemble representation with existing examples found from the PDB. 
We directly compared each mismatch-containing sequence to a corresponding chip sequence 
with the same base pairs except for a Watson-Crick base pair instead of the mismatch. This 
comparison allows us to compute a ΔΔG of introducing a mismatch base pair, canceling out all 
other effects (SI Appendix, Table S2). 
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Computing ΔΔGs for RNA acceptor helix while bound to aspartyl-tRNA 
synthetase. 
To compute the sequence dependence of tRNA-AspRS binding free energy on acceptor stem 
sequence we used RNAMake’s rnamake_ddg_helix_sampler which can compute the 
likelihood of a helix sequence adopting a supplied conformation. For each PDB we extracted the 
acceptor stem of the tRNA (PDB 1IL2: C901-C907, C966-C972. PDB 1C0A: B601-B607, B666-
B672. PDB 1ASZ: S601-S607, S666-S672) (11–13). Using this extracted helix we supplied to 
rnamake_ddg_helix_sampler with the following commands. 
 
For PDB 1IL2: 

rnamake_ddg_helix_sampler \ 
–seq “AAAAAAA&UUUUUUU” \ 
-start_bp “C901-C972”  \ 
-end_bp “C907-C966   \  
-pdb “1il2_aceptor_helix.pdb” \ 
-all  
 

For PDB 1C0A: 

rnamake_ddg_helix_sampler \ 
–seq “AAAAAAA&UUUUUUU” \ 
-start_bp “B601-B672”  \ 
-end_bp “B607-B666   \  
-pdb “1c0a_aceptor_helix.pdb” \ 
-all  
 

For PDB 1ASZ: 

rnamake_ddg_helix_sampler \ 
–seq “AAAAAAA&UUUUUUU” \ 
-start_bp “S601-S672”  \ 
-end_bp “S607-S666   \  
-pdb “1asz_aceptor_helix.pdb” \ 
-all  

 
In each case “-start_bp” denotes where the first base pair will be aligned to and 
correspondingly “-end_bp” is the base pair that is that target of the last base pair of the generated 
helix. In both “-start_bp” and “-end_bp” accept their base pair by “name” which is the name 
of the two residues contained in it in the format chain id appended to its residue number. In the 
case of A141-A162 that declares that there is a base pair between residue 141 on chain A to 
residue 161 also on chain A. Argument “-pdb” supplies the path of the PDB that contains the 



 

11 
 

coordinates at least the start and end base pair. Argument “-seq” supplies the sequence of the 
helix to build, if “-all” is supplied, all sequences will be checked but “-seq” is still required. 
rnamake_ddg_helix_sampler outputs the raw number (“count”) of conformations that 
were within a cutoff of the target base pair specified with “-end_bp”. To calculate a ΔΔG we 
compared the outputted count to the wild-type sequence of both the yeast 
(UCCGUGA&UCGCGGA) and E. coli sequences (GGAGCGG&CCGUUCC) which were 
determined to be 54243 and 64219 respectively. All computed ΔΔGs can be found in SI Appendix, 
Dataset S4.   

Computing ΔΔGs for anticodon helix for aminoacyl-tRNA•EF-Tu 
accommodation during ribosome codon recognition. 
Similarly to compute the sequence dependence of anticodon helix for aminoacyl-tRNA•EF-Tu 
accommodation during ribosome codon recognition we also used 
rnamake_ddg_helix_sampler. The structures came from PDBs 4V5G, 4V5P, 4V5Q, 
4V5R and 4V5S (14,15). For each PDB we extracted the acceptor stem of the tRNA (residues 
AY27-AY31 and AY39-AY43 in all PDBs). Using these extracted helices we supplied to 
rnamake_ddg_helix_sampler with the following command. 

rnamake_ddg_helix_sampler \ 
–seq “AAAAA&UUUUU” \ 
-start_bp “A31-A39”  \ 
-end_bp “A27-A43”   \  
-pdb “4v5g_anticodon_helix.pdb” \ 
-all 

 
To calculate a ΔΔG we compared the outputted count to the wild-type sequence of the tRNAThr 
anticodon helix (GGGUG&CACCC) with a count of 10291. See SI Appendix, Dataset S4, for all 
computed ΔΔGs. 
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SI Figures and Tables 
 

 

Table S1. Base pair steps collected from RNA crystallographic structures. 
Summary of the total number of structures found and number of structural clusters determined 
for each base-pair step. 
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Mismatch Strand 1 Strand 2 Conformations Number of 
measurements 

RMSE, 
kcal/mol 

A-A CAG CAG 3 31 0.85 
A-G CAG CGG 1 25 1.65 
C-C CCG CCG 1 37 0.29 
C-U CCG CUG 2 36 0.99 
G-A CGG CAG 1 27 1.68 
G-G CGG CGG 5 33 0.36 
G-U CGG CUG 1 35 0.40 
U-C CUG CCG 2 35 1.10 
U-G CUG CGG 3 37 0.32 
U-U CUG CUG 14 37 1.28 
A-G GAC GGC 1 24 0.84 
C-C GCC GCC 2 35 0.68 
C-U GCC GUC 1 31 0.67 
G-A GGC GAC 1 34 0.75 
G-G GGC GGC 3 34 0.60 
G-U GGC GUC 5 35 0.38 
U-C GUC GCC 1 30 1.02 
U-G GUC GGC 3 35 0.43 
U-U GUC GUC 21 36 0.49 

 

Table S2. Preliminary predictions of tectoRNA binding affinities with mismatched base 
pairs.  
Three consecutive base pairs were replaced with the sequences described, which harbor a non-
Watson-Crick mismatch between two flanking G-C pairs. The substitution was made at all 
positions of the tectoRNA chip piece and observed ΔΔG’s were compared to RNAMake 
predictions assuming an ensemble for the three-base-pair segment derived from observations of 
the sequence in the crystallographic database. Note excellent RMSE accuracies for constructs 
with G-U pairs; worse predictions for other mismatches may be due to poor representation of the 
segments in the crystallographic database (as few as 1 observation). See also analysis in ref. (3). 
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Name Sequence 

9-bp CUAGGAAUCUGGAAGACCGAGGAAACUCGGUCUUCCUGUGUCCUAG 

10-bp CUAGGAAUCUGGAAGUACCGAGGAAACUCGGUACUUCCUGUGUCCUAG 

11-bp CUAGGAAUCUGGAAGUACACGAGGAAACUCGUGUACUUCCUGUGUCCUAG 

Table S3. Flow piece sequences 

The name and sequence of each of the flow pieces used in this study. 
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Name Sequence 

oligopool_left TTGTATGGAAGACGTTCCTGGAT 

oligopool_right GCTGAACCGCTCTTCCGATCT 

short_C AATGATACGGCGACCACCGA 

short_D CAAGCAGAAGACGGCATACGA 

C_R1_BC_RNAP 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
NNNNNNNNNNNNNNNNTTTATGCTATAATTATTTCATGTAGTAAGGAGGTTGTATGGA
AGACGTTCCTGGAT 

D_Read2 
CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGA
TCT  

Fluorescent_stall 
GGATCCAGGAACGTCTTCCATACAACCTCCTTACTACAT-3’Alexa647 (NHS 
ester) 

Dark_read2 CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT 

Table S4. Primers used to amplify library for sequencing 

The name and sequence of the primers used to amplify the library for sequencing. 
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Figure S1.  Library construction and experimental setup. 
A) Schematic of the sequencing library containing the tectoRNA chip piece variants. Regions 
encoding an RNAP initiation site and stall sequence are included, as well as sequencing adapters, 
and a unique molecular identifier (UMI). B) The configuration of the in situ transcribed tectoRNA 
on the surface of the sequencing chip.  After initiation at the RNAP initiation site, the E. coli RNAP 
transcribes the tectoRNA chip piece variant, eventually stalling due to a streptavidin-biotin linkage 
at the 3’ end of the DNA. A fluorescently-labeled DNA oligo annealed to the 5’ end of the transcript 
labels transcribed RNA (Alexa-647). Fluorescently-labeled tectoRNA “flow” piece introduced to 
the sequencing chip flow cell binds to the tectoRNA “chip” piece.  
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Figure S2. Measured ΔG values are reproducible and precise.   
A) Experiments measuring the free energy of binding between the tectoRNA flow piece and 1,455 
chip piece variants that were measured in at least 5 clusters in both experiments. The chip piece 
variants had a different composition of WC base pairs and different lengths. Each measurement 

is colored by the combined uncertainty in the ΔΔG (i.e. K𝛿𝛥𝐺H% + 𝛿𝛥𝐺%% where  𝛿𝛥𝐺 is the 
uncertainty in ΔG (95% confidence interval; CI) in each experiment. B) Distribution of the 
uncertainty of the measured ΔG (95% CI) per variant, after combining the replicate experiments 
(Methods). 
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Figure S3. Predicted effect of helix sequence on tectoRNA binding free energy.  
Distribution of the predicted ΔΔG across all possible chip tectoRNA sequences of length 10 bp 
(A) or the subset of ~2000 tectoRNA sequences of length 10 bp tested in the tectoRNA library. 
The effect is relative to the median. 
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Figure S4. Simulation parameter sweeps  
(A-B) Examples of predicted ΔΔGs with different slopes as a function of changing the proximity 
cutoff (A) 8.75 Å (B) 10.0 Å.  
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Figure S5. Comparison of simulation topology and starting conformation 
(A) Co-origin model for predicted ΔΔG and unconstrainted tectoRNA, the proximity threshold is 
now measured in the receptor (seen in B) instead of the tetraloop see in the main text. (C) 
Correlation between the original and co-origin predicted ΔΔGs. (D) Instead of starting the 
simulation by using the lowest energy conformation for each base pair step (as done in all 
simulations reported throughput the study), randomly select one. 
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Figure S6. Non-ensemble models for tectoRNA affinity do not consistently predict 
observed effects.  
A) Schematic, as in Figure 2B, of the unconstrained tectoRNA, that shows the final bp of the chip 
piece helix (turquoise) compared to where it should be to allow binding of the GGAA tetraloop to 
the R1 receptor (blue). The distance between the final base pair position and the target base pair 
position is quantified as the ‘gap-distance’ score, as in Eq. 1.  B) Scatterplot comparing the 
observed free energy of binding to the gap-distance score of a single structure of the 
unconstrained state, i.e. using only the single lowest energy structure for each base pair step. 
Both the observed ΔG and the gap distance score are shown as relative to their respective 
medians. C) Positions of the centroid of the final bp of the chip piece helix in the partially bound 
tectoRNA of 100 different chip pieces that vary in affinity. Arrows indicate two axes that 
differentiate the centroids. The purple axis is defined by finding the average difference between 
the unconstrained and bound structure centroids. The orange is a perpendicular vector. Each 
vector is defined in all six translational or rotational coordinates, but only the projection into the x-
y plane is shown. D) Calculation of relative affinity depends on the location of each chip piece 
partially bound centroid when projected into one axis (left, “sensitive” axis), but not a 
perpendicular axis (right). These results illustrate one reason that the ensemble was required for 
accurate energetic prediction: the binding landscape is anisotropic and without simulating the 
ensemble of the global assembly, we could not have demarcated these sensitive and insensitive 
axes of positional variation. 
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Figure S7. Predicted effect of each base pair step at each position within the tectoRNA 
chip piece helix. 
A) Scatterplot compares the observed to the predicted effect of having each base at each position 
(effects are shown in Figure 3D). B) (Left) Schematic shows the position of each base pair within 
the chip piece helix. (Heatmaps) Either the predicted (left) or observed (right) free energy of 
binding for chip piece sequences with the indicated base pair step at each pair of positions, for 
the effect for the subset of sequences tested in the tectoRNA library. ΔG is given as a deviation 
from the median ΔG of all possible chip piece variants. Color below each heatmap indicates the 
two bases from 5’ to 3’ of the base pair step on the 5’ side of the tetraloop. White indicates missing 
values. All chip sequences had a G at position 10, thereby limiting the base pair step types that 
were evaluated at this position. C) Scatterplot comparing the observed and predicted effect of 
having each base pair step at each pair of positions (effects are as in (B)). 
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Figure S8. Observed changes in tectoRNA affinity are not dependent on predicted changes 
in free energy of secondary structure formation.  
A) Schematic shows the secondary structure formation of the tectoRNA chip piece. B) Scatterplot 
comparing the dependence of observed free energy of binding to the tectoRNA flow piece 
(ΔΔGbind) on the predicted free energy of secondary structure folding for each tectoRNA chip piece 
(ΔΔGfold). C) Predicted free energy of secondary structure folding for chip pieces with the indicated 
base pair at each position in the helix. ΔGfold is given as a deviation from the median ΔGfold of all 
1536 chip piece variants. Position is as indicated in Figure 1A and Figure 3D. The secondary 
structure folding calculations show no correlation with observed tertiary assembly measurements, 
supporting the assumption that the molecules of the tectoRNA dimer have pre-formed secondary 
structure. 
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Figure S9. Structural preferences of conformational states across positions.  
The difference in structural coordinates of base pair steps in the bound tectoRNA versus the 
unconstrained tectoRNA (i.e. free helix). The average structure of each base pair step was 
determined by taking the weighted average of each structural coordinate across the base pair 
step’s conformational states. Weights were the number of times that conformational state was 
sampled at that position (across 100 different chip piece variants that spanned the range of 
affinity) in the bound tectoRNA and unconstrained tectoRNA.  Error bars are 95% confidence 
intervals determined through bootstrapping. In legend, base pair step refers to the 5´ strand of 
the helix sub-sequence, e.g. ‘GG’ corresponds to 5´-GG-3´/5´-CC-3´.  
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Figure S10. Base pair step conformers have position-dependent sampling frequencies. 
A) The sampling frequency of each base pair step conformational state was compared to the 
expected (i.e. within the unconstrained tectoRNA) to obtain the conformational state’s sampling 
frequency ratio for each position within the tectoRNA.  (Left heatmap) Sampling frequency ratios 
across positions were projected into the top three principal components (PCs; shown in (B)) 
determined with PC analysis. These values were hierarchically clustered to obtain dendrogram at 
left. (Middle heatmap) Shown are the sampling frequency ratios for each conformational state 
across positions. (Right heatmap) The base pair step identity is shown for each of the 
conformational states (black corresponds to a match). While some structure was evident (i.e. 
certain conformational states of the GU, CU, UC, and CC ensembles are not sampled at position 
8/9), in general, the conformation states associated with particular position-dependent sampling 
behaviors could belong to any base pair step type. In legend, base pair step refers to the 5´ strand 
of the helix sub-sequence, e.g. ‘GG’ corresponds to 5´-GG-3´/5´-CC-3´. B) Values for the log2 of 
the sampling frequency ratio associated with each PC. C) The median value of the PC projections 
(shown in A; left) for each of the base pair steps. 
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Figure S11.  Measured binding affinity (ΔG) of different length-paired complexes.  
Between 32 and 96 different WC sequences were measured for each chip length. The length of 
the chip- and flow- piece helices is indicated. Chip pieces of length 8 bp or length 12 bp have 
dissociation constants were too destabilized to observe.   
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Figure S12. Distribution of six-dimensional values of bound conformation of for each 
tectoRNA length topology. 
Distribution of values describing the position (i.e. x, y, z) and alignment (α, β, γ) of the final base 
pair of the partially bound tectoRNA, compared to where it would be in the closed tectoRNA 
structure, for the set of conformations determined to be bound (i.e. distance score < 5, see Eq. 1) 
for each tectoRNA length topology. Vertical dashed line indicates the more stringent cutoff applied 
to identify “bound” conformations in Figure 5B (right), where in addition to the distance score < 5, 
the gamma parameter had to be greater than this value (–10 degrees). Only Flow 10 / Chip 11 
and Flow 9 / Chip 10 were significantly affected.  
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Figure S13. Gamma corrected predictions of sequence-dependent set 
(A) Predicted ΔΔGs with gamma cutoff compared to observed values. (B) Comparison between 
predictions before and after gamma cutoff.  
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Figure S14. Prediction of helical sequence preference of anticodon helix for aminoacyl-
tRNA•EF-Tu accommodation during ribosome codon recognition. 
A-E) Predicted dependence of A/T-tRNAThr binding free energy on sequence of the anticodon 
helix with the indicated base pair at each position within the helix. Each heatmap is from an 
independently solved structure, yet the sequence dependence is consistent across all models. 
RNAMake calculations were performed over all 45 anticodon helix sequences (see SI Appendix, 
Dataset S4)  A) 4V5G. B) 4V5P. C) 4V5Q. D) 4V5R. E) 4V5S. Rigorous tests of the RNAMake 
predictions will require high-precision pre-steady-state or single molecule measurements that 
isolate the binding equilibrium of EF-Tu-bound tRNA into the A/T state.  
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