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SUMMARY

Predicting RNA three-dimensional structures from sequence could accelerate understanding of the growing
number of RNA molecules being discovered across biology. Rosetta’s Fragment Assembly of RNA with Full-
AtomRefinement (FARFAR) has shownpromise in community-wide blind RNA-Puzzle trials, but lack of a sys-
tematic and automated benchmark has left unclear what limits FARFAR performance. Here, we benchmark
FARFAR2, an algorithm integrating RNA-Puzzle-inspired innovations with updated fragment libraries and he-
lix modeling. In 16 of 21 RNA-Puzzles revisited without experimental data or expert intervention, FARFAR2
recovers native-like structuresmore accurate thanmodels submitted during the RNA-Puzzles trials. Remain-
ing bottlenecks include conformational sampling for >80-nucleotide problems and scoring function limita-
tions more generally. Supporting these conclusions, preregistered blind models for adenovirus VA-I RNA
and five riboswitch complexes predicted native-like folds with 3- to 14 Å root-mean-square deviation accu-
racies. We present a FARFAR2 webserver and three large model archives (FARFAR2-Classics, FARFAR2-
Motifs, and FARFAR2-Puzzles) to guide future applications and advances.

INTRODUCTION

Noncoding RNA (ncRNA) molecules are essential to some of bio-
logy’s most critical and ancient functions, such as translation
(the ribosome), splicing (the spliceosome), and control of gene
expression levels (riboswitches) (Cech and Steitz, 2014). Many
ncRNAs exhibit intricately folded three-dimensional (3D) struc-
tures, but orders-of-magnitude more sequences of biologically
interesting RNAs have been determined than high-quality RNA
structures. For example, there are the thousands of classes of
RNA domains that have been curated in the RFAM database
that do not have experimentally solved structures (Kalvari
et al., 2018). Therefore, computational methods to predict 3D
ncRNA structure could be of substantial value. Current compu-
tational methods for 3D ncRNA structure prediction include
coarse-grained molecular dynamics simulation (Vfold3D [Zhao
et al., 2017] and iFoldRNA [Krokhotin et al., 2015]), Monte Carlo
(Rosetta FARFAR [Das and Baker, 2007] and SimRNA [Boniecki
et al., 2015]), and motif assembly (RNAComposer [Popenda
et al., 2012]; 3dRNA [Jian et al., 2017]; MC-Fold [Parisien and
Major, 2008]).
Over the last 9 years, these methods have been tested and

advanced through the RNA-Puzzles community-wide blind trials
(Cruz et al., 2012; Miao et al., 2015, 2017, 2020). RNA-modeling
methods using the Rosetta software (Das and Baker, 2007; Das
et al., 2010) motivated the launch of these trials (Sripakdeevong
et al., 2012) and have achieved the most accurate models for a

plurality of cases to date (10 of 21), including ligand-binding ri-
boswitches, ribozymes, and other ncRNAs with complex folds
with lengths of 41–188 nucleotides (nt) (Table 1). The primary Ro-
setta modeling tool underlying these predictions is called FAR-
FAR (Fragment Assembly of RNA with Full-Atom Refinement)
and was inspired by Rosetta’s protein structure prediction
methods. FARFAR first models an RNA structure by stitching
together three-residue fragments of previously solved RNA
structures whose sequence matches the target sequence. This
Monte Carlo process is guided by a low-resolution scoring func-
tion that rewards base pairs and base stacks with geometries
similar to those seen in previously solved RNA structures (Das
and Baker, 2007). Each model is then refined in a high-resolution
all-atom scoring function that rewards hydrogen bonds, van der
Waals packing of atoms, and other physically important interac-
tions, and the lowest-energy models are clustered to achieve
submitted models (Cruz et al., 2012; Das et al., 2010; Miao
et al., 2015, 2017).
While consistently successful in RNA-Puzzles, FARFAR

modeling has involved problem-specific expert intuition, such
as guesses of ligand-binding sites based on inspection of
sequence alignments, as well as algorithmic extensions created
‘‘on-the-fly’’ to explore novel ideas inspired by the targets,
including different approaches to model A-form helices or ter-
tiary contacts (Cruz et al., 2012; Miao et al., 2015, 2017). As in
early days of protein structure prediction (Sali, 1995; Simons
et al., 1997), many of these steps have not been well
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documented, automated, or systematically benchmarked, so
the performance and current limitations of FARFAR remain un-
certain. Indeed, the original FARFAR study as well as subse-
quent studies (Das et al., 2010; Ding et al., 2008; Laing and
Schlick, 2010; Popenda et al., 2012) suggested that FARFAR
would have difficulty sampling native-like folds for RNA mole-
cules larger than 12 nt. In addition to learning whether native-
like folds can be discovered through sampling, a systematic
FARFAR benchmark is needed to provide modeling pools for
groups developing complementary procedures, including recent
scoring methods taking advantage of artificial neural networks
and evolutionary coupling information (Li et al., 2019; Wang
et al., 2019; Weinreb et al., 2016) and alternative high-resolution
refinement procedures (Tan et al., 2018;Watkins et al., 2018) that
might be pipelined with FARFAR modeling.

This paper seeks to address these gaps in Rosetta RNA
modeling. First, we describe how improvement of the general
Rosetta codebase as well as consolidation of the FARFAR pro-
tocol have enabled development of a streamlined version of
the method, named FARFAR2, and an improved webserver on
the ROSIE platform (Lyskov et al., 2013; Moretti et al., 2018) at
https://rosie.rosettacommons.org/farfar2. We confirm that the
method recapitulates and extends prior results on two bench-
marks of small RNA folds and RNA submotifs, here revisited as
the FARFAR2-Classics and FARFAR2-Motifs model sets. We
then present a benchmark of FARFAR2 that revisits every previ-
ous RNA-Puzzle for which there exists a deposited experimental
structure at the time of this study. This FARFAR2-Puzzles bench-
mark uses only secondary structure information and template
structures employed at the time of the original challenge. Finally,
as independent validation, we present blind tests of the method
based on three independently solved structures of riboswitch
aptamers based on cryoelectron microscopy (cryo-EM) maps
(Kappel et al., 2019), an adenoviral ncRNA presented as RNA-
Puzzle 24 (Hood et al., 2019), and two T-box riboswitch struc-
tures presented as RNA-Puzzles 26 and 27. The results confirm
the ability of Rosetta FARFAR2 to sample complex global folds
of RNAs while also highlighting current limitations in discrimi-
nating the most accurate model among a pool of models, which
will likely require complementary approaches to resolve. The
input files and output models from this study, including more
than 10 million structures available in a single archive, provide
a rich resource that we expect to be valuable in developing ap-
proaches that extend or go beyond Rosetta FARFAR2.

RESULTS

Consolidated RNA Fragment Assembly Protocol
Improves Modeling of Small RNAs
Our core goal in developing the Rosetta FARFAR2 protocol has
been to achieve a single application that enables straightforward
modeling of complex RNA structures with sizes up to 200 nt,
incorporating any available additional knowledge. Our previous
attempts to construct a comprehensive modeling pipeline
required several manual steps running a series of distinct Ro-
setta applications, such as pregenerating helix ensembles, set
up through a separate Python script (Cheng et al., 2015; Watkins
et al., 2019). The FARFAR2 protocol (Figure 1) is designed
instead to take input information in as simple a manner as

possible into a single Rosetta executable, rna_denovo. Analo-
gous to other RNA-modeling packages (Krokhotin et al., 2015;
Piatkowski et al., 2016; Popenda et al., 2012), the rna_denovo
executable now accepts the RNA sequence, the RNA secondary
structure in community-standard dot-parentheses notation, and,
if available, the names of PDB-formatted files holding template
structures of any known submotifs or subdomains.
FARFAR2 also implements four methodological improve-

ments. It uses an updated library of fragments, based on the
nonredundant 2018 crystallographic database of 657 RNA struc-
tures (Leontis and Zirbel, 2012), which is 15% larger and more
diverse than the previous default fragment library from 2009 (Ri-
chardson et al., 2008). Score filters during fragment assembly
allow recognition of poorly assembled conformations that can
be discarded before the computationally expensive all-atom
minimization, leading to more efficient use of computational po-
wer (Figure 1 and STAR Methods). FARFAR2 also implements a
special set ofMonte Carlomoves for nucleotides in stackedWat-
son-Crick pairs (‘‘base-pair steps’’) that maintain Watson-Crick
geometry of RNA helices while allowing their backbone confor-
mations to be perturbed, drawing on the same crystallographic
database (see STAR Methods). Lastly, during the minimization
stage, the protocol uses an updated all-atom scoring function
developed in a recent study seeking high accuracy on small
RNA noncanonical motifs (Watkins et al., 2018).
As initial tests of this FARFAR2 protocol, we measured its per-

formance on two benchmarks involving small RNAs developed
in prior work. We revisited the original Rosetta RNA benchmark
of 18 small RNA problems (Das and Baker, 2007), generating a
set of 25.2M total models (1.4M models per problem) that we
term the FARFAR2-Classics dataset. These results confirmed
that the updated fragment library, minimization scoring function,
and mode of Watson-Crick base-pair modeling give improved
results over the original Rosetta fragment assembly method,
with the most notable improvements arising from full-atom
refinement (Figure S1). Full results are given in Table S2; in
particular, the ‘‘hires’’ scoring function, base-pair constraints,
and old fragment library taken together represent a reproduction
of the performance of the original FARFAR code. We assessed
performance using the ‘‘native-like’’ standard applied in the orig-
inal work (Das and Baker, 2007): achieving folds with root-mean-
square deviation (RMSD) to experimental structure of better than
4 Å in the top five cluster centers (5,000 low-energy models clus-
tered with a 3.0 Å radius). By this metric, FARFAR2 succeeded in
15 of 18 cases, better than the original results of 10 of 18. Figures
2A–2E show native-like models achieved by FARFAR2 for the
five cases for which the original study did not sample such folds.
For 1A4D (Figure 2A), a nuclear magnetic resonance (NMR)
structure of the loop D/loop E arm of the Escherichia coli 5S
rRNA, the FARFAR2 model correctly recovers 11 consecutive
base pairs, only one of which is a canonical Watson-Crick
base pair. For 1CSL (Figure 2B), the HIV RRE (Rev response
element) high-affinity site, FARFAR2 recovers a bent geometry
and both ‘‘bulged-out’’ nucleotides. For 1I9X (Figure 2C), the
branchpoint duplex from U2 small nuclear RNA, FARFAR2 re-
covers a nearly atomic-accuracy model (2.5 Å RMSD). For
1KKA (Figure 2D), an NMR structure of the unmodified anticodon
stem loop from tRNA-Phe, FARFAR2 obtains amodel with a cor-
rect geometry for the unusually twisted helix, as well as a
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geometry for the apical loop that lacks several clashes present in
the database-deposited coordinates. Finally, for 2A43 (Fig-
ure 2E), a pseudoknot from luteovirus, FARFAR2 recovers the
A-minor motif that anchors the pseudoknot fold. We note that
for this and the other two benchmarks below, we sought to simu-
late a realistic prediction scenario by stringently excluding any
extended fragments in the fragment library that were structurally
similar to the target structure (see Fragment Homology Exclusion
in STAR Methods). As a result of this fragment exclusion, FAR-
FAR2 performance in real targets may be underestimated by
these benchmarks, and we return to this point below.
As a higher-resolution test, we evaluated FARFAR2 on a

benchmark of noncanonical RNA motifs (apical loops, internal
loops, junctions, and tertiary contacts) extracted from larger
RNA structures (Das et al., 2010). Recently, we reported that a
nucleotide-by-nucleotide build-up method called stepwise
Monte Carlo (SWM) outperformed FARFAR for intricate nonca-
nonical loops (Watkins et al., 2018). However, for problems
with longer loops or that require positioning of distinct helical el-
ements in tertiary contacts, the SWM method transited through
physically unreasonable intermediate conformations (Watkins
et al., 2018), and FARFAR achieved better RMSD accuracies
than SWM in these cases. Here we revisited this comparison
with FARFAR2; the resulting 820,000 models (10,000 models
per problem) comprise the FARFAR2-Motifs dataset. As
observed previously, SWM achieved a 1.5 Å model among the
top five cluster centers in more problems than FARFAR2 (42
compared with 37 out of 82; see Figure S2 andmethods for clus-
tering details). Nevertheless, cases in which FARFAR2 outper-
formed SWM supported the continuing use of FARFAR2 for
modeling complex RNA folds with long loops or tertiary contacts
for which the partners’ relative positions are uncertain (Figures
2F–2J). An overtwisted helix P5b from the P4-P6 domain of
Tetrahymena ribozyme, the loop E motif from E. coli 5S rRNA,
and the kink-turn motif each involve concomitant modeling of
two strands with lengths up to 9 nt, and SWMhad difficulty build-
ing up complete solutions for these loops (best cluster center
RMSDs of 2.7 Å, 1.7 Å, and 2.1 Å, respectively). In contrast,
the best of five cluster centers from FARFAR2 did achieve sub-
angstrom recovery of these motifs (0.76 Å, 0.72 Å, and 0.97 Å
RMSD, respectively; Figures 2F–2H). For tertiary contacts in
which the relative positioning of partners had to be modeled
de novo, current SWM procedures for docking the partner seg-
ments gave poor accuracies, e.g., for an A-minor tertiary contact
from the lariat-capping GIR1 ribozyme and from the tetraloop-re-
ceptor contact of the P4-P6 RNA (1.8 Å and 3.0 Å, respectively).
Fragment-based FARFAR2 recovered these structures with
excellent accuracies of 1.2 Å and 0.81 Å RMSD, respectively

Figure 1. The FARFAR2 Structure Prediction Algorithm
A 3D structure prediction problem is specified by RNA sequence; from that

sequence, a consensus secondary structure is obtained from prior literature

studies or covariance analysis of sequence alignments (left), and homologies

may be identified to previously solved structures (right). The orange areas in

the depicted secondary structure diagram represent the regions whose con-

formations are unknown a priori and whose solution would guide the tertiary

structure prediction. Manually identified homologies can also furnish template

structures, which are combined by automatic sampling from a base-pair step

and fragment database in a low-resolution fragment assembly stage. Subse-

quent models are filtered to omit trajectories with chain breaks or poor scores,

and passing models are subjected to minimization in an all-atom scoring

function. Finally, models are chosen from the resulting ensemble through

clustering.
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(Figures 2I and 2J). Because such long-looped junctions and ter-
tiary contacts appear frequently in complex RNA folds, these re-
sults have motivated us to continue to use FARFAR2 as our
default procedure for such modeling cases (Watkins et al.,
2018, 2019).

The RNA-Puzzles Benchmark
The aforementioned findings on prediction accuracies for small
RNAs and RNA motifs motivated us to test FARFAR2 against
larger RNA structures with many motifs and complex folds.
Through our participation in the RNA-Puzzles trials (Cruz et al.,

2012; Miao et al., 2015, 2017), we have kept records of our stra-
tegies for each prediction challenge, including secondary struc-
ture predictions, inferences based on homology to prior depos-
ited structures, and functional constraints, such as sites of self-
cleavage in ribozyme challenges. We ran FARFAR2 for each of
the 21 problems for which an experimental structure is now avail-
able (Magnus et al., 2019), again using procedures to ensure that
fragments from these structures or their homologs could not be
sampled, providing ‘‘like-blind’’ modeling conditions (see Frag-
ment Homology Exclusion in STAR Methods). This set
comprised all RNA-Puzzles from RNA-Puzzle 1 through RNA-

Figure 2. Increased Accuracy of FARFAR2 on Existing Structure Prediction Benchmarks
Cases from the FARFAR2-Classics (A–E) and FARFAR2-Motifs (F–I) benchmarks that saw success from the application of FARFAR2 instead of FARNA and SWM,

respectively. In each panel, FARFAR2 model, native structure, and overlay are shown from left to right. In (A) to (E), the FARFAR2 model is the best of five low-

energy cluster centers after clustering 5,000 models with a 3.0 Å radius; in (F) to (J), the FARFAR2 model is the best of five low-energy cluster centers after

clustering 400 models with a 2.0 Å radius. In each case, model selection conditions reproduce the conditions used in the original publications (Das and Baker,

2007; Watkins et al., 2018). In overlays, the FARFAR2 model is colored in salmon and the experimental structure in blue; in individual structures, recovered

noncanonical base pairs are colored in cyan, lime, orange, salmon, and ruby, and recovered bulged residues are colored in wheat. In (A) to (E), residues from

prespecified, flexible helices are colored white; in (F) to (J), fixed input residues (mostly helical) are colored white.
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Puzzle 21 except RNA-Puzzle 16. We treated bound and un-
bound states of RNA-Puzzle 14 (a riboswitch aptamer for gluta-
mine) as separate problems. The benchmark included both sin-
gle-stranded and multistranded RNAs, as well as problems for
which considerable homology was available and puzzles where
we had to start from only our original secondary structure predic-
tions (Table S3). We made no explicit provision for ligand bind-
ing, save implicitly when the ligand-binding site was part of a
template structure, since augmenting the low-resolution frag-
ment assembly stage of modeling with a concurrent ligand dock-
ing protocol would require substantial additions to the FARFAR2
algorithm.
Our primary question was whether FARFAR2 samples native-

like global structures for these RNA-Puzzles with complex folds.
For each of the RNA-Puzzles problems, we therefore generated
3,000–30,000 FARFAR2 models, involving approximately 6–48 h
of computation on 500 CPUs. To evaluate conformational sam-
pling efficiency, we mimicked our typical protocol in RNA-Puz-
zles trials, in which we inspect approximately 100–200 low-en-
ergy models as potential candidates for submission,
corresponding to the lowest 1% of models by Rosetta all-atom
energy. To assess whether any of the large RNA models were
native-like, we translated the 4.0 Å RMSD threshold used in
our assessment of the smaller RNAs of the FARFAR2-Classics
to these larger challenges, making use of a previous extension
to the length-dependent RMSD100 metric, which we have found
to accord well to visual assessments of native-like folds (Carugo
and Pongor, 2008; Kappel and Das, 2019). A 4.0 Å RMSD on
FARFAR2-Classics (median length 26 nt, all of which are built
de novo) is equivalent to a 9.1 Å RMSD on FARFAR2-Puzzles
(median length 71 nt that need to be built de novo; see STAR
Methods), and so we chose RMSD 9.1 Å as our cutoff for most
of the RNA-Puzzles. However, the three longest problems
were substantially longer (117, 130, and 185 nt must be built
for RNA-Puzzles 12, 5, and 7, respectively). Applying the same
RMSD100 criterion, we used 13.8 Å RMSD to assess whether
models of these longest problems were native-like. In addition
to setting this absolute RMSD-based cutoff for evaluation, we
compared FARFAR2 performance relative to the original perfor-
mance by all competitors when the blind challenge was originally
issued. This latter evaluation enables comparison with expert
execution of every leading method for RNA structure prediction
by their authors rather than our best-effort reproduction.
Using these evaluation criteria, the FARFAR2 protocol per-

forms well. The protocol is able to sample native-like models
within its best 1% by Rosetta all-atom free energy (30–300
models) for 19 of 21 cases. The agreement across all cases is
visually apparent, as illustrated in Figure 3. In 16 of 21 RNA-Puz-
zles, FARFAR2 samples a model within its best 1% by energy
closer to native than the best originally submitted model during
the actual RNA-Puzzles trial (20–100 models; Table 1 and Fig-
ure 4). In two additional cases, FARFAR2 outperforms previous
Rosetta-based submissions from our group; detailed depictions
of prior models are in Figures S3–S5. These results indicate that
FARFAR2 emulates or exceeds prior performance in RNA-Puz-
zles, and specific cases illustrate the complexity of the folds
that are recovered. In the largest and most challenging prob-
lems, FARFAR2 models of RNA-Puzzle 7, the Varkud satellite
(VS) ribozyme, recapitulated the experimental folds accurately

up to one missed interhelical angle (Figure 3). Improvement
was also seen in several ribozyme structures of moderate size
(Puzzles 15, 17, 19, 20). These molecules—a hammerhead and
pistol ribozyme and two bimolecular twister sister constructs—
each feature a compact multiway junction and a key tertiary con-
tact. The pistol ribozyme features a pseudoknot, while the other
three possess intercalated T loops, and, combined with other in-
terconnections, these features lead to slight under- or overtwist-
ing of helices in experimental structures compared with ideal A-
form helices.
These observations suggested that the improvements seen in

FARFAR2 relative to the original RNA-Puzzles submissions
might be due to improvements in helix modeling through
‘‘base-pair step’’ fragments. A detailed comparison of the effects
of base-pair step sampling on Puzzle 21, a guanidinium ribos-
witch, is shown in Figure S6. A comparison of FARFAR2 perfor-
mancewith base-pair step fragments versus fixed helices across
multiple large puzzles (RNA-Puzzles 3, 5, 6, 9, 12, 15, 17, and 18)
confirms the efficacy of the base-pair step helix modeling
scheme (see Figure S7). To further test the importance of
base-pair steps, we repeated modeling of RNA-Puzzle 15, a
hammerhead ribozyme, with every helix modeling scheme we
have previously employed in Rosetta fragment assembly:
none, as in FARNA; guiding formation of helices through har-
monic base-pairing constraints (Das et al., 2010); base pairs of
fixed geometry and kinematics through the -fixed_stems flag;
use of pregenerated ensembles of fixed helices (Cheng et al.,
2015), use of single fixed helices of ideal geometry; and base
pair step sampling. The results confirmed that base pair step
sampling yields the most accurate models (Figure 5). To test
the effects of other improvements in Rosetta FARFAR2
compared with the original FARFAR study, we also carried out
a test on a sample of the five most recent RNA-Puzzles,
emulating the original FARFAR simulation conditions (‘‘hires’’
scoring function, the original fragment library, and use of har-
monic base-pair constraints rather than sampling base-pair
steps to model helices). This direct comparison of FARFAR2
with original FARFAR simulation settings indicated strong im-
provements, with differences in achieved RMSD of up to 7 Å in
best 1% by energy RMSD and 8 Å in top-ten cluster RMSD (Ta-
ble S4). Analysis of subsets of the simulated model ensembles
suggests that FARFAR2 simulations demand 10–30 times fewer
structures than FARFAR to generate native-like structures
(Figure S8).
While we saw improvements by FARFAR2 over RNA-Puzzles

efforts in 16 of 21 modeling challenges, in five of these modeling
challenges, FARFAR2 did not sample, among its top 1% by en-
ergy, a more accurate model than the original RNA-Puzzles sub-
missions. Four of these cases, RNA-Puzzles 12, 13, 14 (bound),
and 21, represent structures of riboswitch aptamers with their
small-molecule ligands (cyclic diAMP, ZMP, glutamine, and gua-
nidinium, respectively). For these cases, the original modeling
involved manual identification of ligand-binding residues from
sequence conservation and, in some cases, explicit modeling
of the ligand-binding site (Miao et al., 2017, 2020). The fifth
case was the Zika xrRNA (exonuclease resistant RNA), and the
best submission for RNA-Puzzle 18 was solved with the step-
wise Monte Carlo method, which is our preferred method for
modeling challenges limited to individual motifs within complex
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RNA folds (Watkins et al., 2018). In that case, FARFAR2 still does
outperform the best original submission based on the FARFAR
implementation available at the time. These results suggest
that FARFAR2 successfully automates or improves upon the
ad hoc, manual steps used with FARFAR for prior RNA-Puzzles
challenges but could be improved further if ligand-binding hy-
potheses and stepwise Monte Carlo could be incorporated into
the modeling.

To compare FARFAR2 results with the original RNA-Puzzle
submission process more directly, we needed a method of
model selection to obtain a final set of ten models from the
ensemble of sampled models. Here, we selected a conventional
protocol for analyzing problems of this size within Rosetta, clus-
tering the top 400 models with a 5.0 Å cluster radius. (We tested
alternative clustering methods and obtained similar or slightly
worse results; see STAR Methods.) The best of ten clustered
FARFAR2 models outperformed the original 5–10 Das lab sub-
missions in 10 of 21 cases, and, despite no manual intervention
in model selection, was less than 1.0 Å worse in RMSD in an
additional four. Furthermore, these selected models were

native-like (RMSD accuracy better than 9.1 Å for short problems
or 13.8 Å for long problems) in 16 of 21 cases. For each of these
models, we also compute the fraction of non-Watson-Crick base
pairs recovered and the clashscore (Table S6). The best FAR-
FAR2 cluster center outperforms the prior most accurate sub-
mission in clashscore in 15 of 21 cases. The best FARFAR2 clus-
ter center has superior non-Watson-Crick base-pair recovery in
9 of 21 cases, equal recovery in one case, and is less than 10%
worse in three cases. These results further suggest that FAR-
FAR2 followed by a simple clustering procedure will give similar
accuracy to prior ad hoc modeling and model selection proced-
ures used in RNA-Puzzles.

Current Bottlenecks
In addition to testing whether FARFAR2 emulates our RNA-Puz-
zles modeling protocols for complex RNA folds, the extensive
FARFAR2-Puzzles dataset enables analysis of what is currently
bottlenecking FARFAR2 accuracy for recovering these folds
(Figures S9–S11). Structure prediction algorithms face two po-
tential limitations: inadequate conformational sampling, which

Figure 3. The Best-of-Top-1% RMSD Prediction (Pink) versus Native (Blue) for Each RNA-Puzzle in the FARFAR2-Puzzles Benchmark
White regions are input template structures employed at the original time of modeling and employed in the FARFAR2 simulation.
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Table 1. Results for Each RNA-Puzzle Challenge Revisited in This Work

Puzzle PDB

Length

(Total)c

No. of

Structures

Generated RNA FARFAR2 Top 1% Best RMSD (Å)b
FARFAR2 Best of 10

Low-E Cluster RMSD (Å)b
Best RNA-Puzzle RMSD

(All Submissions) (Å)b
Best RNA-Puzzle RMSD

(Das Submissions) (Å)b

1 3MEI 46 (46) 14,052 thymidylate synthase motif 2.03 2.50 3.40 3.40

2 3P59 60 (100) 43,431 nanosquare 2.28 2.71 2.30 2.45

3 3OXE 84 (84) 33,442 glycine riboswitch 7.05 12.41 7.60 12.10

4 3V7E 40 (126) 5,768 SAM-I riboswitch 2.43 2.52 3.40 4.50

5 4P9R 130 (188) 24,903 lariat-capping ribozyme 9.57 13.94 9.58 9.58

6 4GXY 98 (158) 28,859 cobalamin riboswitch 9.98 13.08 11.57 11.57

7 4R4V 185 (185) 7,963 VS ribozyme 15.21 18.52 20.56 20.56

8 4L81 71 (96) 33,086 SAM I/IV 4.65 5.23 4.80 4.80

9 5KPY 40 (71) 18,660 5-HT aptamer 4.54 4.56 6.05 7.70

10 4LCK 83 (177) 5,873 T-box riboswitch 6.31 6.31 6.78 6.78

11 5LYU 57 (57) 41,952 7SK 50 hairpin 4.43 6.04 4.96 6.83

12 4QLM 117 (117) 35,506 ydaO riboswitch 11.73 13.32 10.15 12.63

13 4XW7 60 (60) 20,297 ZMP riboswitch 5.47 7.13 5.41 5.41

14b 5DDP 61 (61) 24,531 Gln riboswitch (bound) 5.81 6.88 5.79 6.59

14f 5DDO 61 (61) 15,112 Gln riboswitch (free) 3.26 11.85 6.05 6.05

15a 5DI4 68 (68) 6,123 hammerhead ribozyme 4.44 5.98 5.30 9.83

17 5K7C 58 (58) 16,529 pistol ribozyme 5.03 6.69 5.15 7.16

18 5TPY 34 (71) 17,091 Zika xrRNA 4.29 5.02 3.15 3.15

19 5T5A 56 (62) 4,499 twister sister ribozyme 4.86 5.16 5.50 8.54

20 5Y87 62 (68) 1,547 twister sister ribozyme 3.03 4.03 4.67 5.94

21 5NWQ 41 (41) 48,146 guanidinium-III riboswitch 4.40 6.04 3.93 3.93

See Table S4 for additional figures of merit.
aThe native structure in RNA-Puzzle 15 was corrupted by a crystal contact that caused a strand-swapped pairing intractable to prediction. We reconstructed the strand-unswapped monomer and

rescored original submissions to present a more realistic modeling challenge.
bAll-heavy-atom RMSD is calculated over all residues, following superposition over all residues. The 400 models with the lowest (best) energies are clustered.
cLength is number of residues modeled de novo (not found in input templates); total also counts template residues.
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could leave the true global minimum unexplored, and a scoring
function that incorrectly favors minima different from the exper-
imental structure. The limitations are not necessarily exclusive,
and we evaluated these in turn.

A hallmark of poor conformational sampling in a stochastic
modeling procedure is the inability to find similar solutions
from independent runs, where similarity here is evaluated as
model-to-model RMSD of less than 5 Å. We noted that for
modeling problems involving greater than 80 nt built de novo,
poor conformational sampling was clearly an issue. In each of
these six cases (RNA-Puzzles 3, 5, 6, 7, 10, and 12), none of
the top ten clusters included more than one model in total (Table
S5; Figure S11A). This set of long problems also includedmodels
with the worst RMSD accuracy achieved, although in each case
the accuracies were still strikingly better than what would be ex-
pected from random sampling (Figures 3 and S11B). For nearly
all problems smaller than 80 residues, independent FARFAR2
runs produced low-energy models that were clustered together
in one of the top ten clusters, and the majority of these cases ex-
hibited better than 5 Å RMSD accuracies and visually correct
backbone folds (Figure 3). These results suggest a ‘‘rule of
thumb’’: problems involving de novo building more than 80 nt
will be challenging for FARFAR2 conformational sampling.

Figure 4. Direct Comparison between Orig-
inal RNA-Puzzles Submissions from All
Groups (Left Points) and FARFAR2 Models
(Right Points) for Each Benchmark Case
Among RNA-Puzzles submissions, those from the

Das lab (created using manually curated Rosetta

models, mostly using FARFAR) are black points;

others are gray. Among FARFAR2 models, pink

points are the top 1% of models by energy; dark

red are cluster centers.

Assessment of scoring function limita-
tions can be carried out by comparing
the predicted energy of the experimental
structure of a molecule with structurally
distinct models. If ‘‘decoy’’ models give
better energies than near-native struc-
tures, there is a problem with the scoring
function. In an effort to exactly match
bond geometries and modeling assump-
tions of our FARFAR2 simulations, we
generated near-native models (<1.0 Å
RMSD) using additional FARFAR2 simula-
tions that we augmented with restraints to
the native structure (see STAR Methods).
We found that in slightly more than half of
the cases (11 of 21), FARFAR2 decoys far
from the experimental structure gave en-
ergies better than those achieved in the
near-native FARFAR2 simulations that
were restrained to produce near-experi-
mental solutions (Figures S9–S11C and
Table S5). This result indicates that our
scoring function is problematic for
modeling complex folds and suggests

that more extensive sampling on those cases would not result
in more accurate modeling. Surprisingly, we found that even
for five of the six larger modeling problems (>80 nt) that currently
show poor sampling (noted above), FARFAR2 discovered solu-
tions with lower energies than the near-native structures (Fig-
ure S11C). One possible explanation for this result is that our
use of FARFAR2 simulations restrained to the experimental
structures gives poor energy estimates for ‘‘near-native’’ confor-
mations due to inaccuracies in the experimental structures
(many of which were solved before the advent of RNA-specific
refinement tools for crystallography) or the use of ideal bond
lengths/angles in FARFAR2 simulations. Nevertheless, having
an scoring function that is less sensitive to fine conformational
details and that more accurately discriminates near-native con-
formations from non-native conformations of complex RNA folds
is an important goal for future work, further discussed below.

Estimating Modeling Error for FARFAR2
The large model datasets collected in the FARFAR2-Puzzles
benchmark above provide additional information in predicting
model accuracy not just generally but also for specific cases.
In actual blind modeling or biological prediction scenarios, it is
important to estimate how accurate a predicted FARFAR2model
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is likely to be. Recently, extensions of FARFAR to building coor-
dinates into RNA-protein (Kappel et al., 2018) and RNA-only
electron density maps (Kappel et al., 2019) have suggested a
promising approach. In those settings, the average pairwise
RMSD between the ten lowest-energy models was predictive
of the average RMSD-to-native of those same ten models.
Stated differently, modeling precision gives not just a lower
bound on modeling accuracy but, through an empirical scaling,
an estimate of the modeling accuracy. We tested whether a
similar relationship would apply in this setting, where models
are significantly more diverse due to the absence of electron
density.
As shown in Figure 6, the average pairwise RMSD of the top

ten FARFAR2 cluster centers does correlate well with the
average RMSD to native of those models (R2 of 0.84). The corre-
lation is weaker than that observed in density guided modeling
(gray points, Figure 6, R2 of 0.94), and the trend is shifted higher
so that the same inter-model RMSD corresponds to a worse
average RMSD-to-native in the density-free FARFAR2 cases.
Nevertheless, the error in the above estimate is itself predictable;
the standard deviation of the pairwise RMSDs among top-ten
models predicts most of the variance in the RMSD-to-native
among those models (with electron density, R2 = 0.90; without,
R2 = 0.64). These relationships suggested that we would be
able to predict ranges of model accuracy in real, blind prediction
scenarios, a prospect that we tested in our final study.

Blind Predictions of Six RNA Structures
After testing modeling accuracy of FARFAR2 in the retrospec-
tive benchmarks above, we sought to validate that the FAR-
FAR2 method was similarly effective in truly blind modeling
challenges. In separate work, we have developed a pipeline
for highly accurate, rapid solution of complex RNA folds using
a battery of cryo-EM, multidimensional chemical mapping, and
automated computational modeling (Kappel et al., 2018, 2019).
We saw this study as a valuable opportunity to conduct a series

Figure 5. A Detailed Study of Secondary Struc-
ture Specification Methods for RNA-Puzzle 15.
The method of secondary structure specification af-

fects the quality of the resulting predicted models, as

illustrated on RNA-Puzzle 15, a hammerhead ribo-

zyme. For each method, the native structure is de-

picted in blue and the best model from ten lowest-

energy cluster centers is in pink. In the scatterplots,

we show the top 1%by energy of generatedmodels in

pink and the ten automatically selected cluster cen-

ters in dark red. Only base pair step sampling (used in

FARFAR2) can routinely sample models closer to

native than 10 Å RMSD. Only the previously devel-

oped method that samples from pregenerated en-

sembles for each helix can approach the quality of

base-pair step sampling, with cluster centers found

below 10 Å; despite requiring a separate modeling

step for each target, even this method is still sub-

stantially worse than base-pair step sampling.

of blind challenges of the FARFAR2
method. We applied FARFAR2 to predict
the structures of six natural RNAs – two

tandem glycine riboswitches (from Fusobacterium nucleatum
and Vibrio cholerae), two tRNA-sensing T-box riboswitches
(for tRNA-Gly from Geobacillus kaustophilus and for tRNA-Gly
from Bacillus subtilis; PDB: 6PMO and 6POM), a metagenomic
Mycobacterium S-adenosyl methionine-binding SAM-IV ribos-
witch, and an adenoviral ncRNA virus-associated (VA) RNA I
(PDB: 6OL3) (Hood et al., 2019). These modeling challenges
were carried out fully blindly of experimental efforts by authors
A.M.W. and R.R.; resulting models were preregistered with the
Open Science Framework in the case of the two glycine ribos-
witches; submitted to an ‘‘Unknown RFam’’ RNA-Puzzles chal-
lenge in the case of SAM-IV; and submitted as ‘‘FARFAR2’’
predictions for RNA-Puzzles 24, 26, and 27 for VA RNA I and
the T-box riboswitches, respectively.
The results of these six blind challenges supported the accu-

racy of FARFAR2 in a wide range of template-based modeling
scenarios and a fully de novo modeling scenario (Table S7).
The five natural riboswitch aptamers tested use of FARFAR2 in
problems where templates were available, but peripheral tertiary
domains needed to be built de novo. We used a 122-nt template
derived from a crystal structure (PDB: 3P49) to build a series of
models of the full-length 167-nt F. nucleatum glycine riboswitch
aptamer (Figure 7A). This template structure previously included
a U1a protein-binding loop to facilitate crystallization, which we
replaced with the native sequence; it had also omitted a pre-
dicted 9-nt kink-turn linker between its two glycine-sensing do-
mains, requiring the deletion and FARFAR2 remodeling of the
first 18 nt on the 50 end, nucleotides 72–91, and the three final
30 nucleotides, 165–167. We subsequently used part of the
lowest-energy F. nucleatum solution, threaded with the related
sequence from V. cholerae, to predict the structure of the 229-
nt V. cholerae tandem glycine riboswitch, using FARFAR2 to
insert a P4 stem into a multiloop of the 50-aptamer domain and
substantially remodel the resulting fold (Figure 7B). Our strategy
for theMycobacterium SAM-IV riboswitch used a template 23-nt
S-adenosylmethionine-binding site from an SAM-I riboswitch
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(PDB: 2YGH) and largely followed our previously described pro-
cedure for homology modeling of complex RNA folds (Watkins
et al., 2019), but used the FARFAR2 protocol instead, i.e.,
base-pair step sampling for helices, the updated fragment li-
brary, and the updated scoring function for full-atom refinement
(Figure 7C). For the two T-box riboswitches, we used a template
tRNA-Gly (PDB: 4LCK); for the largerB. subtilis T-box riboswitch,
we could additionally take local template structures from the pre-
viously solved T box (PDB: 4LCK) (Figures 7D and 7E). Finally, for
the VA RNA I, no template structures were available, so we used
only the literature secondary structure (Dzananovic et al., 2017).
Using the same model selection procedure as for FARFAR2-
Puzzles, we submitted ten models for each problem except the
SAM-IV riboswitch, for which we could submit only five models.

Upon unblinding, the FARFAR2 modeling recapitulated the
global folds of the RNAs solved independently with experimental
crystallography or cryo-EM andmutate-and-map data (Figure 7).
The best submitted FARFAR2 models were a 3.0 Å prediction of
the F. nucleatum glycine riboswitch (2.2 Å over residuesmodeled
directly), a 4.3 Å prediction of the V. cholerae glycine riboswitch,
a 3.2 Å prediction of the Mycobacterium SAM-IV riboswitch, a
14.3 Å prediction of the G. kaustophilus T-box riboswitch

discriminator region/tRNA-Gly complex, a 10.0 Å prediction of
the full-length B. subtilis T-box riboswitch/tRNA-Gly complex,
and a 7.7 Å prediction of the VA RNA I (Table 2). Interestingly,
two of the three cases with models better than 5 Å RMSD
involved building RNA segments with total lengths greater than
80 nt (V. cholerae glycine and SAM-IV riboswitches), contradict-
ing our 80-nt rule-of-thumb expectation described above. It is
possible that stringent exclusion of homologous fragments dur-
ing FARFAR2 benchmarking (STAR Methods), which we did not
need to enforce during blind modeling, may have led to slightly
better performance than expected from the benchmarking.
Encouragingly, for each of the specific blind modeling cases,

our ability to estimate average modeling accuracy based on
convergence observed during modeling was validated. The
trend of Figure 6, through which we predict average model ac-
curacy based on the model ‘‘convergence,’’ held as well: the
models achieved average RMSD accuracies of 4.8, 5.9, 8.8,
16.3, 12.1, and 13.7 Å compared with predicted accuracies
of 4.9 ± 0.43, 7.1 ± 1.9, 12.7 ± 6.0, 13.9 ± 6.0, 14.0 ± 3.3,
and 13.3 ± 3.4 Å, respectively. These results (plotted in red
on Figure 6), validate our empirically derived relationship of
convergence observed during modeling with accuracy in actual
modeling scenarios. For example, in the two T-box ribos-
witches there were local inaccuracies with the placement of a
peripheral helix (indicated by a red arrow in Figure 7); however,
even in these cases, our predicted error estimate based on
modeling convergence allowed us to forecast the greater
inaccuracies.

DISCUSSION

We have developed and benchmarked a major update to Ro-
setta fragment assembly of RNA with full-atom refinement (FAR-
FAR2), which automates multiple steps of previous protocols
and brings to bear an updated fragment library, flexible treat-
ment of helix base-pair steps, and a refined all-atom scoring
function. We find that FARFAR2 achieves native-like structure
models on three retrospective benchmarks, including 18 small
RNAs, 82 motif-scale challenges, and 21 RNA-Puzzles, and on
six prospective blind challenges.
Fragment assembly methods have become a widespread

method for structure prediction because of their simple premise:
folded biomolecules occupy a special region of conformational
space, and new molecules should at least locally resemble pre-
viously determined structures. Fragment-based methods have
yielded excellent predictions of RNA structure in blind modeling
challenges, and FARFAR2’s extensions to this system—
enabling kinematically realistic helix sampling, expanding the
database of crystallographic fragments, and scoring function im-
provements—have improved its performance, particularly in re-
visited RNA-Puzzle challenges. Without requiring human inter-
vention following template selection, FARFAR2 samples
native-like folds within its 1% lowest-energy structures in most
of these challenges. The FARFAR2 structures are consistently
more accurate than the best original Das lab submissions and,
in themajority of cases, more accurate than the best overall sub-
mission. Model selection based on clustering the lowest-energy
models is as or more successful in curating accurate structures
than previous manual approaches. Nevertheless, our

Figure 6. The Degree of Convergence Seen Among Top Models or
Clusters Predicts the RMSDAccuracy of ThoseModels to the Exper-
imental Structure
Convergence (the average pairwise RMSD among the top ten models or

clusters) is predictive of modeling accuracy (the average RMSD-to-native of

the ten lowest-energy models or clusters) whether with electron density (top

ten DRRAFTER and Ribosolve models, gray) or without electron density (top

ten FARFAR2 clusters, blue). Lines of best fit: Ribosolve y = 0.66x + 1.65 Å

(R2 = 0.94); FARFAR2 y = 0.81x + 3.69 Å (R2 = 0.84). Error bars represent

standard deviation of pairwise RMSD (x-error) and standard deviation of

RMSD to native (y-error), which are themselves related as Ribosolve y-error =

0.76x-error + 0.10 Å (R2 = 0.90); FARFAR2 y-error = 0.91x-error + 0.09 Å (R2 =

0.64). Additionally, red points show the results of the six blind challenges at-

tempted using FARFAR2 in this work.
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benchmark highlights continuing limitations. Problems involving
rebuildingmore than 80 nt are not conformationally sampled well
by FARFAR2. More generally, across all length ranges, compar-
ison of energies of FARFAR2 models with optimized experi-
mental structures suggests that our scoring function remains
limiting. Improved clustering methods, explicit treatment of li-
gands, final-pass scoring functions, and better refinement pro-
cedures may resolve this limitation.
When applied to six blind challenges, FARFAR2 achieved

blind predictions of 3 to 14 Å accuracy on newly built residues,
showing good agreement with subsequently solved structures
from cryo-EM and crystallography and confirming accuracy es-
timates made during modeling based on convergence of ten
lowest-energy models. The convergence-based accuracy esti-
mates introduced in this study should help guide the interpreta-
tion of the models and point to cases where more experimental
data are required.

Figure 7. FARFAR2 Results in Six Blind
Modeling Challenges
Blind predictions (salmon) of six complex RNA

folds (blue) subsequently determined via cry-

oelectron microscopy or crystallography: the (A) F.

nucleatum and (B) V. cholerae full-length tandem

glycine riboswitches, as well as the (C) Mycobac-

terium SAM-IV riboswitch, the (D) G. kaustophilus

T-box riboswitch/tRNA-Gly, the (E) B. subtilis T-

box riboswitch/tRNA-Gly, and the (F) adenoviral

VA RNA I. Predictions generally achieve nucleotide

accuracy. White regions are input template struc-

tures. Red arrows in (D, E) mark a peripheral T-box

helix with poor local accuracy.

The frontiers for accurate RNA 3D
structure prediction involve modeling
larger problems (more than 80–100 nt
of unknown tertiary structure, illustrated
here by RNA-Puzzles 5, 12, and 7 [Fig-
ure 4]) and problems in which excellent
RMSD accuracy, zero clashes, or per-
fect non-Watson-Crick base-pairing re-
covery are required (e.g., if the struc-
ture is required for subsequent ligand
docking, molecular dynamics simula-
tion, or drug design). Fully automated
methods that more accurately solve
subproblems at the expense of more
computation, such as stepwise Monte
Carlo (Watkins et al., 2018), may bridge
these gaps if pipelined with fragment
assembly.

We reiterate a need for better scoring
functions to guide discrimination of
near-native conformations from non-
native conformations, which will be
needed to prioritize fragment-assem-
bled models for refinement. Methods
that make more active use of residue
contact inference from sequence
covariation (Weinreb et al., 2016) or arti-

ficial neural networks (Kryshtafovych et al., 2019; Li et al.,
2019; Wang et al., 2019) show promise for such improved
scoring functions.
Beyond the FARFAR2 algorithm itself, this benchmark sys-

tem and the associated ‘decoy’ models in the FARFAR2-Clas-
sics, FARFAR2-Motifs, and FARFAR2-Puzzles datasets can
serve as starting points for the development of the next gener-
ation of high-resolution structure prediction algorithms and
scoring functions, and we make these resources publicly avail-
able through links given in STAR Methods. Finally, to help
ensure that the FARFAR2 code can be widely used and bench-
marked, we have created a public webserver hosted on the Ro-
setta Server that Includes Everyone, ROSIE (Moretti et al.,
2018). The server provides a simple interface that requires a
sequence and secondary structure for inputs, with advanced
options to give full access to the diverse configuration settings
available for FARFAR2. Models are clustered exactly as in this

ll
Resource

Structure 28, 1–14, August 4, 2020 11

Please cite this article in press as: Watkins et al., FARFAR2: Improved De Novo Rosetta Prediction of Complex Global RNA Folds, Structure (2020),
https://doi.org/10.1016/j.str.2020.05.011



study, and accuracy estimates are presented based on the re-
lations calibrated in this study.
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ity Rev binding site at 1.6 Å resolution. J. Mol. Biol. 295, 711–717.

Jian, W., Mao, K., Zhao, Y., Chen, Z., Jianjin, X., Yi, Z., and Xiao, Y. (2017).

Optimization of RNA 3D structure prediction using evolutionary restraints of

nucleotide-nucleotide interactions from direct coupling analysis. Nucleic

Acids Res. 45, 6299–6309.

Kacer, V., Scaringe, S.A., Scarsdale, J.N., and Rife, J.P. (2003). Crystal struc-

tures of r(GGUCACAGCCC)2. Acta Crystallogr. D Biol. Crystallogr. 59,

423–432.

Kalvari, I., Argasinska, J., Quinones-Olvera, N., Nawrocki, E.P., Rivas, E.,

Eddy, S.R., Bateman, A., Finn, R.D., and Petrov, A.I. (2018). Rfam 13.0: shifting

to a genome-centric resource for non-coding RNA families. Nucleic Acids Res.

46, D335–D342.

Kappel, K., and Das, R. (2019). Sampling native-like structures of RNA-protein

complexes through Rosetta folding and docking. Structure 27, 140–151.

Kappel, K., Liu, S., Larsen, K.P., Skiniotis, G., Puglisi, E.V., Puglisi, J.D., Zhou,

Z.H., Zhao, R., and Das, R. (2018). De novo computational RNA modeling into

cryo-EM maps of large ribonucleoprotein complexes. Nat. Methods 15,

947–954.

Kappel, K., Zhang, K., Su, Z., Kladwang, W., Li, S., Pintilie, G., Topkar, V.V.,

Rangan, R., Zheludev, I.N., Watkins, A.M., et al. (2019). Ribosolve: rapid deter-

mination of three-dimensional RNA-only structures. BioRxiv. https://doi.org/

10.1101/717801.

Krokhotin, A., Houlihan, K., and Dokholyan, N.V. (2015). iFoldRNA v2: folding

RNA with constraints. Bioinformatics 31, 2891–2893.

Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K., and Moult, J. (2019).

Critical assessment of methods of protein structure prediction (CASP)—round

XIII. Proteins 87, 1011–1020.

Laing, C., and Schlick, T. (2010). Computational approaches to 3Dmodeling of

RNA. J. Phys. Condens. Matter 22, 283101.

Leonard, G.A., McAuley-Hecht, K.E., Ebel, S., Lough, D.M., Brown, T., and

Hunter, W.N. (1994). Crystal and molecular structure of

r(CGCGAAUUAGCG): an RNA duplex containing two G(anti)$ A(anti) base

pairs. Structure 2, 483–494.

Leontis, N.B., and Zirbel, C.L. (2012). Nonredundant 3D structure datasets for

RNA knowledge extraction and benchmarking. In RNA 3D Structure Analysis

and Prediction, E. Westhof and N.B. Leontis, eds. (Springer), pp. 281–298.

Li, Y., Hu, J., Zhang, C., Yu, D.-J., and Zhang, Y. (2019). ResPRE: high-accu-

racy protein contact prediction by coupling precision matrix with deep residual

neural networks. Bioinformatics 35, 4647–4655.

Liu, Y., Wilson, T.J., and Lilley, D.M.J. (2017). The structure of a nucleolytic ri-

bozyme that employs a catalytic metal ion. Nat. Chem. Biol. 13, 508–513.
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Ferré-D’Amaré, A.R. (2014). Structural basis for activity of highly efficient RNA

mimics of green fluorescent protein. Nat. Struct. Mol. Biol. 21, 658–663.

Watkins, A.M., Geniesse, C., Kladwang, W., Zakrevsky, P., Jaeger, L., and

Das, R. (2018). Blind prediction of noncanonical RNA structure at atomic accu-

racy. Sci. Adv. 4, eaar5316.

Watkins, A.M., Rangan, R., and Das, R. (2019). Chapter 9. Using Rosetta for

RNA homology modeling. In Methods in Enzymology, RNA Recognition, Vol.

623, A.E. Hargrove, ed. (Academic Press), pp. 177–207.

Weinreb, C., Riesselman, A.J., Ingraham, J.B., Gross, T., Sander, C., and

Marks, D.S. (2016). 3D RNA and functional interactions from evolutionary cou-

plings. Cell 165, 963–975.

Xiong, Y., and Sundaralingam, M. (2000). Two crystal forms of helix II of

Xenopus laevis 5S rRNA with a cytosine bulge. RNA 6, 1316–1324.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Rhiju Das
(rhiju@stanford.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Applications for running FARFAR2 and scripts for working with PDB files for use with this algorithm have been contributed as part of
the Rosetta software suite, which is free for academic use (https://rosettacommons.org). FARFAR2 is available as a webserver on
ROSIE at https://rosie.rosettacommons.org/farfar2. The scripts used to set up the benchmarks studied in this work are available
at https://github.com/DasLab/rna_benchmark. The final raw dataset is deposited with Stanford Library’s PURL system at https://
purl.stanford.edu/wn364wz7925, and a selection of models – the top 10 clusters for each RNA-Puzzle, along with the native structure
and a single restrained native – are available at https://github.com/DasLab/FARFAR2-Puzzles-Clusters.

METHOD DETAILS

An Automated Fragment Assembly Benchmark
Two technical improvements within Rosetta permitted rapid progress on a fully automated fragment assembly protocol. First, FAR-
FAR2 jobs may be fully specified and run using a single command line, rather than requiring pre-configuration using a ‘params file’
with a complex language (Das and Baker, 2007); example command-lines are given below (‘FARFAR2 Execution on Benchmark
Cases’). Second, we developed a benchmarking framework (Watkins et al., 2018), available at https://github.com/daslab/
rna_benchmark with documentation and instructions.

Updated Fragment Set
We obtained release 3.10 of representative nonredundant 3D structures from BGSU’s RNA 3D Hub (Leontis and Zirbel, 2012). We
obtained the indicated PDB chains and parsed them into fragment and jump (base-base rigid body transformations for base pairs)
database files using the following command lines:

rna_database -s *_RNA.pdb -vall_torsions
RICHARDSON_RNA18_2.5_revised.torsions
-cut_at_rna_chainbreak true
-ignore_zero_occupancy false -guarantee_no_DNA true

rna_database -s *_RNA.pdb -jump_database true -cut_at_rna_chainbreak true
-ignore_zero_occupancy false -guarantee_no_DNA true
-out:file:o RICHARDSON_RNA18_2.5_revised.jump

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Previous RNA-Puzzles Submissions RNA-Puzzles http://www.rnapuzzles.org/results/https://

github.com/RNA-Puzzles/

completed_dataset

Software and Algorithms

Rosetta RosettaCommons https://www.rosettacommons.org/

software/academic

PyMOL Schrödinger https://www.schrodinger.com/pymol

rna_benchmark package This paper https://github.com/DasLab/

rna_benchmark
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Fragment Homology Exclusion
Benchmarks of fragment assembly approaches can give misleading overestimates of accuracy if fragments of the experimental
(‘native’) structure are included during modeling. In order to better mimic blind prediction scenarios in which the experimental
structure is not available at the time of modeling, we ensured that our fragment libraries were free of contamination from the native
structures employed in the benchmarks through a ‘‘fragment homology exclusion’’ option implemented in FARFAR and controlled by
command-line options; see also (Watkins et al., 2018). In this mode, all six-nucleotide contiguous stretches of RNA to be built are
extracted from the experimental structure, and any fragments in the library that are deemed too similar to the experimental structure
are excluded as possible contamination from that experimental structure or a close homolog. More specifically, these ranges of
structure are compared by heavy-atom RMSD to every fragment in the fragment library with matching purine/pyrimidine content,
and fragments with RMSD less than 1.2 Å from the experimental structure are eliminated from consideration.

Modes of Applying Secondary Structure Information
In mostmodeling cases we have encountered, models of secondary structure were previously available based on expert analysis, ther-
modynamic modeling packages (Hofacker and Lorenz, 2014; Mathews, 2006), and/or sequence alignment information. Such known
secondary structure (see Table S4) can now be specified either via command-line or in an input text file. The FARFAR2 protocol can
apply this secondary structure information in six ways. First, to replicate the original FARNA style of simulation, onemay specify no sec-
ondary structure at all. Second, a specified secondary structure can provide energetic ‘‘base pair constraints’’ (see FARFAR2 Execution
onBenchmark Cases below) that tend to drawpaired residues together, introduced in (Das et al., 2010). Base pair constraints consist of
harmonic restraints placed on the distance between correspondingWatson-Crick edge atoms (1.9 Å with a standard deviation of 0.1 Å)
as well as a harmonic restraint placed on the distance between sugar C1 atoms (10.5 Å with a standard deviation of 1.0 Å) to favor
paired, rather than stacked-and-tilted, conformations. The influence of these constraints are ramped up over each round of low-reso-
lutionmodeling, then applied at full strength duringminimization. Third, provision of the -fixed_stems flagmakes base pairing geometry
rigid in Rosetta’s kinematic representation. Fourth and fifth, helical stems may be generated and then provided as fixed inputs to the
simulation, either as individual ideal helices or as ensembles mimicking thermal fluctuations, respectively, as described in (Cheng et al.,
2015; Miao et al., 2015). This procedure is automated by the rna_benchmark system but may be carried out manually using scripts
from the Rosetta tools directory (seeSetting upHelices below). Sixth, helix flexibilitymay be simulated directly in a kinematically realistic
way by sampling from a library of ‘‘base pair steps’’. Base pair step moves keep the base paired secondary structure fixed while sam-
pling orientation changes between consecutive base pairs seen in the crystallographic database; Rosetta’s implementation is gener-
alized to permit realistic sampling of stems with interrupting nucleotide bulges on one side, as well. This mode had not been previously
described or tested but is now the default mode for Rosetta’s rna_denovo application, due to its superior performance in the bench-
marking described in the main text and Supplemental Information.

Benchmark Cases
The three benchmarks evaluated were intended to evaluate the performance of the FARFAR2 ‘best practices’ on challenges of qual-
itatively different scales. The original FARNA benchmark and the stepwise Monte Carlo benchmark examined relatively small struc-
tures, though many representative examples in the latter case were fairly complex. In contrast, the RNA-Puzzles benchmark, like the
six blind challenges undertaken to test this method, examined entire folded RNAs, typically with tertiary contacts between elements
distal in secondary and tertiary structure.

The FARFAR2-Classics benchmark comprised 18 challenges, each of which was either a single-stranded stem-loop or a duplex.
Two structures that overlapped exactly with the FARFAR2-Motifs benchmark (see below) were omitted from the set of 20 structures
(1J6S, a G-quadruplex; 1ZIH, a GCAA tetraloop) used to benchmark the original FARNA algorithm (Das and Baker, 2007). In each
case, the challenge structure was the entire RNA solved experimentally. These cases were approached in four distinct modes of sec-
ondary structure specification: none, ‘‘base pair constraint’’ generation, fixed helical ‘‘chunks,’’ and ‘‘base pair step’’ sampling. Either
the prior default fragment library or one generated for this work were used to sample loop nucleotides and, if applicable, base pair
steps. Finally, results for each challenge were either left un-minimized or optimized in one of two scoring functions: the original FAR-
FAR refinement scoring function (hereafter ‘‘hires’’) or the modern RNA scoring function developed for stepwise Monte Carlo (orig-
inally termed rna_res_level_energy4.wts, hereafter called ‘‘res4’’) (Watkins et al., 2018). (The same low-resolution structures were
minimized to produce the final data set.) As in the original FARNA paper, 50,000 structures were generated for each simulation. Addi-
tionally, as a control, we replicated the exact parameters of the original FARNA work, including an eleven-year-old fragment library
based only on the H. marismortui 23S ribosome (PDB: 1JJ2). This replication performed better on the majority of cases, suggesting
some level of Rosetta simulation improvement and bug fixes since 2007 (see Figure S1, Table S1). For this comparison, we had to
reduce the fragment homology exclusion radius from 1.2 Å to 0.5 Å or else we were unable to discover fragments for cases 1CSL,
1DQF, 1ESY, 1I9X, 1KD5, 1Q9A, 1QWA, 1XJR, 2A43, or 2F88. Informed by a comparison of these simulation conditions, we decided
to take the SWM ‘‘res4’’ scoring function and the updated fragment libraries as the FARFAR2 standard. We also chose to specify
secondary structure through base pair steps. Though the advantage over fixed helical stems was not obvious across the FARNA
benchmark, we anticipated thatmore complex tertiary environments, such as those found in typical whole structure prediction cases,
would benefit further from some form of helix flexibility, and this was later confirmed (seemain text on FARFAR2-Puzzles; and Figures
S6 and S7). These optimal FARFAR2 parameters also proved robust to variations in other simulation settings. We repeated the whole
benchmark set with the final FARFAR2 settings but disabled all low-resolution filters (which restart simulations that have generated
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structures with chainbreaks, missing base pairs, or bad scores). We also tested reducing the ten-round fragment assembly schedule
to only one or two rounds, andwe obtained similar results (Figure S1D). None of these configuration variants ought to be taken as best
practices on their own, however, particularly for larger RNA folds. Setting up only one simulation round, for example, increases the
computational expense more than fourfold on average, and while score, base pair, and chainbreak filters may not be essential for
simple folds that are quick to energy-minimize, we reasoned that they would prevent needless computation on large RNAs.
The FARFAR2-Motifs benchmark set was chosen because it was a direct expansion of the earlier FARFAR benchmark (Das et al.,

2010), augmented with challenges that demonstrated specific features of FARFAR2 (such as ‘aligned’ cases, which permit expert
specification of the relative orientation of a subset of the native structure; and support for chemically modified nucleotides). This
expansion originated when developing the stepwise Monte Carlo (SWM) algorithm and included single-stranded loops, two-way
and multi-way junctions, tertiary contacts, and motifs that exist outside of a Watson-Crick context (such as quadruplexes (Pan
et al., 2006) and parallel strands (Safaee et al., 2013)). We found that SWM frequently produced excellent native RMSDs. We gener-
ated 10,000 structures for each benchmark case: fewer than for FARFAR2-Classics because most of the above structures were
smaller and structurally simpler, and because there are more than four times as many benchmark cases. Though SWM delivers per-
formance unattainable by fragment methods, strong performance on this benchmark set would suggest the ability of fragment as-
sembly methods to provide good starting points for higher-resolution simulation at a fraction of the computational cost required.
The FARFAR2-Puzzles benchmark set includes all RNA-Puzzles for which solutions and submissions were available at the time of

this study: that is, each of the first 21 except for RNA-Puzzle 16, and including both bound and unbound states of RNA-Puzzle 14. In
some cases, a large proportion of the problemwas known approximately by homology, while in others only the helices were available
as starting information. Each problem was run to generate several thousand structures, aiming for substantial sampling comparable
to efforts deployed for actual RNA-Puzzles challenges.

FARFAR2 Execution on Benchmark Cases
We tested multiple combinations of settings for the FARFAR2 protocol. We present here the relevant command lines for each
possible configuration, as operated on the 157D challenge (an RNA duplex containing two G-A base pairs) from FARFAR2-Classics).
(The command line argument to run with a particular set of conditions, such as secondary structure specification vs. number of
rounds, are mutually independent of each other and can be recombined.)
Updated Recommended Default Settings
Before presenting details of benchmark conditions, here is an example of how one might specify a modeling problem using the

FARFAR2 defaults. Suppose one is concerned with the aforementioned RNA duplex. First, prepare a FASTA-formatted file,
157d_orig.fasta:

>157D_orig A:1-12 B:13-24
cgcgaauuagcgcgcgaauuagcg

Then, prepare a file containing the dot -bracket notation secondary structure, 157d.secstruct. Since only the first line of the
secondary structure file is read, one may include the sequence as the second line as a useful point of reference.

(((.((((.(((,))).)))).)))
cgcgaauuagcg,cgcgaauuagcg

Finally, execute the following command:

rna_denovo -fasta 157d_orig.fasta -secstruct_file 157d.secstruct-minimize_rna true

Onemay provide a parameter -nstruct to control howmany structures are generated by each execution of the above command;
the parameter -out:file:silent names the output file where results are accumulated.
FARNA Replication
An exact replication of the original FARNA benchmark required a special flag to use the original fragment library containing only a

single ribosome crystal structure (PDB 1JJ2). The specification of a single base pair (as found in 157d_orig_START1_157d.pdb) is
the minimum necessary information to seed simulation of a bimolecular RNA.

rna_denovo -fasta 157d_orig.fasta -native 157d_orig_NATIVE_157d.pdb
-s 157d_orig_START1_157d.pdb -minimize_rna false -cycles 20000 -nstruct 20
-use_1jj2_torsions true

No secondary structure specification, no minimization, old fragments
This run replicates the FARNA benchmark conditions but uses the fragment set that was in regular use by 2010.

rna_denovo -fasta 157d_orig.fasta -native 157d_orig_NATIVE_157d.pdb
-s 157d_orig_START1_157d.pdb -minimize_rna false -cycles 20000 -nstruct 20
-fragment_homology_rmsd 1.2 -exclusion_match_type MATCH_YR
-jump_library_file 1jj2_RNA_jump_library.dat
-vall_torsions RICHARDSON_RNA09.torsions -bps_moves false
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No secondary structure specification, no minimization, updated fragments
This run uses an updated set of fragments generated for this work.

rna_denovo -fasta 157d_orig.fasta -native 157d_orig_NATIVE_157d.pdb
-s 157d_orig_START1_157d.pdb -minimize_rna false -cycles 20000 -nstruct 20
-fragment_homology_rmsd 1.2 -exclusion_match_type MATCH_YR -bps_moves false

No secondary structure specification, minimization under ‘rna_hires.wts’, updated fragments
This run uses full-atom minimization in the ‘hires’ scoring function.

rna_denovo -fasta 157d_orig.fasta -native 157d_orig_NATIVE_157d.pdb
-s 157d_orig_START1_157d.pdb -minimize_rna true -cycles 20000 -nstruct 20
-fragment_homology_rmsd 1.2 -exclusion_match_type MATCH_YR
-score:weights rna/denovo/rna_hires.wts -bps_moves false

No secondary structure specification, minimization under ‘rna_res_level_energy4.wts’, updated fragments
This run uses full-atom minimization in the preferred ‘res4’ scoring function.

rna_denovo -fasta 157d_orig.fasta -native 157d_orig_NATIVE_157d.pdb
-s 157d_orig_START1_157d.pdb -minimize_rna true -cycles 20000 -nstruct 20
-fragment_homology_rmsd 1.2 -exclusion_match_type MATCH_YR -bps_moves false

Base pair constraints, minimization under ‘rna_res_level_energy4.wts’, updated fragments
This run specifies a secondary structure to generate base pair constraints; it does not require a starting PDB.

rna_denovo -fasta 157d_orig.fasta -native 157d_orig_NATIVE_157d.pdb
-secstruct " (((.((((.(((,))).)))).)))" -minimize_rna true -cycles 20000
-nstruct 20 -fragment_homology_rmsd 1.2 -exclusion_match_type MATCH_YR -bps_moves false

Fixed stem kinematics, minimization under ‘rna_res_level_energy4.wts’, updated fragments

rna_denovo -fasta 157d_orig.fasta -native 157d_orig_NATIVE_157d.pdb
-secstruct "(((.((((.(((,))).)))).)))" -minimize_rna true -cycles 20000
-nstruct 20 -fragment_homology_rmsd 1.2 -exclusion_match_type MATCH_YR -bps_moves false -fixed_stems

Helix ensembles, minimization under ’rna_res_level_energy4.wts’, updated fragments

rna_denovo -in:file:silent helix1.out helix2.out helix3.out -fasta 157d_orig.fasta -native
157d_orig_NATIVE_157d.pdb
-secstruct "(((.((((.(((,))).)))).)))" -minimize_rna true -cycles 20000
-nstruct 20 -fragment_homology_rmsd 1.2 -exclusion_match_type MATCH_YR -bps_moves false

Base pair steps, minimization under ‘rna_res_level_energy4.wts’, updated fragments
This run specifies a secondary structure to sample base pair steps; it does not require a starting PDB.

rna_denovo -fasta 157d_orig.fasta -native 157d_orig_NATIVE_157d.pdb
-secstruct " (((.((((.(((,))).)))).)))" -minimize_rna true -cycles 20000
-nstruct 20 -fragment_homology_rmsd 1.2 -exclusion_match_type MATCH_YR

Fixed helical inputs, minimization under ‘rna_res_level_energy4.wts’, updated fragments
This run uses multiple fixed input stems.

rna_denovo -fasta 157d_orig.fasta -native 157d_orig_NATIVE_157d.pdb
-s 157d_chunks_HELIX1_157d.pdb 157d_chunks_HELIX2_157d.pdb 157d_chunks_HELIX3_157d.pdb
-minimize_rna true -cycles 20000 -nstruct 20
-fragment_homology_rmsd 1.2 -exclusion_match_type MATCH_YR -bps_moves false

Base pair steps, minimization under ‘rna_res_level_energy4.wts’, updated fragments, no filters
This run turns off filters (for score and chain closure) used during the low-resolution phase to improve the quality of output struc-

tures at the cost of additional run time.

rna_denovo -fasta 157d_orig.fasta -native 157d_orig_NATIVE_157d.pdb
-secstruct " (((.((((.(((,))).)))).)))" -minimize_rna true -cycles 20000
-nstruct 20 -fragment_homology_rmsd 1.2 -exclusion_match_type MATCH_YR
-no_filters
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Base pair steps, minimization under ‘rna_res_level_energy4.wts’, updated fragments, one round of fragment assembly
Typical runs of fragment assembly go through ten rounds: three rounds of 3-mer fragment insertion, three of 2-mers, and four of 1-

mers, while ramping the weights of particular score terms. Setting the number of total rounds to one or twomakes the protocol much
more abrupt in its transitions but does not affect other simulation settings.

rna_denovo -fasta 157d_orig.fasta -native 157d_orig_NATIVE_157d.pdb
-secstruct " (((.((((.(((,))).)))).)))" -minimize_rna true -cycles 20000
-nstruct 20 -fragment_homology_rmsd 1.2 -exclusion_match_type MATCH_YR
-rounds 1

Setting up Helices
To use fixed helical inputs for a FARFAR structure prediction challenge without using the rna_benchmark setup scripts, a Python
script is available within Rosetta tools:

rna_helix.py -seq ggg ccc

will create a three base pair helix of sequence GGGCCC, numbered 1-6 with no chain letter. To impose some reasonable
numbering:

renumber_pdb_in_place.py helix.pdb A:1-3 B:1-3.

Restrained Native Simulations
To generate the near-native ensembles of models that were analyzed to determine energy gaps for FARFAR2-Puzzles, we wished to
replicate the exact simulation conditions from the benchmark. In particular, it was important to employ the same input template struc-
tures, because the accuracy of those templates provides a lower limit to the accuracy of the simulation as a whole. To this end, we
made two modifications to the benchmark runs. First, we added harmonic restraints between every heavy-atom in the model and its
corresponding position in the native crystal structure, with a standard deviation of 1.0 Å and no penalty for deviations under 4.0 Å.
This was achieved via adding to the command line:

-align_pdb native.pdb -rmsd_screen 4.0

Second, we removed the flags that were specifically removing all fragments homologous to the native structure from the database
to ensure discovery of conformations near the experimental (‘native’) structure, i.e., the removal of the flags -fragment_homolo-
gy_rmsd 1.2 -exclusion_match_type MATCH_YR.
Finally, due to the extensive coordinate restraints, we discovered that Rosetta’s L-BFGS minimizer would occasionally halt due to

mismatched numeric/analytic derivatives (common when derivatives are very high due to limited floating point precision). To prevent
this issue from resulting in anomalously high energies, we minimized the resulting structures once more using the rna_minimize
application and the same flags.

Sources of Experimental PDB Structures
The structure sources for the motif benchmark have been described previously (Watkins et al., 2018). The structures for the FARNA
benchmark are as follows: PDB codes 157D (Leonard et al., 1994); 1A4D (Dallas and Moore, 1997); 1CSL (Ippolito and Steitz, 2000);
1DQF (Xiong and Sundaralingam, 2000); 1ESY (Amarasinghe et al., 2000); 1I9X (Berglund et al., 2001); 1KD5 (Kacer et al., 2003);
1KKA (Cabello-Villegas et al., 2002); 1L2X (Egli et al., 2002); 1MHK (Szép et al., 2003); 1Q9A (Correll et al., 2003); 1QWA (Finger
et al., 2003), 1XJR (Robertson et al., 2005); 255D (Holbrook et al., 1991); 283D (Baeyens et al., 1996); 28SP (Schmitz et al., 1999);
2A43 (Pallan et al., 2005), 2F88 (Seetharaman et al., 2006).
The structures for the RNA-Puzzles benchmark are:
PDB codes 3MEI; 3MEI (Dibrov et al., 2011a); 3P59 (Dibrov et al., 2011b); 3OXE (Huang et al., 2010); 3V7E (Baird et al., 2012); 4P9R

(Meyer et al., 2014); 4GXY (Peselis and Serganov, 2012); 4R4V (Suslov et al., 2015); 4L81 (Trausch et al., 2014); 5KPY (Porter et al.,
2017); 4LCK (Zhang and Ferré-D’Amaré, 2013); 5LYU (Martinez-Zapien et al., 2017); 4QLM (Ren and Patel, 2014); 4XW7 (Trausch
et al., 2015); 5DDP (Ren et al., 2015); 5DDO (Ren et al., 2015); 5DI4 (Mir et al., 2015); 5K7C (Ren et al., 2016); 5TPY (Akiyama
et al., 2016); 5T5A (Liu et al., 2017); 5Y87 (Zheng et al., 2017), 5NWQ (Huang et al., 2017).
Structures used as templates in the blind predictions: 3P49 (Butler et al., 2011), 2YGH (Schroeder et al., 2011), 4TS2 (Warner et al.,

2014), 1GID (Cate et al., 1996), 4LCK (Zhang and Ferré-D’Amaré, 2013).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Analysis
FARFAR2 simulations produce a compressed Rosetta-format file called a ‘silent file’ representing each trajectory endpoint. These
files may be turned into PDB-format coordinate files using a Rosetta executable, extract_pdbs. They also hold scoring infor-
mation; each line beginning with SCORE: either describes what scoring terms were used in generating the silent file or the values
for that particular structure. Using these ‘score-lines’, the programs grep and awk, and the GNU coreutils sort and wc, we sorted
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the silent file by total score and by RMSD, and thereby selected the best-RMSD structure, the best-score structure, and the best-
RMSD structure from among the top 1% by RMSD. As an example, the following command sorts the ‘score-lines’ by total energy,
takes the top 500 lines, re-sorts those lines by RMSD, and prints out the ‘tag’ of the best-RMSD structure from those top 500
by score.

grep "^SCORE:" farna_rebuild.out | grep -v description | sort -nk2 | head -n 500 | sort -nk24 | head -n 1 |
awk ’{print $NF}’

The following Rosetta command will extract that specified model $TAG as a PDB file called $TAG.pdb.

extract_pdbs -in:file:silent farna_rebuild.out -tags $TAG

Model Selection
In order to produce a selection of models for comparison to RNA-Puzzles submissions, we attempt a variety of clustering strategies.
The following command line will cluster the lowest energy $NN models with a $RR Å radius:

rna_cluster -in:file:silent farna_rebuild.out -out:file:silent farna_rebuild.clustered.out
-nativefarna_rebuild.clustered.out-native157d_orig_NATIVE_157d.pdb-nstruct$NN-cluster_radius$RR

We chose three values for $NN: 400 (the program default), 1% of the decoys, or 2% of the decoys. We also surveyed possible
values for $RR: for constant values, we chose 2.0, 3.0, 5.0, and 7.0; we also employed an ‘adaptive’ clustering radius that responds
to how tightly converged the top models are for a trajectory – for this radius, we chose 0.5, 1.0, or 1.5 times the average pairwise
RMSD among the top ten models for the run in question. A 5.0 Å radius and 400 models were the original choice and also ended
up being the best-performing choice by a slight margin.

For comparisons with the original FARNA algorithm analysis of the FARFAR2-Classics benchmark, the above clustering command
was used with $NN = 5000 and $RR = 3.0 (Das and Baker, 2007). For comparisons with the original SWM execution of the FARFAR2-
Motifs benchmark, the above clustering command was used with $NN = 400 and $RR = 2.0 (Watkins et al., 2018).

Since biologically relevant RNA molecules may adopt multiple relevant conformations, FARFAR2 users specifically interested in
producing a conformational ensemble for further analysis may wish to use a cluster radius small enough that expected suboptimal
conformational variations would not be ‘‘hidden’’ by lower energy structures falling within the clustering radius.

Measures of Prediction Accuracy
Wemeasure prediction accuracy in the benchmarks using heavy-atom root-mean-squared deviation (RMSD). RMSD is obtained by
aligning the model structure to the native structure and taking the average distance between all heavy-atoms (i.e., non-hydrogens) in
the structure.

Translating RMSD Thresholds
The RMSD100 measure allows the comparison of RMSDs on different structure sizes by scaling to 100 residues (Carugo and Pon-
gor, 2008):

RMSD100ðnÞ =
RMSDn

#1:3+ 0:5 ln n

An extension of this measure (Kappel and Das, 2019) permits scaling between any numbers of residues:

RMSDmðnÞ = RMSDn
#1:3+ 0:5 lnm

#1:3+ 0:5 ln n

We applied this to convert RMSD 4.0 Å (the threshold treated as ‘native-like’ in the original FARNA publication and used for the
FARFAR2-Classics benchmark in this work) to a threshold for FARFAR2-Puzzles. The FARFAR2-Classics benchmark had a median
length of 26 residuesmodeled de novo; the median FARFAR2-Puzzles case featured 71. Because of the presence of a few long RNA-
Puzzle problems, we also separately considered 18 ‘‘short problems’’ with median 68 residues modeled de novo, and 3 ‘‘long prob-
lems’’ with median 130. Applying the above formula to convert (4.0 Å, 26) yields (9.2 Å, 71) or else (9.1 Å, 68); (13.8 Å, 130). We use the
tighter 9.1 Å threshold for either ‘‘overall’’ or short problems alone; and 13.8 Å for the largest three problems. These thresholds also
corresponded well to visual assessment of whether models were ‘native-like’ for each of the size ranges (see, e.g., Figures 3, 5,
and 7).
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Figure S1. Related to Figure 1. FARFAR2 performance on the Classics benchmark. 2 

We conducted many pairwise comparisons on the top-1%-RMSD values of the Classics 3 

benchmark, where we altered only one variable between the setting chosen to define FARFAR2 4 

and the complementary FARFAR/FARNA condition. (A) Optimization in the energy function 5 

originally developed for SWM (y-axis) was more effective than the original FARFAR energy 6 

function (x-axis), giving better RMSD in 91 of 144 possible comparisons. It was also 7 

considerably more effective than no minimization at all (not shown), giving better RMSD in 102 8 

cases, often by considerable margins. (B) Providing secondary structure information, particularly 9 

as fixed helices or base pair steps (y-axis), offered substantial advantages over energetic 10 



 2 

restraints (x-axis) or no secondary structure information. Fixed stems produced a superior RMSD 1 

in 68 of 108 possible such comparisons against other secondary structure specification methods, 2 

while base pair steps produced a superior RMSD in 76 of 108 comparisons. (C) Some benefit 3 

was also seen by using a newly obtained fragment library (y-axis) over the original FARFAR 4 

fragment library (x-axis), giving better results in 43 of 72 comparisons and providing the greatest 5 

advantage in the hardest problems. (D) A full comparison of simulation results using “res4” 6 

minimization, versus FARNA simulation and controls using the FARFAR2 simulation 7 

parameters but no filters or only one or two rounds of fragment assembly.  8 

9 



 3 

 1 

 2 
Figure S2. Related to Figure 1. FARFAR2 yields a superior RMSD to SWM among its five low-3 

energy cluster centers in 44 of 82 benchmark cases. FARFAR2’s particular advantage lies in 4 

cases where both SWM and FARFAR2 fail to obtain 1.5 Å RMSD accuracy: of the 6 cases 5 

where SWM provides worse than 5.0 Å RMSD, FARFAR2 provides a superior RMSD in 5. In 6 

contrast, among the 42 cases where SWM achieves better than a 1.5 Å RMSD, FARFAR2 7 

obtains superior RMSD in only 19.   8 
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 1 
Figure S3. Related to Figure 3. Detailed depictions of FARFAR2-Puzzles benchmark cases 1-7, 2 

including the best originally submitted model, the FARFAR2 model with lowest RMSD in the 3 

top 1% of models overall, the lowest RMSD cluster center among the top 10 by energy, and the 4 

native structure. Models are colored to highlight distinct secondary structure elements. 5 

 6 

 7 

 8 



 5 

1 
Figure S4. Related to Figure 3. Detailed depictions of FARFAR2-Puzzles benchmark cases 8-2 

14b, including the best originally submitted model, the FARFAR2 model with lowest RMSD in 3 

the top 1% of models overall, the lowest RMSD cluster center among the top 10 by energy, and 4 

the native structure. Models are colored to highlight distinct secondary structure elements. 5 

 6 

 7 

 8 
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 1 
Figure S5. Related to Figure 3. Detailed depictions of FARFAR2-Puzzles benchmark cases 14f-2 

21, including the best originally submitted model, the FARFAR2 model with lowest RMSD in 3 

the top 1% of models overall, the lowest RMSD cluster center among the top 10 by energy, and 4 

the native structure. Models are colored to highlight distinct secondary structure elements.5 
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Figure S6. Related to Figure 5. Base pair steps provide the benefits of pre-generated helical 

ensembles. We conducted a detailed comparison of the performance of fixed helices versus base 

pair step sampling on both helices of RNA-Puzzle 21 (left and right). (A) We directly compared 

the two approaches for RNA-Puzzle 21 (native structures in blue). For both helices, fixed stems 

(pink) yielded a worse RMSD to the native helix conformation than base pair step sampling 

(green) (1.6 Å > 1.3 Å; 0.8 Å > 0.5 Å). (B) These improvements represented geometrically 

important flexibility, when viewed in the context of the full structure: the tightly pseudoknotted 

structure of Puzzle 21 features no external stacking on either helix, and deviations from ideality 

are essential within each helix in order to relieve strain and achieve conformations where the 

helix termini have no residues stacked upon them.  



 8 

 
Figure S7. Related to Figure 5. A direct comparison of eight puzzles run with base pair step 

sampling (i.e., standard FARFAR2; pink points with red cluster centers) with an identical 

protocol using fixed helical stems (preserving the scoring function and fragment library; light 

green points with dark green cluster centers) confirms the utility of explicit sampling of helical 

flexibility. 
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Figure S8. Related to Figure 3. Drawing subsamples from the respective model sets suggests 

that FARFAR2 (orange) begins to sample native-like (< 9.1 Å) models within its lowest energy 

percentile more rapidly than a reproduction of original FARFAR with only base pair constraint 

inputs. The results are especially stark on structures with substantial structure from input 
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templates (RNA-Puzzles 19, 20, 21), but FARFAR requires 10x or 100x as many structures to 

obtain comparable results in the remaining cases as well. 
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Figure S9. Related to Figure 3. For RNA-Puzzles 1-12, heavily restrained simulations (orange) 

forced to resemble the native reliably achieve sub-Ångstrom RMSDs, but often exhibit higher 

energies than the FARFAR2 model ensembles (blue). 
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Figure S10. Related to Figure 3. For RNA-Puzzles 13-21, heavily restrained simulations 

(orange) forced to resemble the native reliably achieve sub-Ångstrom RMSDs, but often exhibit 

higher energies than the FARFAR2 model ensembles (blue).  
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Figure S11. Related to Figure 3. (A) Larger puzzles tended to feature worse sampling, as judged 

by the total population of their top 10 clusters, though some smaller puzzles remain 

undersampled. (B) Nonetheless, across all puzzle sizes, the top 1% RMSDs from FARFAR2 

simulations are superior to the threshold for a significant RNA structure prediction with specified 

secondary structure, which is given by the Weeks-Dokholyan power law relationship 5.1 N0.41 - 

15.8, where the shaded orange band represents a 95% CI (Hajdin, Ding, Dokholyan, & Weeks, 

2010). (C) Larger puzzles also more often feature significantly positive or negative energy gaps. 
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Table S1. Related to Figure 1. Fragment assembly performance depends on multiple parameters 

optimized in this study. The performance of FARFAR2 (gauged by the lowest RMSD obtained 

from the 1% lowest energy models) was measured on the original FARNA benchmark to 

compare scoring functions, secondary structure input, fragment sets, and simulation guidance 

parameters. This study determined the ideal simulation parameters for use in the remaining 

larger-scale benchmarks. 
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1 
 2 
         no 

filters 
-rounds 

1 
-rounds 

2 

Fragment 
library Old New New New New 

Mode of SS 
input None Fixed helix input 

Secondary 
structure 

constraints Base pair steps None Fixed helix input 

Secondary 
structure 

constraints Base pair steps 

Base 
pair 
steps 

Base 
pair 
steps 

Base 
pair 
steps 

Minimization 
scoring 
function n/a hires rna4 n/a hires rna4 n/a hires rna4 n/a hires rna4 n/a hires rna4 n/a hires rna4 n/a hires rna4 n/a hires rna4 rna4 rna4 rna4 

157d 1.385 0.797 0.513 1.363 0.763 0.556 1.288 1.288 1.288 2.003 1.258 0.941 0.839 0.653 0.457 1.470 0.786 0.476 1.065 1.065 1.065 1.644 0.947 0.618 1.018 1.651 0.944 

1a4d 5.266 6.185 5.352 3.370 2.884 2.556 5.581 7.052 3.786 3.381 2.823 3.101 4.785 4.412 3.782 3.863 3.035 3.240 6.818 4.651 3.732 3.751 2.737 3.036 3.341 3.503 3.495 

1csl 2.472 2.275 1.814 2.303 3.133 1.956 2.160 2.160 2.160 3.004 3.066 2.508 2.021 1.971 2.297 2.323 2.399 1.914 1.639 2.094 1.639 2.592 3.341 2.368 2.592 2.164 2.273 

1dqf 0.968 0.699 0.972 0.704 0.708 0.791 1.064 0.938 1.087 1.028 1.029 0.933 1.621 1.242 1.072 0.699 0.768 1.159 1.645 1.842 1.810 0.929 0.989 0.666 0.772 0.726 1.226 

1esy 3.141 2.334 2.217 1.866 1.743 1.543 2.788 3.170 3.134 2.269 2.087 1.995 2.459 2.459 2.459 1.965 1.925 1.637 2.770 2.834 2.770 2.048 2.130 1.842 2.059 1.989 1.871 

1i9x 1.866 1.801 1.819 2.504 3.264 2.937 1.887 1.947 1.887 2.425 2.753 2.462 1.675 1.715 1.677 2.643 3.382 2.978 2.853 2.857 2.293 2.285 2.320 1.558 2.315 2.361 3.396 

1kd5 3.000 2.686 2.362 3.128 2.240 2.240 2.112 2.143 2.143 2.826 1.676 1.677 3.402 2.785 2.576 3.215 2.794 2.579 2.128 2.660 1.718 2.636 1.947 1.979 1.383 2.334 1.651 

1kka 3.785 3.546 3.546 5.233 5.263 5.210 3.603 3.688 3.482 3.262 3.111 3.377 3.888 3.739 3.486 5.155 5.090 5.223 3.616 3.531 3.413 3.215 3.331 3.252 3.693 3.579 3.493 

1l2x 2.415 2.935 9.981 2.255 2.302 2.410 2.715 2.885 2.715 2.270 2.996 2.664 2.261 2.360 8.813 2.293 2.196 2.276 2.449 2.922 2.922 2.434 2.483 2.763 3.414 2.727 2.499 

1mhk 7.539 6.591 6.639 5.770 4.458 5.079 6.451 4.264 4.310 3.668 3.848 4.305 5.114 4.921 5.204 5.473 5.195 4.835 6.988 6.409 6.505 5.809 4.556 4.735 4.780 6.025 4.716 

1q9a 4.156 3.645 4.082 4.013 4.111 4.173 3.954 3.869 3.954 4.085 2.178 3.248 4.184 4.144 4.184 3.989 2.298 4.024 4.295 4.448 4.448 4.008 3.234 3.217 1.581 4.067 4.091 

1qwa 3.378 3.293 3.733 2.747 2.928 3.136 3.291 3.456 3.344 2.869 3.480 4.005 3.613 3.345 2.911 2.928 2.652 2.863 3.328 3.397 3.328 2.358 2.729 3.375 2.967 2.793 3.840 

1xjr 12.32 9.913 9.919 7.659 6.623 6.694 8.115 7.520 6.531 7.127 6.352 6.270 11.00 9.254 8.636 5.848 4.950 7.057 8.375 7.141 7.130 7.178 7.241 7.012 7.197 7.815 5.855 

255d 1.354 1.282 1.296 1.556 1.146 1.078 1.221 1.234 1.234 1.488 1.517 0.982 1.339 1.173 1.249 1.237 1.070 1.160 1.208 1.208 1.208 1.162 1.155 1.201 1.135 1.016 1.290 

283d 1.651 1.780 1.702 4.086 1.163 1.305 1.566 1.469 1.714 1.746 1.865 1.717 1.723 1.443 2.357 4.993 1.167 1.226 1.619 1.516 1.879 2.548 1.572 1.337 1.623 1.684 1.361 

28sp 2.554 2.428 2.428 3.008 2.491 2.269 2.705 2.705 2.705 2.622 2.485 2.285 2.819 2.731 2.762 2.775 2.468 2.291 2.501 2.501 2.501 2.550 2.484 2.081 2.508 2.271 2.181 

2a43 6.679 6.701 5.399 3.326 3.341 3.055 3.973 3.973 3.598 3.250 3.155 3.448 3.919 4.063 3.767 3.176 3.069 2.859 3.100 3.100 3.100 2.986 2.722 2.839 3.556 3.807 2.468 

2f88 2.822 2.856 2.285 2.156 3.143 2.491 3.976 3.639 2.879 1.896 2.053 2.250 2.876 2.608 2.298 2.333 2.388 2.278 4.334 3.201 2.293 2.294 1.977 2.183 2.256 2.026 2.008 

 3 
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Table S2. Related to Figure 1. Comparison of fragment assembly performance using the modern scoring function on the ‘motif-scale’ 1 

benchmark set versus the performance of SWM on the same benchmark. More models were generated for the FARFAR version of the 2 

benchmark, but comparable computational time was required in each case. Unlike in the original SWM work, the relevant metric 3 

compared is the best RMSD sampled from among the 1% of models with the best energy.  4 

 5 
  6 
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 1 

Benchmark Case 
FARFAR  

1% RMSD (A) 

SWM  

1% RMSD (A) 

FARFAR 

Best of 5 Cluster 

RMSD 

SWM 

Best of 5 Cluster 

RMSD 

Trans-Helix Loops 
  

  

5P_j12_leadzyme 2.56 0.82 2.56 1.22 

5P_p1_m_box_riboswitch 2.64 2.13 2.68 0.63 

3P_j55a_group_I_intron 0.27 1.72 0.42 0.40 

5P_j55a_group_I_intron 3.28 3.25 3.87 0.74 

hepatitis_C_virus_ires_IIa 3.23 3.11 3.47 2.56 

j24_tpp_riboswitch 1.38 1.22 3.51 0.72 

j23_group_II_intron 1.77 1.11 2.57 0.55 

j31_glycine_riboswitch 5.53 0.54 5.53 0.65 

l1_sam_II_riboswitch 0.67 3.14 0.89 0.83 

l2_viral_rna_pseudoknot 1.76 4.28 1.94 0.71 

23s_rrna_44_49 1.20 0.71 1.23 1.25 

23s_rrna_531_536 4.61 1.49 5.41 1.48 

23s_rrna_2534_2540 1.97 7.28 2.90 6.94 

23s_rrna_1976_1985 8.19 12.18 9.82 15.27 

23s_rrna_2003_2012 7.54 9.85 9.85 9.02 

Total cases: 15 6 9 3 12 
   

  

Apical Loops 
  

  

gcaa_tetraloop 1.36 1.18 1.55 1.14 

uucg_tetraloop 2.57 2.29 2.03 1.14 

gagua_pentaloop 0.75 2.94 0.76 1.10 

anticodon_phe 1.30 2.82 2.21 2.24 

Total cases: 4 2 2 2 2 
   

  

Two-Way Junctions, Fixed 
  

  

puzzle1_alt_fixed 1.98 0.409 2.29 1.72 

srp_domainIV_fixed 0.50 1.034 0.69 0.90 

srl_fixed 0.54 0.707 0.69 0.56 

kink_turn_fixed 0.80 2.02 1.28 1.45 

j55a_P4P6_fixed 1.78 3.20 1.86 0.55 

P5b_connect 0.76 3.63 0.76 2.68 
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gg_mismatch_fixed 1.87 0.32 2.03 0.32 

tandem_ga_imino_fixed 1.07 0.86 1.21 0.87 

tandem_ga_sheared_fixed 0.37 0.61 0.50 0.61 

hiv_rre_fixed 0.36 0.87 0.45 0.35 

j44a_p4p6_fixed 0.75 0.56 1.03 0.58 

just_tr_P4P6_fixed 0.66 0.63 0.68 0.61 

r2_4x4_fixed 0.72 1.44 1.20 1.49 

loopE_fixed 0.51 1.74 0.72 1.74 

Total cases: 14 9 5 6 8 
   

  

Three-Way Junctions, Fixed     

hammerhead_3WJ_cat_fixed 3.25 1.62 3.71 3.05 

hammerhead_3WJ_precat_fixed 1.16 1.60 1.90 1.57 

VS_rbzm_P2P3P6_fixed 0.76 0.74 1.09 0.57 

VS_rbzm_P3P4P5_fixed 1.21 1.91 1.21 1.91 

hammerhead_3WJ_cat_OMC_fix

ed 

2.85 2.16 4.56 3.04 

Total cases: 5 2 3 1 4 
   

  

Tertiary Contacts, Fixed 
  

  

tl_tr_P4P6 0.55 1.07 0.55 0.64 

hammerhead_tert_fixed 0.96 2.45 1.00 1.16 

kiss_add_fixed 2.28 3.24 2.69 2.40 

kiss_add_L2_fixed 0.52 1.50 0.69 0.71 

kiss_add_L3_fixed 1.42 2.11 1.57 0.88 

puzzle18_zika_PK 2.67 2.01 2.67 1.97 

gir1_p2.1p5_kiss_fixed 1.19 1.94 1.62 1.99 

gir1_p2p9_gaaa_minor_fixed 0.83 2.02 1.02 1.58 

t_loop_fixed 0.78 2.27 0.78 0.95 

t_loop_modified_fixed 2.37 1.24 0.98 1.33 

Total cases: 10 8 2 7 3 
   

  

Two-Way Junctions, Aligned 
  

  

gg_mismatch 1.12 2.65 1.12 0.79 

tandem_ga_imino 0.89 1.32 1.03 0.98 

tandem_ga_sheared 0.49 1.06 0.61 0.75 
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hiv_rre 1.78 3.59 1.94 2.12 

j44a_p4p6 1.01 4.75 1.56 1.59 

just_tr_P4P6 0.74 2.47 0.96 1.22 

cg_helix 0.23 0.63 0.28 0.58 

puzzle1 0.91 3.26 0.84 0.96 

srp_domainIV 0.94 2.88 1.01 1.26 

r2_4x4 1.84 3.34 1.84 1.74 

gagu_forcesyn_blockstackU 4.65 5.64 4.87 4.49 

srl_free_bulgedG 4.59 6.38 4.76 4.66 

j55a_P4P6_align 0.85 2.81 1.04 2.04 

kink_turn_align 0.79 3.01 0.97 2.07 

loopE 0.91 5.28 1.75 2.00 

Total cases: 15 15 0 10 5 
   

  

Three-Way Junctions, Aligned     

hammerhead_3WJ_precat 2.83 10.74 4.18 6.09 

VS_rbzm_P2P3P6_align 0.73 1.29 0.84 1.13 

VS_rbzm_P3P4P5_align 1.04 2.40 1.86 2.60 

hammerhead_3WJ_cat_OMC_ali

gn 

2.56 2.89 4.22 2.89 

puzzle18_zika_3WJ_extraminres 2.52 4.36 2.99 2.42 

Total cases: 5 5 0 3 2 
   

  

Tertiary Contacts 
  

  

gaaa_minor_dock 1.02 2.26 1.19 1.41 

gir1_p2.1p5_kiss 1.48 3.25 2.01 2.75 

gir1_p2p9_gaaa_minor 1.17 2.60 1.16 1.83 

tl_tr_P4P6_dock 0.81 6.83 0.81 3.03 

kiss_add_PK_dock 2.07 3.46 3.35 2.58 

t_loop_align 2.02 4.16 2.02 3.20 

hammerhead_tert_align 3.08 7.87 3.90 8.65 

t_loop_modified_align 1.93 3.66 2.44 3.99 

Total cases: 8 8 0 7 1 
   

  

Non-Helix Embedded 
  

  

cg_helix_Zform 5.00 10.76 5.00 1.75 
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g_quadruplex_fixed 1.58 3.57 1.79 2.75 

g_quadruplex_inosine_fixed 1.84 2.43 2.03 2.87 

bru_gag_tetraplex 3.30 2.78 2.70 3.42 

parallel_AA 0.97 1.22 1.16 1.41 

bulged_tetraplex 4.95 7.67 5.04 7.37 

Total cases: 6 5 1 5 1 

     

Overall: 82 60 22 44 38 

 1 
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Table S3. Related to Table 1. Exact inputs (sequence and RNA templates) used in modeling for each RNA-puzzle problem. 1 
Puzzle Secondary Structure Inputs 

1 ccgccgcgccaugccuguggcgg,ccgccgcgccaugccuguggcgg 
(((((((..((((...(((((((,)))))))..))))...))))))) 

Just secondary structure 

2 ccggaggaacuacugccggcagccuccggaggaacuacugccggcagccuccggaggaac
uacugccggcagccuccggaggaacuacugccggcagccu 
{{{{(((.....(((aaaa))))))<<<<(((.....(((}}}}))))))[[[[(((...
..(((>>>>))))))aaaa(((.....(((]]]])))))) 

Four of eight chains were provided with puzzle specification. Three 
‘corners’ modeled as HCV IRES loops. 

3 cucuggagagaaccguuuaaucggucgccgaaggagcaagcucugcgcauaugcagagug
aaacucucaggcaaaaggacagag  
(((((......((((......)))))(((...((((...((((((((....)))))))).
...)))...))).......))))) 

Just secondary structure 

4 ggcuuaucaagagagguggagggacuggcccgaugaaacccggcaaccacuagucuagcg
ucagcuucggcugacgcuaggcuaguggugccaauuccugcagcggaaacguugaaagau
gagcca 
................................................(((((.((((((
(((((....))))))))))).)))))..................................
...... 

3IQP, the template at the time, provides residues A:1-47 A:88-126  

5 gguuggguugggaaguaucauggcuaaucaccaugaugcaaucggguugaacacuuaauu
ggguuaaaacggugggggacgaucccguaacauccguccuaacggcgacagacugcacgg
cccugccucuuagguguguccaaugaacagucguuccgaaaggaagcauccgguauccca
agacaauc 
(((((..(((((..(((((((((...[[[.)))))))))..((((.(((.((((......
(.........((..(((...]]]))).......)).........................
..)............)))).)))..........((((....))))....))))...))))
)..))))) 

Template structure 3BO3 (group I intron) used in original Das lab 
modeling for A:62-70 A:96-122 A:148-153; A:55-60 A:124-129 
A:132-135; they are thus omitted from the secondary structure.  

6 cggcaggugcucccgac,gucgggaguuaaaagggaagccggugcaaguccggcacgguc
ccgccacugugacggggagucgccccucgggaugugccacuggcc,ggccgggaaggcgg
aggggcggcgaggauccggagucaggaaaccugccugccg 
((((((((.(((.(((.,.)).)))).....((....(((((.......)))))[[((..
...)).(((...(((...(((((((.((.......(((.((((((,))))))...))).)
).)))))))......)))..]]))).....)))))))))) 

Template structures 2YIE (FMN aptamer) and 2GIS (SAM 
riboswitch) used in original Das lab modeling provided A:5-8 A:32-
35 A:37-39 A:158-164; A:81-83 A:138-143; A:41-61 A:67-75 
A:147-149. 

7 gcgcugugucgcaaucugcgaagggcgucgucggcccaagcgguaguaagcagggaacuc
accuccaaugaaacacauugucguagcaguugacuacuguuaugugauugguagaggcua
agugacgguauuggcguaagccaauaccgcagcacagcacaagcccgcuugcgagauuac
agcgc 
((((((((((.....((((...((((.......))))..))))..((((((.(((..(((
(((..(((((.....)))))..(((((((.......)))))))......))).)))(((.
.(((.((((((((((....))))))))))...)))))).....)))))))))..))).))
))))) 

Just secondary structure. 

8 ggaucacgagggggagaccccggcaaccugggacggacacccaaggugcucacaccggag
acgguggauccggcccgagagggcaacgaaguccgu 
(((((....((((....))))(((..((((((.[[[[..))).))).)))..(((((...
.)))))))))).((((....)))).......]]]]. 

Template structures from original Das lab modeling for SAM 
binding site using 2YGH, as described previously. 
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9 ggacacugaugaucgcguggauauggcacgcauugaauuguuggacaccguaaauguccu
aacacgugucc 
((((((......(.(((((.....[[))))))..........(((((]].....))))).
.....)))))) 

Template structures from original Das lab modeling: kissing loop 
from 2XNW; T-loop from the tRNA Phe structure 3L0U. 

10 ugcgaugagaagaagaguauuaaggauuuacuaugauuagcgacucuaggauagugaaag
cuagaggauaguaaccuuaagaaggcacuucgagca,aguaguucagugguagaacacca
ccuugccaaggugggggucgcggguucgaaucccgucu 
(((.....((((.......((((((..(((((((.........((((((...........
)))))).)))))))))))))...[[[.))))..))), 
((..((((....{..)))).(((((..]]]..))))).....(((((..}....))))))
) 

Template structures from original Das lab modeling: a kink-turn 
from 2GIS provided A:1-10, A:90-96; a loopE motif from 5S rRNA 
354D furnished A:16-20, A:80-83; a double T-loop motif from 
4JRC supplied A:37-43, A:53-60; and part of a tRNA from 2K4C 
delivered B:6-18, B:20-3,0 B:38-66. 

11 gggaucugucaccccauugaucgccuucgggcugaucuggcuggcuaggcggguccc 
((((((((((.(((((..(((((((....))).)))))))..))...)))))))))) 

Just secondary structure 

12 gaucgcugaacccga,aggggcgggggacccag,ggggcgaaucucuuccgaaaggaaga
guaggguuacuccuucgacccgagcccgucagcuaaccucgcaagcguccgaaggagaa 
...((((...(((..,.)))((((((....(..,(((((....(((((((....))))))
)..(((((.[[[[[[[)))))..))))..).)....)))))).))))...]]]]]]].. 

Just secondary structure 

13 gggucgugacuggcgaacaggugggaaaccaccggggagcgaccc,gccgcccgccuggg
c 
(((((((..(([[[[....(((((....))))).))..))))))),(((...]]]]..))
) 

Just secondary structure 

14b cguugacccaggaaacugggcggaaguaaggcccauugcacuccgggccugaagcaacgc
g 
(((((.(((((....)))))........((((((..........))))))....))))).
. 

Just secondary structure (original puzzle omits U1A loop in RMSD 
calculations) 

14f cguuggcccaggaaacugggu,aguaaggcccauugcacuccgggccugaagcaacgcu 
(((((((((((....)))))),....((((((..........))))))....))))).. 

Just secondary structure (original puzzle omits U1A loop in RMSD 
calculations) 

15 ggguacuuaagcccacugaugagucgcugggaugcgacgaaacgccca,gggcgucuggg
caguaccca 
..........((((((....).(((((......)))))...((((((.,)))))).))))
)........ 

Just secondary structure 

17 cgugguuagggccacguuaaauaguugcuuaagcccuaagcguugau,aucaggugcaa 
((((([[[[[[)))))........((((.....]]]]]]....(((.,.)))...)))) 

Just secondary structure 

18 gggucaggccggcgaaagucgccacaguuuggggaaagcugugcagccuguaaccccccc
acgaaaguggg 
....(((((((((....)))).((((((..[[[[...))))))..)))))...]]]](((
((....))))) 

Template structures from original Das lab modeling from 4PQV. 

19 gcagggcaaggcccagucccgugcaagccgggaccgcccc,ggggcgcggcgcucauucc
ugc 
(((((...(((((..((((((.......))))))((((((,)))))).))).))....))
))) 

Template structures from original Das lab modeling: threaded T-
loop from 1B23, with intercalating A:8 modeled in. (Other 
suspected intercalators like A:9 and B:15 score strictly worse.) 

20 acccgcaaggccgacggc,gccgccgcuggugcaaguccagccacgcuucggcgugggcg
cucaugggu 

Template structures from original Das lab modeling: threaded T-
loop from puzzle 19 (5T5A), renumbered. 
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((((...((((((.((((,)))).)(((((.......)))))(((((....)))))))).
))...)))) 

21 ccggacgaggugcgccguacccggucaggacaagacggcgc 
[[[[.......(((((((..]]]]..........))))))) 

Just secondary structure, no guanidinium. 

 1 

  2 
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Table S4. Related to Table 1. Comparison of performance between a reproduction of FARFAR original modeling conditions (where 1 
secondary structure was modeled using base pair constraints) versus FARFAR2. 2 
 3 

Puzzle FARFAR2 Top 
1% Best RMSD  

FARFAR2 Best 
of 10 Cluster 

RMSD 

FARFAR Top 
1% Best RMSD  

FARFAR Best 
of 10 Cluster 

RMSD 
17 5.03 6.69 7.58 11.43 

18 4.29 5.02 11.57 11.78 

19 4.86 5.16 9.14 13.44 

20 3.03 4.03 7.94 7.94 

21 4.40 6.04 7.05 10.26 

 4 

5 



 25 

Table S5. Related to Table 1. Energy gaps between the minimum energies sampled in artificially restrained near-native simulations 1 
and FARFAR2 models for each FARFAR2-Puzzles benchmark case. A positive energy gap indicates that the best energy achieved in 2 
FARFAR2 de novo modeling is higher (worse) than the energy observed for near-native conformations; a negative energy gap 3 
indicates that the best energy from the FARFAR2-Puzzles benchmark is also the best energy overall. The total population in the top 10 4 
clusters (maximum: 400) also indicates whether the benchmark case was thoroughly sampled. 5 
 6 

Puzzle RNA Energy 
Gap 

Total Top 10 Cluster 
Population 

1 thymidylate synthase motif 4.4 400 

2 nanosquare 26.6 400 

3 glycine riboswitch -38.7 10 

4 SAM-I riboswitch -3.3 400 

5 lariat capping ribozyme -958.5 10 

6 cobalamin riboswitch -283.6 10 

7 VS ribozyme -270.9 10 

8 SAM I/IV 67.0 70 

9 5-HT aptamer -123.8 209 

10 T-box riboswitch -229.9 11 

11 7SK 5′ hairpin -12.0 400 

12 ydaO riboswitch 51.7 10 

13 ZMP riboswitch -2.7 14 

14b Gln riboswitch (bound) 52.7 26 

14f Gln riboswitch (free) 19.6 47 

15 hammerhead ribozyme 107.7 47 

17 pistol ribozyme -42.2 34 

18 Zika xrRNA 7.8 328 

19 twister sister ribozyme  -74.8 400 

20 twister sister ribozyme 7.5 358 

21 guanidinium-III riboswitch 9.1 27 

  7 
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Table S6. Related to Table 1. Detailed results for each RNA-Puzzle challenge revisited in this work. 1 
         

Puzzle FARFAR2 Top 1% Best by RMSD† FARFAR2 Best of 10 Cluster by RMSD† Best RNA-puzzle RMSD (All Submissions)† 

 RMSD FNWC Clashscore* RMSD FNWC Clashscore RMSD FNWC Clashscore 

1 2.03 0.90 2.72 2.50 0.86 4.07 3.40 0.90 0.00 

2 2.28 0.00 11.31 2.71 0.00 10.99 2.30 0.50 14.23 

3 7.05 0.11 4.79 12.41 0.00 2.58 7.60 0.22 0.00 

4 2.43 1.00 22.16 2.52 1.00 19.69 3.40 0.88 1.97 

5 9.57 0.25 3.64 13.94 0.26 2.32 9.58 0.20 9.93 

6 9.98 0.20 7.82 13.08 0.20 10.35 12.28 0.27 27.88 

7 15.21 0.00 5.72 18.52 0.14 2.69 20.72 0.50 11.25 

8 4.65 0.50 10.27 5.23 0.75 5.45 4.80 0.75 13.77 

9 4.54 0.64 2.64 4.56 0.50 1.76 5.86 0.29 18.53 

10 6.31 0.70 5.54 6.31 0.65 5.54 6.78 0.70 13.82 

11 4.43 0.00 0.55 6.04 0.14 1.10 5.22 0.00 0.55 

12 11.73 0.15 3.71 13.32 0.23 4.24 10.15 0.00 12.61 

13 5.47 0.00 7.73 7.13 0.67 6.19 5.41 0.33 10.85 

14b 5.81 0.00 6.61 6.88 0.00 4.06 5.79 0.50 11.65 

14f 3.26 0.67 7.00 11.85 0.00 3.23 6.05 0.83 16.24 

15* 4.44 0.75 8.24 5.98 0.75 6.40 5.30 0.50 5.91 

17 5.03 0.00 3.24 6.69 0.00 2.16 7.13 0.11 6.53 

18 4.29 0.33 3.92 5.02 0.50 4.79 3.15 1.00 0.43 

19 4.86 0.67 15.07 5.16 0.67 11.52 5.50 0.33 18.97 

20 3.03 0.67 3.21 4.03 0.67 2.75 6.80 0.33 37.37 

21 4.40 0.00 4.52 6.04 0.00 0.75 3.93 0.11 13.53 

*Clashes may come from input template structures that were not employed in the previously submitted modeling.  2 
†Heavyatom RMSD is calculated over all residues, following superposition over all residues. 3 
  4 
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Table S7. Related to Table 2. Exact inputs (sequence and RNA templates) used in modeling for each blind challenge modeled in this 1 
work. 2 
Blind challenge Secondary Structure Inputs 

F. nucleatum 
glycine riboswitch 

ucggaugaagauaugaggagagauuucauuuuaaugaaacaccgaagaag
uaaaucuuucagguaaaaaggacucauauuggacgaaccucuggagagcu
uaucuaagagauaacaccgaaggagcaaagcuaauuuuagccuaaacucu
cagguaaaaggacggag 
(((…...((((((((......((((((....)))))).(((...((((..
...))))..)))........))))))))...)))..(((((......(((
(((...)))))).(((....(((....((((....)))).....)))...
))).......))))) 

3P49 furnished residues A:19-29 A:34-71 A:92-164. 

V. cholerae glycine 
riboswitch 

uccguugaagacugcaggagagugguuguuaaccagauuuuaacaucuga
gccaaauaacccgccgaagaaguaaaucuuucaggugcauuauucuuagc
cauauauuggcaacgaauaagcgaggacuguaguuggaggaaccucugga
gagaaccguuuaaucggucgccgaaggagcaagcucugcgcauaugcaga
gugaaacucucaggcaaaaggacagagga 
[[[......((((((((......(((((((...(((((......))))).
....))))))).(((....(((.....)))...)))((.((((((...((
((.....))))...)))))))).....))))))))...]]]..(((((..
..(.((((......)))))(((...((((...(((((((......)))))
))....))).).))).......))))).. 

Threaded template from lowest energy model of F. nucleatum 
glycine riboswitch modeling above: residues A:1-29 A:34-64 A:68-
91 become A:1-29 A:56-86 A:125-148. 

Mycobacterium 
SAM-IV riboswitch 

ggucaugagugccagcgucaagccccggcuugcuggccggcaacccucca
accgcgguggggugccccgggugaugaccagguugaguagccgugacggc
uacgcggcaagcgcggguc 
((((....(.((((((....((.[[[[[)).)))))))(((..(((.((.
.{{{.))..))).)))]]]]]....))))..((((.((((((.....)))
))).)))).....}}}... 

SAM binding site from 2YGH provided A:1-9 A:38-43 A:63-66 
A:76-79, with SAM as B:120 

G. kaustophilus T-
box 
riboswitch/tRNA-
Gly 

gcggaaguaguucagugguagaacaccaccuugccaaggugggggucgcg
gguucgaaucccgucuuccgcucca, 
gaaagugggugcgcguuuggcgcaucaacucggguggaaccgcgggagcu
acgcucucgucccgag 
(((((.............................................
................)))))[[[[, 
.......(((((((.....)))))))....((((]]]]...(((((....
.....))))))))).. 

Threaded tRNA template from 4LCK: residues B:6-66 

B. subtilis T-box 
riboswitch/tRNA-
Gly 

gcggaaguaguucagugguagaacaccaccuugccaaggugggggucgcg
gguucgaaucccgucuuccgcucca, 
guugcagugagagaaagaaguacuugcguuuaccucaugaaagcgaccuu
agggcgguguaagcuaaggaugagcacgcaacgaaaggcauucuugagca
auuuuaaaaaagaggcugggauuuuguucucagcaacuaggguggaaccg
cgggagaacucucgucccua 
(((((.............................................
................)))))[[[[, 
.((((......((((.......(((((((....(((((........((((
((...........))))))))))).)))))))........))))...)))

Threaded tRNA template from 4LCK: residues B:6-66; threaded T-
box template from 4LCK: residues A:2-12 A:19-29 A:34-74 A:76-
84 A:87-89 A:94-101 
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).............(((((((......)))))))...(((((]]]]...(
(((((....))))))))))) 

VA RNA I ggaccucgcaaggguaucauggcggacgaccgggguucgaaccccggauc
cggccguccgccgugauccaugcgguuaccgcccgcgugucgaacccagg
ugugcgaggucc  
((((((((((.((((.((((((((((((.(((((.((........)).))
))).))))))))))))..(((((((..[[[..)))))))....)))).]]
].)))))))))) 

Just secondary structure 
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