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Abstract

The prediction of RNA three-dimensional structures remains an unsolved problem.

Here, we report assessments of RNA structure predictions in CASP15, the first CASP

exercise that involved RNA structure modeling. Forty-two predictor groups submitted

models for at least one of twelve RNA-containing targets. These models were evalu-

ated by the RNA-Puzzles organizers and, separately, by a CASP-recruited team using

metrics (GDT, lDDT) and approaches (Z-score rankings) initially developed for assess-

ment of proteins and generalized here for RNA assessment. The two assessments inde-

pendently ranked the same predictor groups as first (AIchemy_RNA2), second (Chen),

and third (RNAPolis and GeneSilico, tied); predictions from deep learning approaches

were significantly worse than these top ranked groups, which did not use deep learn-

ing. Further analyses based on direct comparison of predicted models to cryogenic

electron microscopy (cryo-EM) maps and x-ray diffraction data support these rankings.

With the exception of two RNA-protein complexes, models submitted by CASP15
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groups correctly predicted the global fold of the RNA targets. Comparisons of CASP15

submissions to designed RNA nanostructures as well as molecular replacement trials

highlight the potential utility of current RNA modeling approaches for RNA nanotech-

nology and structural biology, respectively. Nevertheless, challenges remain in model-

ing fine details such as noncanonical pairs, in ranking among submitted models, and in

prediction of multiple structures resolved by cryo-EM or crystallography.

K E YWORD S

CASP15, conformational ensembles, cryogenic electron microscopy, deep learning, molecular
replacement, ribonucleic acid, structure prediction

1 | INTRODUCTION

Soon after the establishment of the cloverleaf structure of transfer

RNA,1,2 three-dimensional models of RNA structures appeared.3,4

However, it took more than 10 years before the first refined experi-

mental structures of the 76 nucleotide yeast tRNAPhe were pub-

lished.5,6 For many years, x-ray crystallographic structures of RNA

nucleosides and nucleotides allowed us to grasp the fundamentals of

RNA stereochemistry. After 1995, following progress in chemistry and

x-ray technology, a steady stream of RNA structures with sizes equiv-

alent to or larger than tRNAs, culminating with fully functional ribo-

some structures, revealed the many intricacies of RNA architectures.

In parallel, computer programs for RNA modeling appeared (for over-

view, see Reference 7). However, it was not until 2011 that a regular

assessment of models, called RNA-Puzzles, was set up.7,8 The models

for the RNA sequence of each RNA-Puzzle were collected prior to

publications of the x-ray structures. Since not enough targets were

available for a short CASP-like season, the Puzzles were organized to

occur right as the structures were solved (for those structures for

which an agreement between the structural biologist and RNA-

Puzzles organizers was made). Since then, several additional publica-

tions have reported the results of the RNA-Puzzles assessments.9–11

In 2021, it became clear that accelerations in RNA structure determi-

nation12 would allow enough targets for a single CASP season. Here

we report on the first collaborative effort between CASP and RNA-

Puzzles teams on a set of RNA targets. Following the success of AI-

based tools in protein structure prediction13 and a surge of interest in

RNA during the COVID pandemic,14 the hope of the organizers and

assessors was to generate motivation and attention from protein

modeling groups to develop and evaluate methods for RNA.

Between April and July of 2022, sequences of 12 RNA targets

were received from experimental contributors and disseminated on

the CASP website. Models were submitted by over 40 groups, and a

double-blind assessment was carried out. Inspired by prior joint

assessments by CAPRI and CASP for protein complexes (see Refer-

ences 15–19), two assessments were carried out for RNA: one assess-

ment was performed by the RNA-Puzzles team (Z. Miao &

E. Westhof) and a completely independent analysis was performed by

assessors nominated by the CASP organizers (R. Das and team). Dur-

ing a dedicated assessors' meeting in October 2022, the two

assessments' results were critically compared, revealing a striking con-

sensus in rankings and choice of top predictors, despite the use of dis-

tinct metrics and ranking schemes. Further analysis based on visual

inspection of RNA-protein targets, direct comparison to cryogenic

electron microscopy (cryo-EM) maps, and molecular replacement trials

for targets solved by x-ray diffraction—catalyzed by the general

CASP15 conference in December 2022—revealed additional insights

into the limitations and potential of current RNA 3D modeling, which

are described here. The identification of accurate models also led to

insights by CASP15 RNA experimental contributors and development

of novel methods for cryo-EM model refinement, described in two

separate papers co-submitted to the CASP15 special issue.20,21

2 | METHODS

2.1 | Computation of RNA-Puzzles-style metrics

The RNA-puzzles-style assessment relied mainly on the Root Mean

Square Deviation (RMSD) measure complemented by the Deforma-

tion Index (DI).22 The RMSD is the usual measure of distance between

all atoms (excluding H atoms) of the two superimposed structures.

The DI score complements the RMSD values by introducing features

specific to RNA in the metric in the following way. The pairs formed

by the nucleotides are identified, counted, and annotated in the

experimental structure. They are broadly classified as either of the

Watson-Crick complementary type (WC, comprising AU, GC, or GU

pairs whose geometry are compatible with the standard Watson-

Crick-Franklin double helix) or of the non-Watson-Crick type (NWC).

The base–base network, that is, WC, NWC, and stacking interactions

in both reference and predicted models are extracted using the MC-

Annotate23 tool. We then compute, for each of the three types of

base–base interactions, the number of correctly predicted pairs, the

true positive (TP), the number of predicted pairs with no correspon-

dence in the reference model, the false positive (FP), and the number

of pairs in the reference model that are not present in the predicted

model, the false negative (FN). The Interaction Network Fidelity (INF)

is then computed as the Matthews Correlation Coefficient, the geo-

metric mean of the positive predictive value and sensitivity as in

Gorodkin24,25:
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The DI is then computed as: RMSD/INF. Several partial INF

values (and respective DI) can be computed considering only the

Watson-Crick (WC) base pairs (INFWC), the non-Watson-Crick (NWC)

base pairs (INFNWC), both WC and NWC base pairs (INFBPS), or the

stacking interactions (INFSTACK). Finally, the Deformation Profile is a

distance matrix computed as the average RMSD between the individ-

ual bases of the predicted and the reference models while superim-

posing each nucleotide of the predicted model over the

corresponding nucleotide of the reference model one at a time. It is

computed using the “dp.py” command from the “SIMINDEX” pack-

age.22 For simplification, we also calculate the sum, mean and median

of the deformation profile to account for the general accuracy of the

prediction. The stereochemical correctness of the predicted models

was evaluated with MolProbity,26 which provides quality validation

for 3D structures of proteins and nucleic acids. For the latter, Mol-

Probity performs several automatic analyses, from checking the

lengths of H-bonds present in the model to validating the compliance

with the rotameric nature of the RNA backbone.26,27 As a single mea-

sure of stereochemical correctness, we chose the clash score, that is,

the number of all types of steric clashes per thousand residues.28 The

assessment also considered the coordinate comparison metric TM-

score as computed in RNA-Align29 and the Mean of Circular Quanti-

ties30 to assess accuracy in the torsion angle space. All the source

codes and an example notebook are available at: https://github.com/

RNA-Puzzles/RNA_assessment.

2.2 | Computation of CASP-style metrics

Independently from the RNA-Puzzles-style computations, we

assessed the accuracy of the submitted models in a manner closer to

recent CASP assessments for protein structure prediction through

ZRNA, a weighted Z-score average of several different assessment

metrics. To perform the ZRNA evaluation, we developed the casp-rna

pipeline, which encompasses our workflow for data wrangling, job

parallelization, and ranking visualizations. In consideration of RNA as a

flexible molecule in which irregular loops may affect RMSD measures,

ZRNA explored additional metrics beyond RMSD to capture the global

accuracy, local accuracy, and geometries of RNA. We selected the fol-

lowing tools for our ranking scheme: (1) US-align,31 which was used

to compute TM-score through a heuristic alignment approach improv-

ing on the original RNA-align29; (2) Local–Global Alignment32 which

yielded GDT_TS, the average percentage of aligned C40 atoms (rather

than that of Cα in proteins) at cutoffs of 1 Å, 2 Å, 4 Å, and 8 Å;

(3) RNA-tools,33 a toolkit used to determine the accuracy of contact

classifications among base stackings, Watson-Crick interactions, and

noncanonical interactions. INF scores were calculated from interac-

tion predictions dependent on ClaRNA34; (4) OpenStructure,35,36 a

framework used to find lDDT, a metric that measures structural

similarity (unlike for proteins, our implementation of lDDT for RNA

did not penalize for stereochemical violations); and (5) PHENIX, which

reports a clashscore metric for all non-hydrogen bonded atom pairs

that overlap worse than 0.4 Å.26,37 For TM-score and GDT_TS, super-

position of models and experimental models were calculated with

default atoms for those packages, C30 and C40, respectively (repeating

GDT_TS calculations with different atoms P, C30 , and C40 gave negligi-

ble differences). Two alignment modes were considered for GDT_TS:

a fixed residue-residue correspondence approach and an automated

search for the best superposition, ignoring sequence; these gave

nearly identical group rankings, so we opted for the former approach.

INF scores were computed with ClaRNA to help increase robustness

of base pair assignment for low resolution models; these values were

slightly different than but highly correlated with INF scores computed

with MC-Annotate, the tool normally used by RNA-Puzzles.

Similar to the assessment of protein models in past CASP assess-

ments, we employ a two-pass procedure for Z-scores.13,38 For each

target and for each of the considered metrics, the Z-score (difference

with the mean, normalized by the standard deviation) was calculated

by taking the mean and standard deviation for the best model from

each group with respect to each considered metric. To prevent distor-

tion from very poor outlier predictions, models with initial Z-scores

that fall under a tolerance threshold of $2 were discarded, and the Z-

scores were recomputed with the new mean and standard deviation.

After this second pass, models with Z < $2 were re-assigned Z = $2.

For Z-scores that involved linear combinations of multiple compo-

nents (e.g., ZRNA), the Z-score values for individual components were

then summed. To prevent penalization of novel methods that might

give poor models for some targets, the sums of just the positive ZRNA

over all targets were used to make final rankings. For targets where

experimentalists provided multiple conformations to either represent

experimental uncertainty or bona fide conformational diversity

(e.g., different copies in the crystallographic asymmetric unit or multi-

ple conformations captured by cryo-EM39), predictor models were

compared to all available experimental models. Groups were rewarded

based on their best score. Code for the analysis of submitted models,

assessment tools, and documentation using casp-rna are available as

an open-source repository at https://github.com/DasLab/casp-rna.

Metrics are also available for interactive viewing on the CASP15 web-

site at https://predictioncenter.org/casp15/results.cgi?tr_type=rna.

2.3 | Generation of simple template-based
structures as comparison models

As baselines for the accuracy of predicted models, we prepared

template-based structures generated using homology models with the

rna_thread application in Rosetta 3 (version tag

v2019.27-dev60818-134-g04678680f9c).40 For the CPEB3 ribo-

zymes (R1107 and R1108), we generated template-based structures

using the HDV ribozyme structure (PDB ID: 3NKB). We used residues

2–9, 11–39, 43–47, and 57–72 in this HDV ribozyme structure to

model residues 3–8, 10–43, and 54–69 in the CPEB3 ribozymes,

DAS ET AL. 3
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avoiding loop residues that were not homologous between the struc-

tures. For the class I Pre-Q1 riboswitch, we compared the type III

structure R1117 to template-based structures derived from the type I

structure (PDB ID: 3Q50). We used residues 2–5, 7–20, and 23–33 in

the type I Pre-Q1 riboswitch structure to model residues 2–30 in the

target type III Pre-Q1 riboswitch structure, again avoiding loop resi-

dues that were not homologous between the models. Nonhomolo-

gous residues were left out of these simple template-based

structures.

2.4 | Computation of map-to-model metrics for
cryo-EM targets

All models for the 6 targets determined by cryo-EM (R1126, R1128,

R1136, R1138, R1149, and R1156) were assessed directly against the

experimental maps. The RNA-protein targets (R1189 and R1190)

were excluded from this analysis because none of the predicted

models for these targets fit sufficiently well into the density to give

robust alignments, but in principle, this analysis is compatible with

RNA-protein targets. First, models were fit into maps using two

approaches. Models were aligned to the reference models (built by

experimentalists into density maps) using US-align31 and then fit

locally using the command fitmap in ChimeraX.41 We also tested an

iterative phenix.dock_in_map37 procedure. For the well-fitting models,

there was very little difference between these two methods and thus

the fitmap method was selected. The following programs were used

to measure the listed metrics, in all cases using default parameters

(1) Phenix,37 for cross-correlation of the map and model masked by

the area around the model (CCmask), cross-correlation of the N highest

density peaks in the model-generated map to the map (CCvolume),

cross-correlation of the N highest density peaks in the model-

generated map and N highest density peaks in the map (CCpeaks), and

map-to-model Fourier shell correlation (FSC) values (N is the number

of grid points inside the molecular mask); (2) TEMPy,42 for cross-

correlation coefficient (CCC), mutual information (MI), least-square fit

(LSF), envelope score (ENV), and segment-based Mander's overlap

coefficient (SMOC); (3) ChimeraX41 and in-house script for atomic

inclusion43 and density occupancy; and (4) MapQ,44 for Q-score. An

RMSD filter was selected for each target based on visual inspection.

Ranking of all the models was carried out by Z-score, following the

two-pass procedure described in Section 2.2. Code for the analysis

can be found at https://github.com/DasLab/CASP15_RNA_EM.

2.5 | Scoring against x-ray data and molecular
replacement (MR)

All models for the four targets determined by x-ray crystallography

(R1107, R1108, R1116, and R1117) were assessed directly against

the x-ray data by superimposing them on the target structure with

RNAalign29 and calculating the Log Likelihood Gain (LLG) with respect

to the diffraction data using Phaser.45 For R1108 and R1117, with

two RNA molecules in the asymmetric unit, the LLG was calculated

for a single copy of the model ideally placed on chain A. A ranking of

groups was derived from Z-scores computed from equal weighting

of LLG, TFZ (translation-function Z-score from the model search), and

CC (correlation coefficient of the map based on phases from the ide-

ally placed model compared to the map computed by the experimen-

talists with their final phases). These ranking Z-scores were based on

the same two-pass procedure as described in Section 2.2.

Molecular Replacement was carried out using the CCP4 pack-

age46 via CCP4 Cloud47 and specifically the programs Phaser45 and

MOLREP.48 Map correlation coefficients were calculated with the

phenix.get_cc_mtz_pdb tool.37 MR strategies were chosen with refer-

ence to the accuracy achieved for different targets: highly accurate

predictions typically succeed unmodified while extensive manual

intervention can be required with poorer predictions. For R1117, the

models were used unedited from all groups. For the other targets,

where overall modeling was less accurate, different editing

approaches were used with the models from group TS232

(AIchemy_RNA2). For R1107 and R1108, RNA model superposition

was carried out with Theseus49 and nucleotides with higher structural

variance values were removed in 10% intervals. The group

232 model_1 after removal of 10, 20, 30, 40, or 50% of nucleotides

with highest structural divergence across the models was then used

as a search model. MR also made use of models of the U1 small

nuclear ribonucleoprotein A protein (U1ABD) component, which were

generated using the AlphaFold 250 network in its local ColabFold

implementation.51 For R1116, a version of Slice'N'Dice52 modified to

work with RNA inputs was used to split model 1 from group TS232

into three structural segments using the Birch algorithm from the Sci-

Kit toolbox.53

3 | RESULTS

3.1 | Classification of the difficulties and qualities
of the targets

In Table 1, the 12 targets are gathered along with notes on protein

and ligand binding, evidence for multiple conformations, and experi-

mental technique and resolution. The difficulty was considered as

“easy” when homologous structures were present in the PDB and as

of “medium” difficulty when the structural similarity could be deduced

due to similar functions (e.g., the CPEB3 ribozymes self-cleave like a

ribozyme of known structure from hepatitis delta virus). Two targets

were ranked as “difficult” since no homologous structures had been

published and the number of nucleotides was larger than 120. Finally,

a fourth “non-natural” category was considered for targets that were

human-designed and not found in nature (and thus without homolo-

gous sequences), since it was not clear a priori whether these cases

would be easy or difficult to model. The majority of targets (8) were

solved by cryo-EM, with the rest (4) by x-ray crystallography.

4 DAS ET AL.
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3.2 | Assessment and ranking based on RNA-
Puzzles metrics

The RNA-Puzzles assessment recognizes that RNA architecture

results from a set of coherent interaction networks stabilizing a given

fold. There are several interaction networks: the set formed by all

Watson-Crick pairs, the set of contacts formed by the stacking

between the bases, and finally the set formed by the non-

Watson-Crick pairs, the interactions characteristic of tertiary folding.

In a 3D structure, the set of Watson-Crick is not always the one pre-

dicted because in the folded structure, pairs at the extremities of the

helical segments can either disappear or new ones can be formed.

The correct choice of stacking between nucleotides or helices is criti-

cal for the overall global fold of the RNA. A wrong choice in the heli-

ces of the core can lead to very different folds from the native one.

Finally, the appropriate positions and orientations of several elements

allow for specific non-Watson-Crick pairs to form and lock in the

native structure. An approximate association of helices may yield a

molecular shape or envelope roughly similar to the native structure,

but generally more open and much less compact than the native fold.

In such cases, the key sequence conservations that maintain the

actual native RNA fold are neither observed nor understood from the

modeled structure. Therefore, in addition to using RMSD as a major

metric for assessment, the analyses also included distinct metrics that

are more sensitive to the interaction networks that comprise RNA.

Table 1 gives the best RMSDs reached by the modeling groups

for the 12 targets; they range between 2 Å and close to 17 Å, with

many models being in the range between 4.3 Å and 8.3 Å. The trend

follows the difficulty level of the targets. Interestingly, for the non-

natural designed RNAs, the RMSDs reached are below 8.3 Å. It can be

recalled that in a double stranded RNA helix, the average distance

between two successive phosphate groups is 7 Å. However, broadly

speaking, except for targets R1189 and R1190 (for which the RMSDs

reached are beyond 16 Å, see Table 1), the overall folding shapes are

reproduced, as can be seen in Figure 1 where all targets are superim-

posed on the best predicted model as ranked by RMSD.

Table S1 presents the number of times that each of the modeling

groups produced the 1st, 2nd, or 3rd best model as scored by the vari-

ous metrics. Separate analyses are shown, based on the best of all five

models from each predictor group and based solely on each groups'

model 1. Taking a weighted sum of these placements (with weights of

3, 2, and 1 assigned for placing 1st, 2nd, or 3rd) enables ranking of the

groups. Whatever the way of counting or of scoring, even with

methods that used metrics besides RMSD, two groups consistently

reached the first and second ranks, TS232 (AIchemyRNA_2) and

TS287 (Chen), respectively. The groups TS081 (RNApolis) and TS128

F IGURE 1 Overview of CASP15 RNA targets. Display of all CASP15 RNA targets (green) with the best-ranked model (blue) superimposed for
each, chosen based on RMSD comparison of all five predicted models from all predictor groups compared to all available experimental structures.
For ease of visualization of RNA global folds, protein binding and small molecule ligands (see Table 1) are not shown.
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F IGURE 2 TM-score, GDT_TS, lDDT, INF, and INF_WC values for all targets. Scores for all models submitted for all targets are depicted
(points are randomly jittered horizontally to aid visualization). Models from the four top performing groups and the top two server groups are
highlighted as colored points, and all other groups' models are shown as gray points. Red lines indicate the median deviation between
experimentally determined models for alternate conformations, black lines indicate the deviation between alternate models derived from
experimental data for the same conformation, and blue lines indicate the deviation between homologous structures (see main text).
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(GeneSilico) appear both at third positions. Considering those predic-

tions with best RMSD that were ranked first among a set of all models

submitted (up to five from each group), the groups TS232, TS287,

TS081, and TS128 are the top four, with the other groups having

weighted sums 50% lower. Among the latter, considering only at best

RMSD rankings, TS229 (Yang-Server), TS416 (AIchemy_RNA), TS239

(Yang-Multimer), and TS439 (Yang) occupy the middle range.

3.3 | Assessment based on CASP-style metrics

In a second assessment fully independent of the assessment based on

RNA-Puzzles above, we explored the use of distinct metrics, largely

drawn from assessment methods developed for proteins in previous

CASP events and expanded here to RNA. For evaluating the global

fold of predicted RNA structures, we computed the template model-

ing score (TM-score29,31) and the global distance test (GDT32). For the

latter, we focused on the GDT score for tertiary structure (GDT_TS)

rather than the high-accuracy GDT score (GDT_HA57) since the RNA

models lacked nucleotide-level, much less atomic accuracy. To evalu-

ate models' local quality, to complement the RNA-specific INF score

described in Section 3.2, we used the Local Distance Difference Test

(lDDT35) score, which compares distances between atoms that are

nearby in the experimental structure to the distances between those

atoms in the predicted structure and may generalize well between

proteins and nucleic acids.

The global fold accuracy metrics (TM-score and GDT_TS) suggest

that all targets, aside from the two RNA-protein complexes R1189

and R1190, elicited some predicted models that recovered correct

global folds, based on criteria that have been previously discussed in

the context of RNA template identification (TM-score > 0.45,29,31

Figure 2A) or protein global fold assessment (GDT_TS > 45,58

Figure 2B). We note that these criteria for “correct fold” may not

apply at the extremes of lengths for our RNA targets. On one hand,

the “easy” PreQ1 riboswitch target (R1117) is small with only

30 nucleotides, and the TM-score values, which involve a length-

dependent distance parameter, are much lower than GDT_TS values

(Figure 2A,B). The accuracies reflected by GDT_TS match expected

accuracies gauged by visual examination. On the other hand, models

that visually captured correct folds for large designed RNA's (R1126,

R1128, R1136, R1138) were properly assigned high TM-scores, while

GDT_TS scores were mostly lower than 45 (Figure 2A,B). For predic-

tor models for a given target, the TM-score and GDT_TS correlated

well, but the relationship between the two varied across different tar-

gets (Figure 3A). The difference between GDT and TM-score is due to

the distance cutoffs that the two metrics use. For example, TM-score

applies a soft distance threshold d0 that depends on RNA length,

which helps account for the flexibility of larger RNA's.29,31 For R1138

(720 nt), d0 = 13.59 Å and most of the residues in a visually good

model like R1138TS232_4 align within this threshold in the TM-score

calculation. In contrast, GDT_TS uses fixed distance cutoffs of 1 Å,

2 Å, 4 Å, and 8 Å, and most of the RNA residues for the large mole-

cules R1138TS232_4 do not align to the cryoEM structure within

these thresholds (Figure S2). These comparisons suggest that TM-

score and GDT_TS are useful for ranking models for a given target but

thresholds for “good” TM-score and GDT_TS may need recalibration

for very small and very large RNA molecules, respectively.

As a metric for model quality that might generalize between pro-

tein and RNA, we considered lDDT. While not measuring global shape

upon superposition, lDDT has been used as a primary accuracy indica-

tor in numerous prediction contexts, including CAMEO, where a

threshold of lDDT > 0.75 is used to denote a good match when com-

paring templates to target structures and to assign difficulty.59,60

Across all targets, lDDT values for best predictions ranged from 0.5 to

F IGURE 3 Comparison of assessment metrics for RNA targets. (A) Scores for all models for representative short target R1107 (blue) and long
target R1136 (orange): top-left TM-score vs. GDT_TS, top-right RMSD vs. GDT_TS, to compare across global fold metrics; bottom-left lDDT
vs. INF compares the two local metrics; and bottom-right lDDT vs. GDT_TS compares global fold to local metrics. (B) Average Spearman rank
correlation coefficient (calculated separately per target, then averaged over all targets) between each pair of scores labeled on each row and
column, colored by high correlation (dark blue), no correlation (white). RMSD and clashscore were multiplied by $1 before calculating the
correlation so that higher scores correspond to better accuracy for all metrics.
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0.9, again with the lowest performance in RNA-protein complexes

(Figure 2C). Interestingly, for the 10 RNA-only targets, CASP15 pre-

dictors achieved models with lDDT close to 0.75, and visually excel-

lent models for the small, “easy” target R1117, the “medium” target

R1108, and the “non-natural” and larger targets (R1128, R1136)

achieved the 0.75 threshold. For future CASP, CAMEO, and other

modeling challenges, lDDT may provide the most cleanly interpretable

measure of accuracy, with a cutoff of 0.75 applicable across nucleic

acids and proteins.

These CASP-inspired metrics correlated well with RNA-puzzle

based metrics described in Section 3.2. For global fold metrics, while

RMSD and GDT_TS are not linearly correlated (Figure 3A), they have

positive rank-based correlation (Spearman correlation coefficient

0.61, Figure 3B). The local interaction metrics, INF and lDDT, correlate

excellently (Spearman correlation coefficient 0.91, Figure 3B) in what

seems to be a near-linear and size-independent relationship

(Figure 3A). This is a remarkably strong correlation; INF focuses on a

selection of RNA-specific interactions while lDDT compares all heavy-

atom distances for atom pairs that are within 15 Å in the experimental

structure, a similar length scale to the distances across base pairs

monitored by INF. This observation suggests that lDDT may capture

the subset of interactions measured in INF while allowing generaliza-

tion across protein and nucleic acids. Finally, if we compare global fold

accuracy metrics with more local accuracy metrics, we still maintain a

positive correlation (Spearman correlation coefficient 0.67–0.87,

Figure 3B), however the relationship is nonlinear; the more local met-

rics like lDDT are able to discriminate models with low accuracy while

global fold metrics like GDT_TS are better able to discriminate the

high accuracy models (Figure 3A).

To provide a more quantitative threshold for good model accu-

racy for each target, we sought to estimate the deviation between

experimentally determined structures. Where possible, we measured

the deviation in TM-score, GDT_TS, INF, INF_WC, and lDDT between

distinct experimentally captured conformations (red lines in Figure 2).

More specifically, we compared the following structure pairs in targets

with multiple conformations (see also Table 1): the point-mutations

for the CPEB3 ribozyme61 (R1107 vs. R1108), the apo and holo struc-

tures of the aptamer Apta-FRET62 (R1136), the young and mature

conformations of 6HBC63 (R1138), the four cryo-EM classes for the

SL5 domain of the bat coronavirus HKU5 (R1156), and finally

the RNA structures for the RsmZ-RsmA RNA-protein complexes with

six vs. four proteins bound (R1189 vs. R1190). In addition, for two

cases, we measured the deviation between different models derived

from the same experimental data (black lines in Figure 2), comparing

distinct models built into the same cryo-EM density maps for the SL5

domains of SARS-CoV-2 (R1149) and BtCov-HKU5 (R1156). Finally,

in three cases, we measured the deviation between homologous

models, comparing residues that are homologous between previously

solved structures and the target molecule (blue lines in Figure 2): the

CPEB3 ribozyme versus the HDV ribozyme64 (R1107 and R1108 vs.

PDB ID 3NKB), and the class I type III Pre-Q1 riboswitch versus the

class I type I Pre-Q1 riboswitch56 (R1117 vs. PDB ID 3Q50). In all

cases with available homologous structures (R1107, R1108, and

R1117), predicted models surpassed TM-score, GDT-TS, lDDT, INF,

and INF_WC values of models derived by directly using homologous

structures. In some cases (R1138, R1156), predicted models reached

TM-score, GDT-TS, and lDDT values comparable to the deviation

between distinct experimentally determined conformations (red lines,

Figure 2), though in no case were there models whose accuracies

exceeded the experimental precision expected for a single captured

conformation (black lines, Figure 2).

To rank the performance of predictors, we developed a Z-score

metric that enabled combined evaluation of models' global fold, local

accuracy, and stereochemical correctness. Our global fold accuracy

scores included the TM-score and GDT-TS, our more local accuracy

scores consisted of INF and lDDT, and our stereochemical correctness

scores were based on clashscore,28 which has been used widely for

both protein and RNA structural assessment. We used the following

weighted sum of scores:

ZRNA ¼
1
3
ZTMþZGDT_TS½ &þ1

8
ZINFþZlDDT½ &þ 1

12
Zclash

Because we did not expect atomically accurate models in this first

RNA round of CASP, we chose to reward models that recover the

global fold (high weight for TM-score and GDT_TS terms) compared

to those that recover local details (low weight for local environment

scores) or produce correct nucleotide geometries (low weight for

clashscore). Each group's Z-score for a given target was computed

using their best predicted model, and groups' total scores were calcu-

lated as the sum of all positive Z-scores across all targets (Figure 4A).

The top performing predictor groups based on this combined Z-score

ranking were AIchemy_RNA2 (TS232), Chen (TS287), RNAPolis

(TS081), and Genesilico (TS128). These were the same groups as the

top four highlighted by the independent analysis by the RNA-

puzzles-style assessment.

Interestingly, the top four groups did not include any server sub-

missions; the top-ranked servers (Ultrafold-server, TS125; and Yang-

server, TS229) placed at positions 8 and 9, and gave Z-scores that

were more than three-fold lower than the top two predictor groups.

We note that these top server submissions additionally exhibited sec-

ondary structures (Watson-Crick base-pairing) with lower accuracy

than some other top predictors, as measured by INF_WC (orange and

cyan points, Figure 2), suggesting that there is room for improvement

in automated prediction of secondary structure. Furthermore, based

on abstracts collected for the CASP15 conference, while the majority

of CASP15 RNA predictors groups tested deep learning methods

(orange highlights in Figure 4A), the top 4 RNA groups did not use

deep learning approaches (see also articles by RNA predictor groups

co-submitted for the CASP15 special issue65–68; and https://

predictioncenter.org/casp15/doc/presentations/Day3/).

To better understand uncertainties in the rankings, we repeated

the Z-score analysis using sub-components of the Z-score. Ranking

groups by the two “global fold” terms (GDT_TS and TM-score) alone

or in combination, or using RMSD, gave rankings with the same top

four groups, up to some switching of third and fourth place (Figure 4B
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(A)

(B)

F IGURE 4 CASP-style Z-score based Rankings. (A) Heatmap of groups ranked by ZRNA. Groups which used deep learning, as reported in the
participant's abstract to CASP15, are indicated in orange. The summation of positive two-pass Z-scores for each of the 12 targets is summarized
in the barplot (right). Groups are ordered by their ZRNA rankings. (B) Robustness of ranking to different choices in assessment. Columns show
group rankings based on subsets of the ZRNA score or individual metrics; coloring reflects rankings under each metric.
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and Table 2). Use of the more local accuracy terms (lDDT and INF)

retained the same top three predictor groups, with some groups

switching in ranks of the groups after the top three. After the top

four, the rankings are less consistent, which is not surprising given the

small numerical score differences in these placements (Figure 4A and

Table 2). Ranking groups by clashscore alone did not correlate with

the other rankings (Figures 3B and 4B), presumably because different

predictors used somewhat different refinement schemes and were

TABLE 2 Z-scores for predictor
groups using different combinations of
assessment metrics.

Groups ZRNA ZTM-score ZGDT_TS ZRMSD ZINF ZlDDT Zclashscore

AIchemy_RNA2 (TS232) 18.58 22.17 22.89 15.17 12.07 15.12 2.13

Chen (TS287) 13.56 15.49 13.70 13.59 12.46 13.73 6.74

RNApolis (TS081) 10.48 11.83 11.69 10.41 9.80 10.26 3.84

GeneSilico (TS128) 9.14 11.24 10.64 8.45 7.53 8.74 2.06

AIchemy_RNA (TS416) 5.73 6.25 5.72 6.36 6.55 6.21 4.07

UltraFold (TS054) 5.45 4.62 5.52 6.33 9.34 8.58 5.46

Kiharalab (TS119) 5.21 3.83 5.61 5.64 9.29 7.66 6.11

UltraFold_Server (TS125) 3.73 3.44 3.41 6.04 6.07 5.38 5.21

Yang (TS439) 3.09 2.50 3.78 6.50 5.36 5.31 3.12

Rookie (TS076) 2.98 2.80 3.19 1.99 4.32 4.18 4.81

DF_RNA (TS110) 2.91 3.30 4.31 3.01 3.41 3.52 0.42

CoMMiT-human (TS470) 2.85 5.36 3.52 3.75 4.28 2.88 0.00

Manifold-E (TS035) 2.83 2.73 3.76 2.12 2.13 3.09 5.04

AIchemy_LIG (TS325) 2.77 3.21 3.26 2.35 2.30 2.93 0.16

AIchemy_LIG3 (TS347) 2.77 3.21 3.26 2.35 2.30 2.93 0.16

AIchemy_LIG2 (TS456) 2.77 3.21 3.26 2.35 2.30 2.93 0.16

CoDock (TS444) 2.67 3.53 2.80 1.04 3.07 2.57 1.52

Yang-Server (TS229) 2.62 2.19 3.65 6.92 3.15 5.01 1.54

Yang-Multimer (TS239) 2.51 2.05 3.98 5.82 3.05 4.62 1.68

CoMMiT-server (TS489) 2.41 4.34 3.29 3.52 4.28 2.76 0.00

SHT (TS147) 2.16 2.38 1.98 2.68 3.69 2.77 6.68

GinobiFold (TS227) 1.86 2.40 1.43 1.61 3.45 2.37 6.66

Manifold (TS248) 1.85 2.24 1.93 0.82 2.09 2.50 4.15

Kiharalab_Server (TS131) 1.84 1.81 2.24 0.36 2.00 1.56 0.60

Venclovas (TS494) 1.78 1.79 2.21 0.37 1.60 1.49 0.73

PerezLab_Gators (TS285) 1.58 1.78 2.06 1.55 1.07 0.98 2.35

SoutheRNA (TS235) 1.34 1.94 1.98 4.10 3.82 2.99 2.19

LCBio (TS392) 1.25 1.81 1.21 2.67 4.52 2.90 3.54

Coqualia (TS434) 1.14 1.53 0.63 1.78 3.18 2.16 6.64

BAKER (TS185) 0.89 0.55 1.10 1.31 2.66 1.60 5.26

GWxraylab (TS029) 0.36 1.10 0.78 0.42 0.00 0.13 6.11

rDP (TS238) 0.30 1.57 1.31 2.67 0.70 2.09 0.00

ddquest (TS472) 0.23 1.33 0.12 0.40 0.00 0.02 0.00

WL_team (TS257) 0.13 0.27 0.13 0.00 0.52 0.00 0.73

Manifold-LC-E (TS046) 0.00 0.00 0.00 0.28 0.00 0.00 0.71

nucE2E (TS163) 0.00 0.21 0.05 1.95 0.00 0.36 0.00

Manifold-LC (TS490) 0.00 0.00 0.00 0.00 0.00 0.00 0.48

FoldEver (TS245) 0.00 0.05 0.00 0.98 0.00 0.00 4.17

FoldEver-Hybrid (TS385) 0.00 0.00 0.00 0.29 0.00 0.00 3.78

Graphen_Medical (TS097) 0.00 0.00 0.00 0.00 0.00 0.00 6.68

Schug_Lab (TS177) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

UNRES (TS091) 0.00 0.00 0.00 0.00 0.00 0.00 3.54
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not told a priori that they would be assessed on clashscore. Overall,

the ranking of the top four groups in CASP RNA structure modeling

was robust to changes in metrics used and across two independent

assessments.

3.4 | Detailed assessment for RNA-protein
complexes

The poorer predictions and the presence of RNA-protein contacts for

the two RNA-protein complexes RT1189 and RT1190 largely pre-

cluded useful accuracy rankings from the metrics described above, so

we carried out a detailed visual assessment for these targets. This

assessment involved checking whether predictions had the right

nucleotide—amino acid contacts and then visually assessing whether

the fold was correct. For the contact-based analysis, a contact was

defined as any pair of nucleotide and amino acid containing atoms

within 5 Å of one another. The Matthews Correlation Coefficient

(MCC) was used to score the contacts made by the predictions against

those of the targets. The distribution of scores is shown in Figure 5A.

The highest scoring model from each group with MCC scores above

0.1 (roughly the beginning of the non-zero peak in the distribution)

were then visually assessed.

For the RNA folding pattern analysis, we needed to establish a

well-defined descriptor for the RNA-protein binding arrangement that

was not dependent on superposition (which was difficult for all the

models). This was achieved by coloring each protein by the regions of

interaction in the RNA with the lowest order. Region order was deter-

mined by RNA sequence position (where 50 is low). Using this scheme,

the colors blue (B), then red (R), then green (G) were assigned to the

three RsmA homodimers in RT1189, and this pattern was compared

for each model against the experimental structure (folding pattern:

BRGRGB). In the case of RT1190, which involved only two RsmA

homodimers, not all six regions of the RNA were bound; in particular,

the regions of the RNA at approximately nucleotides 25 and 50 should

not interact with a dimer. For RT1189, no models exhibited the cor-

rect folding pattern for interacting with the 6 RsmA proteins (Table 3).

For RT1190 (folding pattern string: B-R-RB), the best model according

to the MCC score (MCC = 0.39) predicted the non-interacting RNA

regions correctly (“-” in Table 3) but the RNA-protein contacts were

F IGURE 5 Folding pattern analysis of RNA-protein complexes. (A) Histograms of Matthews Correlation Coefficients (MCC) for RNA-protein
contact accuracy in the two RNA-protein targets RT1189 and RT1190 (RsmZ-RsmA RNA-protein complexes). (B) Scheme for classifying the
folding pattern of RNA based on order of protein contacts to RNA. Each dimer is assigned a color based on the order it was visited
in. Experimental cryo-EM structures are shown at top with positions of binding on RNA diagrammed below.

12 DAS ET AL.

 10970134, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.26602, W

iley O
nline Library on [12/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



made in the wrong order (B-R-BR). Many of the lower scoring models

(MCC = 0.21–0.29), did contain interacting regions in the correct

order but misplaced the non-interacting regions. As judged by this

MCC contact-based score supplemented by protein-binding folding

pattern analysis, TS119 (Kiharalab) and TS329 (LCBio) produced top-3

models for both targets (Table 3). In contrast, ranking based purely on

RNA RMSD highlighted models from TS229 and other models from

the Yang laboratory (Table 1); these models were less satisfactory

from the point of view of protein-RNA contacts, showing the impor-

tance of complementary analyses in ranking these very difficult

targets.

3.5 | Ranking based on direct comparison to cryo-
EM maps

The “native” experimental models built from RNA cryo-EM maps may

be particularly susceptible to biases from computational procedures

or biases in human interpretation due to the generally low resolution

of these maps (see, e.g., experimental model clashscores higher than

10 in Table 1, which typically arise from fitting errors). In particular,

for RNA, when the cryo-EM map has resolution worse than '3 Å, the

separation between bases cannot be resolved and thus base place-

ment can be highly dependent on the modeling approach used by the

experimentalists. We therefore sought to rank CASP predictions

based not on comparison to the reference coordinates provided by

the experimenters (“model-to-model”) but by comparison directly to

the experimental maps (“map-to-model”). The feasibility of refining

these predictions to model the cryo-EM maps is discussed elsewhere

in this issue.21

For all six RNA-only cryo-EM targets, there were models that

could visually fit well into the maps (Figure S3). To determine a quan-

titative ranking of predictor groups, previously available map-to-model

metrics were computed (Section 2; Figure S4). These map-to-model-

metrics were developed to assess goodness of fit for models prepared

with knowledge of maps; many were not designed to account for very

poorly fitted models, with unmodeled density and atoms outside den-

sity, as we have here. For example, atomic inclusion43 penalizes pre-

dicted atoms that appear outside of density, and correlation

coefficient at peaks (CCpeaks)
37 penalizes density that is not accounted

for by a prediction. We attempted to find a combination of scores to

balance these problems; however, in the end, we decided that no

weighted combination of metrics was sufficient to enable ranking of

all available models and predictors. Although overall correlation

of map-to-model metrics to model-to-model metrics was high

(Figure S5), there were outliers receiving high map scores for poor

models by, for example, condensing all atoms into a single small area,

most notably group 238 (Figure S6C). Thus, as in previous CASP eval-

uation for cryo-EM of protein targets,69 we used a filter (Figure S6B),

only ranking models that exhibited sufficiently high model-to-model

scores. Due to the size dependence of TM and GDT-TS noted above,

we decided to set this cutoff based on RMSD. The correlation

between metrics was generally improved after this filtering

(Figures S6A and S5B).

For ranking, we selected a set of metrics that correlated well with

visual inspections of fit and chose the standard measures of cross-

TABLE 3 Matthews correlation coefficients and folding pattern of the best model from each group with an MCC greater than 0.1.

Target Group ID Group name Model Contact MCC Folding pattern

RT1189 (native folding pattern: BRGRGB) 119 Kiharalab 3 0.51 BRGRBG

232 AIchemy_RNA2 2 0.41 BRGRBG

392 LCBio 2 0.41 BRGRBG

444 CoDock 3 0.39 BRGRBG

439 Yang 2 0.38 BRGRBG

131 Kiharalab_Server 2 0.37 BRGRBG

494 Venclovas 4 0.32 BRGRBG

434 Coqualia 1 0.26 1 hexamer

185 BAKER 1 0.18 BRGB

RT1190 (native folding pattern: B-R-RB) 392 LCBio 5 0.39 B-R-BR

119 Kiharalab 2 0.29 BR-RB-

444 CoDock 5 0.27 BR-RB-

494 Venclovas 4 0.26 BR-RB-

131 Kiharalab_Server 5 0.26 BR-RB-

232 AIchemy_RNA2 4 0.21 BR-RB-

434 Coqualia 1 0.17 Dimers conjoined

035 Manifold-E 1 0.12 Protein separated from RNA

227 GinobiFold 1 0.10 Dimers conjoined

Note: The symbols B, R, G, and “-” indicate blue, red, green, and unbound regions as per Figure 5B.
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(A)

(B)

F IGURE 6 Ranking of CASP RNA predictions based on direct comparison to experimental data. (A) Ranking of six RNA-only cryo-EM targets
based on Z-scores for map-to-model metrics (ZEM). Only a subset of models with clear alignments to maps were included in the comparison; see
Figure S5 for analysis over all models. (B) Group ranking for x-ray crystal structure targets based on Z-scores for metrics that directly compare the
models to the crystallographic data (ZMX).
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correlation, accounting for modeled (CCmask) and unmodeled regions

(CCpeaks), and scores developed or shown to be most discriminatory

for medium-resolution maps, atomic inclusion (AI), mutual information

(MI), and Segment based Manders' Overlap Coefficient (SMOC).70,71

We note that no metrics tested were RNA specific and can be used to

assess any macromolecular complex. We used Z-score-based ranking,

previously described, with uniform weight of the selected metrics:

ZEM ¼1
5

ZCCmaskþZCCpeaksþZMIþZSMOCþZAI
$ %

AIchemy_RNA2 (TS232) achieved the highest ZEM score, followed

by Chen (TS287), GeneSilico (TS128), and RNApolis (TS081), and then

others (Figure 6A). This ranking matched with the model-to-model

assessment (orange bars in Figure 6A). This overall ranking was also

maintained, barring group 238, without filtering out poor models

(Figure S5A); however, the filter should be maintained until ZEM is

robust to the problematic high scores of condensed models, by for

example the inclusion of clashscore.

Overall, the results show that assessing models based on direct

comparison to cryo-EM maps, appears feasible and that results are

consistent with rankings based on model-to-model comparisons.

Direct map-to-model assessments may be particularly important in

future CASP events as prediction accuracy increases and approaches

the level of detail obtained at typical cryo-EM map resolutions.

3.6 | Ranking based on direct comparison to
crystallographic data

In analogy to the map-based assessment of cryo-EM targets in the

previous section, we investigated whether similar comparisons to

the experimental data might enable ranking of the four RNA targets

solved by x-ray macromolecular crystallography (MX). Similar to

above, the only use of the experimentally derived model was to align

predictor models. All predictor models were compared directly to the

crystallographic data by first ideally placing the model using RNAa-

lign29 and then calculating a Log Likelihood Gain (LLG) and

translation-function Z-score (TFZ) with Phaser's RNP search45 and a

global map CC with phenix.get_cc_mtz_pdb.37 We used a Z-based

ranking after a round of outlier removal (see Section 2) with a uniform

weighting of these metrics:

ZMX ¼
1
3

ZLLGþZTFZþZglobal map CC
$ %

The rankings are most strongly influenced by performance on

R1117 since ZMX scores for the other targets were relatively uniform

and comparatively poor (Figure 6B). The top-ranking groups by this

metric were TS232, TS287, and TS128 (AIchemy_RNA2, Chen, and

GeneSilico, respectively), which were also the three groups that suc-

ceeded in follow up molecular replacement trials for R1117; see

Section 3.8.

3.7 | CASP15 RNA models with accurate global
folds miss detailed features and aspects of
conformational heterogeneity

Ranking CASP15 RNA predictions based on the quantitative compar-

isons above highlighted several models for more detailed visual

inspection, which revealed their potential and limitations. One exam-

ple, the chimpanzee CPEB3 ribozyme R1108 (Figure 7), illustrates

the use of the Deformation Profile and variable accuracy in targets

of “medium” difficulty (Table 1). In Figure 7A, the superimposition of

the experimental structure with the best model (TS232_4, from

AIChemy_RNA2) is shown with the large deviations at the apical

loops. The positions of these loops on the Deformation Profile

(Figure 7A,B) are indicated highlighting the restricted regions with

high discrepancies.

One of the highly successful models is that of the paranemic

crossover triangle (PTX) R1128, a molecule with no natural homologs

whose difficulty for modeling was unclear before the CASP15

results.73 It is a designed sequence made of four 4-way junctions and

a co-axial stack between terminal helices (Figure 7C–F). The modeling

success can be partly explained by the folding constraints of the

design and the use of known structural modules. The helices are regu-

lar with known GU pairs and capping UNCG loops, without unpaired

or bulging residues (Figure 7C). The tight junctions and the bulky RNA

helices impose strong constraints on the fold and prevent knot forma-

tion (Figure 7D). The good accuracy of the modeling (TS232_1) with

an RMSD of 4.3 Å and an INF of 0.88 is apparent in the deformation

profile with a rather uniform deformation throughout (Figure 7E). The

origins of the main errors are in the twist angles between stacked heli-

ces in the 4-way junctions that propagate maximally toward the apical

loops (Figure 7F). In the experimentally determined structure, at those

4-way junctions, there are H-bonds linking one hydroxyl O20 atom to

an anionic phosphate oxygen of a residue on the crossing strand,

maintaining a tight packing. These H-bonds are not present in the

modeled structure, leading to a looser packing and slightly larger twist

angle (Figure 7G). Despite these errors in fine details, the CASP15

blind model TS232_1 was closer to the cryo-EM-derived structure

than the original model of the PTX structure designed by Andersen

and colleagues (see paper co-submitted to CASP15 special issue20).

Indeed, for all four non-natural RNA targets in CASP15 (Table 1),

the AIchemy_RNA2 group (TS232) submitted models that were visu-

ally accurate (Figure 1). Furthermore, this group, along with Chen

(TS287) and RNAPolis (TS081) were notably separated from other

groups, including all automated servers, for these non-natural targets,

suggesting that these predictors benefitted from their human intuition

to recognize the secondary structures and overall tertiary folds

intended by the nanostructures' human designers. Interestingly, in all

four cases, the predictor groups were able to blindly predict structures

that agreed better with the cryo-EM maps than the original models

made by Andersen and colleagues when they designed the nanostruc-

tures. As another example, for R1138 (six-helix bundle, Figure 7G,H),

the original design and the cryo-EM structure of the “mature” form of

the RNA agree in overall global fold, as reflected by a TM-score
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F IGURE 7 Detailed inspection of “medium” and “non-natural” targets. (A) For R1108 (chimpanzee CPEB3 ribozyme), superimposition of the
experimental structure (green) with the best model (TS232_4 from AIChemy_RNA2, as blue, RMSD 4.5 Å) is shown. Notice the large deviations at
the apical loops (as red, yellow and pink) and their positions on (B), the Deformation Profile. (C) Diagram of the secondary structure (2D) of target
R1128, a designed paranemic crossover triangle. The helices are numbered from H1 to H12. The secondary structure contains four 4-way
junctions. In the two 4-way junctions drawn as “open,” helix H1 stacks with H2 and H3 with H7 for one 4-way junction and, for the second one,
helix H8 stacks with H9 and H10 with H12. Helices H1 and H8 are stacked together. The pairs between G and U are marked by a dark dot (G•U
pair). The Leontis-Westhof72 symbols are used to annotate the Watson-Crick/Sugar edge pair between G and U in the capping apical 50UUCG30

tetraloops. (D) Experimental structure (green) superimposed on the model TS232_1 (blue) with the lowest RMSD (4.3 Å). (E) The deformation
profile (see Section 2) between the same set of structures (at the right, the color scale where white represents excellent superimposition). The
reddish regions indicate where the discrepancies are largest; they concentrate at the 4-way junctions where the experimental structure is more
compact and with H-bonding contacts between the strands than the model structure as shown in (F). (G–J) Models for R1128 (Paranemic
Crossover Triangle, PXT). Cryo-EM of mature conformation (G) agrees better with blind CASP model TS232_4 (H) than with original models
prepared by this nanostructure's designers (I). Cryo-EM also captured an early folding intermediate (J) that was not predicted well by any CASP15
groups.
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of 0.623, well above the 0.45 threshold (Figure 7G,H). Nevertheless,

the AIchemy_RNA2 model TS232_4 achieves an even higher TM-

score of 0.800 (Figure 7I). These results suggest that, despite the lack

of natural sequence homologs, “non-natural” RNA targets could be

considered “easy” for 3D RNA structure prediction, as long as they

are composed of readily identifiable helices and noncanonical motifs.

F IGURE 8 Legend on next page.
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Interestingly, for the same R1138 six-helix-bundle, cryo-EM also

captured a distinct “young” structure for the RNA (Figure 7J) that is

dominant immediately after the transcription of the RNA and requires

hours to resolve into the “mature” form.62 The “young” and “mature”
structures do not differ in their Watson-Crick-Franklin helices but, to

interconvert, would require breaking of a kissing loop interaction,

twisting of the two kissing elements about their helical axes, and then

reformation of the kissing loop.63 None of the CASP models produced

models close to the “young” structure. Other natural and designed

RNA systems are known to display similar kinetic traps and topologi-

cal isomers,74,75 and it will be interesting to see if in future CASPs,

such conformations can be blindly predicted.

A common theme was that the model ordering as submitted by

the predictor groups generally did not correspond to the ranking

based on RMSDs (or other metrics) between experimental and model

structures. This was the case for the R1108 and R1138 targets noted

above, where the fourth models from group TS232, and not the first

models, were most accurate. Overall, in 63% of the sets of CASP15

predictor submissions across all 12 RNA targets, a model submitted as

2–5 was better than model 1 by GDT_TS, and the difference in GDT-

TS between model 1 and the top scoring model for each group was

no lower than if model 1 had been randomly selected (Figure S7). The

models from group TS110 (DF_RNA) for the “difficult” target R1149

(the SL5 domain from SARS-CoV-2) provides an additional example.

The best RMSD of all CASP15 submissions is model #2 by TS110 as

depicted in Figure 8A–D. The RMSD between the experimental struc-

ture and TS110_2 is 6.9 Å (superposition shown on Figure 8A with

the respective Deformation profile on Figure 8B). On the other hand,

the RMSD between the experimental structure and first model

TS110_1 is 21.7 Å. The superposition (Figure 8C) and the correspond-

ing Deformation profile (Figure 8D) confirm that the global fold of

TS110_1 is inaccurate despite its submission as model 1. In particular,

the reddish regions indicate where the discrepancies are largest; they

concentrate at the 4-way junctions where the experimental structure

is more compact and with H-bonding contacts between the strands

than the model structure as shown in Figures 7C and 8A.

Further inspection of TS110_2 helps illustrate the requirement of

paying attention to the non-Watson-Crick pairs beyond the standard

Watson-Crick pairs of the secondary structure, both in prediction and

in assessment of RNA targets resolved by cryo-EM. Figure 8E,F shows

the 2D structures for R1149 as derived from the cryo-EM map

(Figure 8E) and the best RMSD model TS110_2 (Figure 8F) structures.

The region within the black ellipse (Figure 8G) contains a GU and a

UU pair, but in the modeled structure, only the GU pair is reproduced

and, while the right Us face each other, they do not form a pair

(Figure 8H). In the region circled in red, the fold of the single-stranded

loop is missed and in the one circled in green, the fold leads to several

bad contacts between residues, which may explain the rather high

clashscore of 31 for TS110_2, despite the overall good fit in the rela-

tive orientations between the helices (Figure 8A). It is important to

note that for these regions, alternative structures in the experimental-

ists' 10-model cryo-EM ensemble show breaking of the features, simi-

lar to the prediction TS110_2; and so it is possible that the

conformations modeled in TS110_2 occur in the actual cryo-ensemble

for the target R1149. Nevertheless, these model discrepancies lead to

deviations of the strands in the four-way junction that, in turn, lead

to variations in the arms at the junction (Figure 8G). Indeed, all

10 members of the experimental cryo-EM ensemble show complete

base pairing at the molecule's central four-way junction, which is

inconsistent with incomplete junction base pairing in TS110_2

(Figure 8F).

The presence of alternative structures, noted above for the non-

natural six helix bundle R1138, was a common theme in RNA targets

in CASP (Table 1), and was particularly interesting in one target with

continuous heterogeneity. R1156 is a homolog of the same SARS-

CoV-2 SL5 domain as R1149, and showed flexibility in one helix (blue,

Figure 8H,I), which was represented in the cryo-EM analysis as four

subclassified maps. Comparing models directly to these experimental

maps highlighted models of particular excellent quality that fit into the

maps nearly as well as the reference models prepared by experimen-

talists using the maps (Figure S3). In particular, the model TS128_5

from GeneSilico fits into the experimental map with excellent scores

(Figure 8H,I). Fitting this model into the highest resolution of these

four maps, conformation 1, we can see visually and numerically, that

the model fits well with respect to 3 helices but poorly with respect

to the flexible helix (Figure 8H). However, the model fits better in the

second conformation, obtaining map-to-model atomic inclusion scores

comparable to scores achieved by models derived with knowledge of

the map (Figure 8I). This comparison revealed the importance

of representing the ensemble of structures the RNA can form so as to

not penalize prediction of structures that do form but cannot be cap-

tured by a single experimental structure.

F IGURE 8 Detailed inspection of “difficult” targets, two coronavirus SL5 domains solved by cryo-EM. (A) Superposition between R1149
cryo-EM structure (first of 10 models representing experimental uncertainty) and the closest CASP15 prediction according to RMSD (TS110_2
with 6.9 Å). (B) Deformation profile between the same two structures. (C) Superposition between the experimental (R1149) and the model ranked
#1 by the modeling group (TS110_1 with 21.7 Å). (D) Deformation profile between the same two structures. (E) Diagram of the secondary
structure (2D) of target R1149 (first of 10 models representing experimental uncertainty). (F) Diagram of the secondary structure (2D) of the
closest model TS110_2. The outlines indicate regions with large discrepancies due to wrong 2D pairs and absence of 3D pairs. For example, in the
model structure, the U54/U36 pair is not present, and the region circled in green shows a region with high clashscore. (G) Backbone traces of the
experimental (green) and model (blue) structures showing the overall fit of the helices; however, as shown in inset, the wrong choices in internal
loops lead to large deviations in the path of the backbone at the central 4-way junction. (H, I) Experimental maps and models (gray) for R1156,
whose cryo-EM data were subclassified into four separate conformations; conformation 1 (H) and 2 (I) compared to top scoring CASP prediction
TS128_5 (color).

18 DAS ET AL.

 10970134, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.26602, W

iley O
nline Library on [12/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



In summary, inspection of top-ranked CASP15 RNA models con-

firms, in each case, good prediction of global fold but also reveals fine

details and/or aspects of conformational heterogeneity that have not

been captured by the models. Ordering each set of five models by the

predictor groups also typically did not correlate with the models' accu-

racy. Similar conclusions for R1108, R1128, R1138, R1149 and R1156

based on alternative analyses by RNA experimental groups, are

described in a separate paper prepared for the CASP issue.20

3.8 | Potential utility of RNA models for molecular
replacement

The general global fold accuracy of the CASP15 RNA tertiary struc-

ture models motivated us to explore their potential utility for phasing

x-ray diffraction data by molecular replacement, which has previously

been carried out in very few cases.76 While we began these explora-

tions in studies described above to rank models based on agreement

with x-ray data (Section 3.6), such scores based on optimal place-

ments do not necessarily reflect models' value as search models for

real-world Molecular Replacement (MR). For example, a largely accu-

rate model may prove unsuccessful if inaccurately modeled portions

lead to severe crystal lattice packing clashes.

We therefore carried out more realistic MR runs, first, on all

unmodified models of R1117. This initial analysis was restricted to

R1117 since visual examination and LLG calculations suggested that

models of other targets would require some kind of editing to succeed

(see next). Across the up to five models submitted by groups, we

found that 3 out of 34 groups succeeded with at least one model,

using global map correlation coefficient CC > 0.2 as the criterion of

success (Figure S8). Among these successful groups, however, the

quality of MR solutions varied significantly. The highest LLG was

110 for model 128_2 but results in a poor Rfree of 54% after

refinements in Refmac5; in contrast, the lowest Rfree was 39% for

model 287_3 from the Chen group after refinement with Refmac577

despite this model giving a worse LLG in the MR trials. Figure 9 shows

the successful solution with model 287_3.

For the other three CASP targets solved by x-ray diffraction,

visual inspection and the ZMX values in Figure 6B made clear that edit-

ing of the predictions would be required for successful MR, and, to

focus resources, models from TS232 (AIchemy_RNA2) were subjected

to various editing procedures. For solution of the two CPEB3 ribo-

zymes, R1107 (one protein chain, one RNA chain) and R1108 (two

protein chains, two RNA chains), the structural variance observed in

group TS232 models after structural alignment with Theseus78 was

used as an indication of local prediction reliability and divergent

regions removed before the edited model_1 was used as a search

model. This approach borrows from that taken for proteins by the MR

pipeline AMPLE.79 R1107 was successfully solved by first placing the

protein chain then the edited RNA search model, both with Phaser.

The result (Figure 9) has an Rfree of 26% and visible density for the

missing part of the RNA molecule confirms that it could be readily

refined and completed. R1108, a close homolog of R1107, proved

much more difficult to solve, perhaps owing to the different confor-

mations observed between the two RNA chains in the asymmetric

unit. When attempting to solve this structure similarly (protein first

then RNA) we could place the protein component, but the RNA com-

ponent was reversed, providing only a partial solution. The truncated

group TS232 models for R1108 were of a sufficient quality to solve

R1107 and the resulting protein/RNA complex could then be used to

solve R1108 with an Rfree of 41%.

Inspection of the Group 232 models for R1116 showed that more

extensive model editing would be required. A modified version of Sli-

ce'N'Dice52 was therefore used to split model_1 into three structural

units. A portion comprising nucleotides 1–24;125–157 could then be

placed with MOLREP which indicated a partial solution after

F IGURE 9 Molecular replacement (MR) of x-ray crystallographic data using CASP15 models (and AlphaFold 2 models of U1ABD in the cases
of R1107 and R1108). Group TS232 models formed the basis of all successful search models shown except R1117 (group TS287).
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refinement (Rfact 48%, Rfree 52%). Three copies of a second fragment

comprising 38–63 could then be placed to largely complete the struc-

ture with Phaser scores of LLG: 1324 and TFZ: 9.6. These values are

unambiguously indicative of successful Molecular Replacement: for

example, TFZ > 8 corresponds to “Definitely” solved according to

Phaser software guidance.80 The result (Figure 9) has an Rfree of 43%,

an acceptable value for a model immediately after MR. These results

demonstrate that all of the RNA crystal structure targets in CASP15

could, one way or another, be solved by MR, although it is recognized

that further refinement and completion (not attempted here) could be

challenging, especially at 3.0 Å or worse resolution.

4 | DISCUSSION

CASP15 enabled a timely assessment of 3D RNA structure prediction,

with 8 RNA targets solved by cryo-EM and 4 by x-ray crystallography.

Forty-two predictors from 25 research centers made submissions for

at least one of these targets, many of whom had not published studies

on RNA prior to CASP but explored deep learning approaches that

were novel for the RNA field. The 12 RNA targets ranged in difficulty

from “easy,” with clearly identifiable templates in the structure data-

base, to “difficult,” with no templates. When looking at all five submis-

sions for each target, visually good predictions were submitted for all

10 RNA-only targets, including 4 non-natural RNA targets that had no

global homology to previously solved structures. Two protein-RNA

complexes were not modeled accurately.

Quantitative rankings of predictor groups were carried out by

independent teams, based on RMSD and INF metrics developed in

the RNA-Puzzles trials and based on TM-score, GDT_TS, and lDDT

more familiar to protein structure assessments in prior CASP experi-

ments. Both rankings agreed in placing TS232 (AIchemy_RNA2) first,

TS287 (Chen) second, and TS128 and TS081 (GeneSilico and RNAPo-

lis) as tied for third. These rankings were also confirmed by analyses

comparing predicted models to maps (for cryo-EM targets) and statis-

tics related to molecular replacement (for x-ray crystal targets). The

top-ranked models for the 10 RNA-only targets captured global folds

well, as assessed by visual inspection and by achievement of GDT_TS

values greater than 45 and/or TM-score values greater than 0.45.

Nevertheless, fine details such as noncanonical pairs and hydrogen

bonding at junctions were inaccurate in these models, even when tak-

ing into account sources of uncertainty for the experimental struc-

tures. Conformational heterogeneity in some targets, R1136 and

R1156, was indicated by the presence of multiple structures captured

by cryo-EM but was not captured by any group in their range of sub-

mitted models (Figure S9). Despite these caveats, the general global

fold accuracy for RNA-only targets—even those without homologs of

known structure—and the ability of models, with some curation, to

enable molecular replacement of all 4 x-ray diffraction data sets sug-

gest reason for optimism.

Has there been improvement in RNA modeling in CASP15 com-

pared to prior RNA-puzzles? Achieving accurate positioning of helices

with respect to each other by modeling is often feasible when the

single-stranded segments are short and unpaired because RNA helices

are bulky and the interconnecting strands each have a polarity, leading

to a reduced search space for modeling helix arrangements. The good

helix positioning observed here in CASP15 was also regularly

observed during previous RNA-Puzzles assessments and in previous

RNA modeling efforts.8–11 During this CASP15 experiment, some

research groups tried to use prediction approaches that were similar

to AI-based methods for predicting the structure of proteins. For

example, AlChemy_RNA81 uses an end-to-end differentiable network

inspired by AlphaFold 2.50 However, these AI-based predictions did

not perform as well as expected and did not surpass prediction

methods previously tested in RNA-Puzzles (SimRNA, Chen, RNApolis),

which have been continuously improving for the past decade. The AI-

based approaches81,82 also failed to demonstrate the accuracy

claimed in their preprint papers, perhaps due to the limited amount of

training data.

In addition to not using deep learning, the top four RNA predictors

shared the property that they were not servers and, based on their

own accounts (see papers co-submitted for this CASP issue65–68), they

appeared to still make use of human intuition. While there were cases

where server models were more accurate than “human” models from

the same laboratory (e.g., Yang), generally server models were worse in

quality than the top 4 human predictor groups. Going forward, an

important frontier for the RNA structure prediction field to focus on

will be automation, so that methods can be more widely used and

applied at the genomic scale, as is now the case for protein structure

prediction methods. While the sparser data available for RNA struc-

ture, compared to protein structure, has complicated development of

robust deep learning algorithms, recent accelerations in RNA structure

determination—particularly from cryo-EM12—and the availability of

high-throughput sequencing-based methods sensitive to RNA struc-

ture83 may help close the gap between RNA and protein computa-

tional methods. Interestingly, secondary structures from even the top

server predictions were poorer than those from “human” groups,

highlighting an area of potentially immediate improvement.

In addition to being the first CASP experiment for RNA structure

prediction, CASP15 was also the first CASP experiment for RNA

structure assessment, and future CASP RNA trials can benefit from

some lessons learned by the assessors, three of which we discuss

here. First, CASP15 included few truly difficult RNA targets, and these

were solved by cryo-EM at resolutions worse than 3 Å. It will be

important for upcoming CASP competitions to bring in experimental

groups solving natural RNA targets without previously solved homo-

logs at near-atomic resolution. Such molecules are being discovered

and structurally characterized at increasing frequency, particularly for

biologically interesting RNA-protein complexes. It may also be useful

to develop a fully automated classification scheme for easy, medium,

and difficult RNA targets and separately assess targets from these cat-

egories, as was traditional in CASP before the success of deep learn-

ing approaches rendered these categories less useful for proteins.

Second, while only 2 of 12 targets in CASP15 were RNA-protein

complexes, it seems feasible that CASP16 will involve more RNA-pro-

tein complexes, given their biological importance and amenability to
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cryo-EM. For assessment, it will therefore be increasingly important

to develop quantitative metrics that make sense across RNA, protein,

and RNA-protein interfaces. We found here that standard metrics for

protein structure accuracy assessment, GDT_TS and TM-score, were

useful in ranking RNA models, but their values for visually excellent

RNA models seemed anomalously low for large and small targets,

respectively. More local measures of accuracy, like lDDT, and assess-

ments of contact accuracy, appeared useful here for both RNA and

RNA-protein targets. These more local measures may be less affected

by length variation and also more robust to dynamic fluctuations that

appear common in large, extended RNA structures. The recent avail-

ability of lDDT for RNA may allow more testing of this metric in con-

tinuous trials like CAMEO and RNA-Puzzles before the next CASP.

Third, many and perhaps most of the CASP15 RNA targets

showed conformational flexibility, for example, as evidenced by differ-

ences in conformations of different monomers in crystallographic

asymmetric units or, in cryo-ensembles captured by electron micros-

copy as classes of conformations separable by automated subclassifi-

cation and/or 3D variability analysis.39 In the current assessment,

predictor groups were scored based on the best observed agreement

of all their submitted models vs. all available experimental models,

effectively assuming that modelers were predicting single structures.

Modeling of the full ensemble nature of these RNA systems was nei-

ther incentivized nor assessed. In future CASPs, acceptance of multi-

model ensembles (with e.g., 100s or 1000s of models within each of

5 ensembles), rather than separate single-structure models, would

better incentivize development of methods for predicting conforma-

tional ensembles of macromolecules, including molecular dynamics

methods that have been previously difficult to assess. Furthermore,

scoring of these ensembles directly against data should be feasible;

for example, log-likelihood frameworks and GPU-enabled software84

might enable predicted multi-model cryo-ensembles to be compared

to the entire collection of electron micrographs collected for a target.
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Model Best RMSDa Model 1 RMSDb Best DIc Model 1 DIc Best INFd Model 1 INFd

Rank 1st 2nd 3rd sume 1st 2nd 3rd sume 1st 2nd 3rd sume 1st 2nd 3rd sume 1st 2nd 3rd sume 1st 2nd 3rd sume

TS232 6 2 0 22 5 0 2 17 6 2 0 22 6 0 1 19 6 1 1 21 3 3 0 15

TS287 1 2 2 9 1 3 2 11 1 3 2 11 2 5 0 16 2 0 3 9 4 2 0 16

TS128 1 1 2 7 2 1 0 8 1 0 1 4 1 1 1 6 0 0 0 0 0 0 0 0

TS081 0 1 1 3 2 1 1 9 0 1 3 5 1 3 1 10 2 2 2 12 2 1 2 10

TS229 2 0 1 7 0 0 0 0 2 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0

TS416 0 2 2 6 0 1 0 2 0 1 1 3 0 1 0 2 0 0 0 0 0 1 0 2

TS239 2 0 0 6 0 0 0 0 2 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0

TS439 2 0 0 6 0 0 0 0 2 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0

TS110 1 0 0 3 0 0 0 0 1 0 0 3 0 0 1 1 0 0 0 0 0 0 0 0

TS285 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 0 0 0 0 1 0 0 3

TS456 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 0 1 1 0 0 0 0

TS054 0 1 0 2 0 1 0 2 0 1 0 2 1 0 0 3 0 1 1 3 0 0 2 2

TS347 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 0 1 1 0 0 0 0

TS489 0 0 0 0 1 0 1 4 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

TS470 0 0 0 0 1 0 1 4 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

TS227 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TS147 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TS119 0 0 0 0 0 1 0 2 0 0 0 0 0 1 1 3 0 1 1 3 1 0 0 3

TS325 0 0 0 0 0 1 0 2 0 1 0 2 0 1 0 2 0 0 1 1 0 0 0 0

TS392 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2

TS434 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 1 1 0 5 0 0 1 1

TS035 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 1 1 3 0 0 2 2

TSR01 0 0 0 0 0 0 0 0 0 0 2 2 0 0 1 1 0 0 1 1 0 1 0 2

TS125 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 2 0 0 1 1

TS235 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

TS076 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

TS444 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 4 0 1 1 3

TS248 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

TS185 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3
a Best RMSD reached for all the models submitted.
b RMSD reached by the model ranked #1 by the group.
c Same as a,b for Deformation Index (DI).
d Same as a,b for Interaction Network Fidelity (INF).
e For each group, the number of times the submitted models were ranked 1st, 2nd, or 3rd were counted and the weighted sum
indicated in SUM (with a weight of 3 for 1st, 2 for 2nd and 1 for 3rd ranks).

Supplementary Table 1. Scores reached by the modeling groups using the different RNA-Puzzles
metrics and assessment processes as indicated in the column Model.
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Supplemental Figure 1. Comparison of two tools to calculate interaction network fidelity (INF) of
RNA. Comparison of INF computed using MC-annotate vs. using ClaRNA.
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Supplemental Figure 2. How a good prediction can get high TM-score but low GDT_TS. For the
R1138 model 4 submitted by AIchemy_RNA2 (R1138TS232_4) and the cryo-EM R1138 structure, the
residue-residue distances between the C3’ and C4’ atoms were calculated using the superimposed
coordinates determined by US-align and LGA, respectively; the traces are similar. The black dashed line
represents the (soft) distance threshold used in US-align to compute TM-score ( = 13.59 Å), which is set𝑑

0
based on the molecule length; for this 720-nucleotide target the value is large and most residues align𝑑

0
within the threshold, leading to a high TM-score for this target. In contrast, the gray lines indicate the
threshold values used in GDT_TS (1 Å, 2 Å, 4 Å, and 8 Å). These threshold values do not change with
molecule length and so do not take into account the increased flexibility expected for longer RNA
molecules, leading to small GDT_TS values for this target.
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Supplemental Figure 3. Fits of CASP15 RNA models to EM maps. The best fitting (by ZEM) predicted
model (blue) fit into an experimental cryo-EM map for each target (gray).
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Supplemental Figure 4. EM metrics for all targets. Scores for all models submitted for all targets are
depicted. Models passing the RMSD filter are indicated with larger dots, colored if submitted by top
performing groups and dark gray otherwise. The black line indicates the EM metric scores for the
experimentally determined model.

6



Supplemental Figure 5. Map-to-model analysis over all submitted models without RMSD filtering.
(A) Z-scores for all models for RNA cryo-EM targets and ranking according to ZEM (black), in orange are
the ZRNA scores for comparison. (B) the Spearman correlation between metrics used in ZRNA, ZEM, as well
as RMSD for all models from cryo-EM targets. RMSD and clashscore were multiplied by -1 before
calculating the correlation so that higher scores corresponded to better accuracy for all metrics.
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Supplemental Figure 6. Map-to-model analysis and RMSD filtering. (A) the Spearman correlation
between metrics used in ZRNA, ZEM, as well as RMSD, computed for all models passing the RMSD filter.
RMSD and clashscore were multiplied by -1 before calculating the correlation so that higher scores
corresponded to better accuracy for all metrics. (B) The number of models which have RMSD to target
less than the filter cutoff; these models were used in the final EM ranking. (C) An example of when EM
metrics can be misleading. Reference structure in green, experimental map in grey, predicted models in
blue. GDT-TS is reported as an example of model-to-model metric and SMOC as an example of
map-to-model metrics. Green scores are seen as “good” while red are “poor” scores

8



Supplemental Figure 7. Comparison of groups’ top model by GDT-TS and the model they selected
as model #1. (A) For each group, the percent of targets they participated in where their best model by
GDT-TS (out of up to five models submitted) was assigned as model #1. (B) For all targets and all groups,
the percent difference in GDT-TS from model #1 to the top model for that group. The mean values over
CASP groups in (A,B) are shown as black lines. For comparison, the gray bars in (A,B) mark the 95%
confidence interval for values from random shuffling to select “model #1” (1,000 and 10,000 bootstraps
respectively).
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Supplemental Figure 8. Molecular replacement analysis of all groups for R1117. LLG (top) and TFZ
(bottom) are plotted in red with a horizontal line at 60/7 respectively representing the normal criterion for
successful placement. Global Map CC is plotted in blue with a horizontal line at 0.2 representing
agreement between the placed model and the solved crystallographic structure.
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Supplemental Figure 9. Analysis of how well groups modeled multi-state targets. For all models
submitted, the TM-scores to the two separate conformations are plotted against each other. The two
conformations are the mature and young conformations for the 6-helix bundle nanostructure R1138 (A)
and 'up' and 'down' conformations for the BtCoV-HKU5 SL5 domain R1156 (B). Gray boxes indicate
regions with TM-scores below the TM-score between the two target conformation (0.67 for R1138 and
0.58 for R1156). Red regions indicate models that were close to the young (A) and ‘up’ (B) conformations
and blue regions indicate models that were close to the mature (A) and ‘down’ (B) conformations. In both
targets, there were models submitted that capture one of the experimentally observed conformations
(blue quadrant) but not the other one (red quadrant).
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