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ABSTRACT: Riboswitches that couple binding of ligands to conformational changes offer sensors and control elements for
RNA synthetic biology and medical biotechnology. However, design of these riboswitches has required expert intuition or
software specialized to transcription or translation outputs; design has been particularly challenging for applications in which the
riboswitch output cannot be amplified by other molecular machinery. We present a fully automated design method called
RiboLogic for such “stand-alone” riboswitches and test it via high-throughput experiments on 2875 molecules using RNA-MaP
(RNA on a massively parallel array) technology. These molecules consistently modulate their affinity to the MS2 bacteriophage
coat protein upon binding of flavin mononucleotide, tryptophan, theophylline, and microRNA miR-208a, achieving activation
ratios of up to 20 and significantly better performance than control designs. By encompassing a wide diversity of stand-alone
switches and highly quantitative data, the resulting ribologic-solves experimental data set provides a rich resource for further
improvement of riboswitch models and design methods.
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Riboswitches use RNA conformational changes to trans-
duce sensing of molecules in the cellular milieu into

modulation of RNA transcription, ribosomal translation, pre-
mRNA splicing, and RNA cleavage.1 The ability to perform de
novo design of arbitrary riboswitches would have broad impacts
in synthetic biology as well as for RNA diagnostics,
therapeutics, and biomedical imaging. Supporting these efforts,
there are a rapidly growing number of synthetic and natural
RNA “aptamer” sequences that bind drugs, metabolites,
proteins, and other biologically important molecules that
expand the possible inputs for novel riboswitches, and
powerful design rules and software to create riboswitches
with transcription and translation outputs.2−4 Similarly, the
possible outputs of riboswitches are being expanded to
triggering of “light-up” fluorescence and toggling activities of
CRISPR/Cas and other ribonucleoprotein complexes.5−9

These newer applications would benefit from riboswitch
mechanisms that do not require external molecular machinery
or energy dissipation but instead broadcast their output simply
after reaching thermodynamic equilibrium. Such molecules
would be more likely to retain their functions when moved into

different RNA contexts or used in extracellular environments
where energy or additional molecular machinery cannot be
provided. Inspired by the concept of stand-alone executables in
software engineering, we term such molecules “stand-alone”
riboswitches.
Creating stand-alone riboswitches leads to a new design

challenge. Natural and synthetic riboswitches achieve maximal
activation ratiosdefined as the ratio of observed output
signal in the presence and absence of the input ligandby
toggling between states that are barely activated to states that
are weakly activated, rather than to states that saturate the
output.10 Biological control is then achieved by subsequent
amplification steps such as ribosomal translation of many
proteins per activation step.10,11 Effective stand-alone
riboswitches, which forego such amplification machinery,
require quantitative conversion between two distinct states,
rather than changing the frequency of transient sampling of an
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active state. This design constraint necessitates a trade-off with
good activation ratios.10 Testifying to the difficulty of this
additional trade-off, development of light-up sensors has
required significant trial-and-error; success has been achieved
through screening of many constructs, the majority of which
exhibit little to no switching, with median activation ratios
close to 1 and best-case activation ratios of 10.5,6,9,10 Moreover,
computational predictions of the success of light-up designs are
poor (Figure S1), suggesting the need for richer datasets
characterizing diverse RNAs. Further exemplifying their
inherent design difficulty, stand-alone switches for CRISPR/
Cas9 or other ribonucleoprotein complexes, which would
enable reversible control of these complexes in therapeutic
settings, have not been achieved.12−14

Here, we present a detailed computational and experimental
study involving thousands of diverse molecules to test the fully
automated design of stand-alone riboswitches. For computa-
tional design, we describe RiboLogic, an algorithm for
designing sequences of RNA molecules that are predicted to
change their secondary structure in response to interactions
with other molecules. Unlike prior software that might be
applied to stand-alone switch design,3,15−19 this package only
requires the user to provide small aptamer segments to bind
desired input molecules and the desired structures adopted in
each state. For experimental characterization, we evaluate the
switching of thousands of designed RNA molecules in vitro
using repurposed Illumina sequencers, through the recently
developed RNA-MaP (RNA on a massively parallel array)
platform.20−23

RiboLogic designs stand-alone riboswitches based on a
flexible set of user-specified constraints. The algorithm
accounts for any number of folding conditions, as defined by
the concentrations of ligands defined by the user. These

ligands can be small molecules, proteins with known aptamers,
or other RNA strands engaged through base-pairing inter-
actions. For example, in some of our tests below, we used flavin
mononucleotide (FMN) as an input ligand; FMN binds to a
small aptamer sequence discovered by in vitro selection (Figure
1A,D).24 The user only needs to specify the sequence of this
aptamer and the estimated dissociation constant of the
aptamer-ligand complex under the experimental conditions,
and RiboLogic will place this “input” segment within the
design and optimize the surrounding sequence in each of the
riboswitch states, simulating ligand binding to the aptamer (see
Methods for details). In this example, the two states are RNA
with no FMN present and with a concentration of 200 μM
FMN (Figure 1B). For each of the target riboswitch states, the
user can specify either a full desired secondary structure or,
more simply, the substructure of an “output” segment that
must be adopted or not adopted by the RNA in order to
trigger or suppress an output, respectively. For example, in
some of our tests below, we used binding of a fluorescently
tagged MS2 viral coat protein to an MS2 RNA hairpin segment
within the design as an output (Figure 1A,D); such
interactions underlie most systems for CRISPR interference
and activation and in situ RNA visualization but have not yet
been used in standalone switch design.5−9,12−14 The user only
needs to specify the sequence and “active” secondary structure
of this output element, and RiboLogic places this sequence
relative to the input aptamer element and optimize
surrounding sequences during its design process. We note
that unlike prior natural and synthetic riboswitches, we
demand that the RNA’s MS2 output segment take on the
desired hairpin secondary structure as its dominant structure in
the ON state, rather than simply sampling this structure more
frequently than in the OFF state. Such complete conversion of

Figure 1. RiboLogic uses a graph representation and two scoring functions to design stand-alone riboswitches. (A) This energy diagram represents
the thermodynamic model used, where the ligand-bound state is given an energetic bonus due to the chemical potential of the binding of the ligand.
(B) A user specifies design constraints for a riboswitch of interest, e.g., the formation of the MS2 hairpin in the absence of a ligand and the
nonformation of the hairpin in the absence of a ligand. (C) The sequence is initialized to all A’s except for known sequence constraints. (D) A
graph representation is used to constrain the sequence space that is sampled by RiboLogic. In this example, the goal is to design a riboswitch whose
formation of the MS2 RNA hairpin is modulated by the presence of the flavin mononucleotide (FMN) molecule. Bases connected by an arc are
part of these secondary structure elements and are constrained to be complementary in sequence update. (E) Two scoring metrics are used to
evaluate each design candidate. The base pair distance measures the number of base pairs that must be broken or formed to reach the target
structure, while the base pair probability (bpp) score quantifies the probability of formation of each base pair in the target structure. (F) The scores
change as expected during computational design, with the base pair distance decreasing and the base pair probability score increasing over
optimization steps.
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structure is needed for a stand-alone riboswitch that would
work without further amplification.
RiboLogic uses simulated annealing to sample the space of

possible sequences to satisfy the given constraints (Figure
1D,E). At each step, the sequence is mutated either at a single
base or by sliding the position of a functional element (e.g., the
FMN aptamer or MS2 hairpin; colored nucleotides in Figure
1D). For each sequence that is sampled, the minimum free
energy secondary structure is determined for each solution
condition (e.g., without and with 200 μM FMN) and evaluated
by two scores (Figure 1E,F). The first score is a base pair
distance that measures the number of base pairs that must be
broken or formed to obtain the target structure or
substructures in each solution condition, summed over the
different solution conditions. The second score is a base pair
probability score that sums the probabilities of formation of all

base pairs that should form in the target structure or
substructures, providing a smoother quantitative measure of
structure formation than the first base pair distance score.
RiboLogic implements several additional strategies to narrow
the sequence space being explored. Mutation of the sampled
sequences leverages a dependency graph-based approach,
which ensures that bases that are paired in any target structure
are always complementary in sequence (e.g., N’s connected by
blue lines in Figure 1D).25 In the case of designing
riboswitches responsive to other input RNA molecules, the
algorithm provides the option to automatically introduce the
sequence complementary to the input in order to promote
favorable interactions between the designed RNA and input
RNA.
As test cases for our methods, we designed stand-alone

riboswitches where the binding of a small molecule or

Figure 2. Functional tests of riboswitches using a high-throughput array. (A) Each cluster on the array initially contained a single species of ssDNA
from a synthesized oligo pool. dsDNA was generated by Klenow extension with a biotinylated primer, and RNA was transcribed by RNA
polymerase until being stalled at the streptavidin roadblock. (B) Fluorescently labeled MS2 protein was flowed in at varying concentrations to
enable measurement of binding. (C) The array technology enables measurement of binding curves over tens or hundreds of replicate clusters for
each design and solution condition. (D) The median over the distribution of fit Kd’s was used to estimate the activation ratio of switching. In this
example of an ON switch, the activation ratio of 11 was measured over 172 independent clusters displaying the same switch.

Figure 3. Top ligand-responsive riboswitch designs. (A) Predicted secondary structures for a top OFF switches show disruption of the MS2 hairpin
(red) upon binding of FMN, theophylline, or tryptophan (blue). (B) Predicted secondary structures for top ON switches show formation of the
MS2 hairpin (red) upon binding of FMN, theophylline, or tryptophan (blue).
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oligonucleotide ligand modulates the formation of the MS2
RNA hairpin, which can then transduce outputs by recruiting
machinery coupled to the MS2 bacteriophage coat protein.
This is the first example of MS2-controlling riboswitches,
which could have broad applications.26−28 We applied a
quantitative, high-throughput array technology that enables
fluorescence measurements over millions of individual RNA
clusters generated on an Illumina array, which has been
extensively tested using the MS2 system (Figure 2A,B).20,22,23

The formation of the MS2 RNA hairpin was detected by
flowing fluorescently labeled MS2 protein at increasing
concentrations to get a binding curve (Figure 2B,C). The
dissociation constant Kd was fit over tens to hundreds of
clusters for each design, yielding a distribution of Kd
measurements for each state (Figure 2D). By taking the
median of each distribution, we calculated a Kd as a
quantitative measure of the binding of each design, and the
ratio of these Kd values with and without input ligand (e.g.,
FMN) gives an activation ratio, which we use as our figure of
merit for riboswitches. This activation ratio is equal to the ratio
of fluorescence of the riboswitch with and without input ligand
at low MS2 concentrations and is therefore the most relevant
performance measure for stand-alone switches that need to
work without output amplification.10 By carrying out fits of
data from subnanomolar to many micromolar MS2 concen-
trations, we achieve high precision in these measurements. The
resulting Kd values and activation ratios were strongly
correlated across experimental replicates, confirming the high
precision of the method (r2 = 0.94 for log Kd; errors in
activation ratios well under 2-fold; see Figure S2).
We applied the algorithm to design switches responsive to

three different small molecules−flavin mononucleotide
(FMN), theophylline, and tryptophan. For stand-alone OFF
switches, the MS2 hairpin should form when the ligand is
absent and be disrupted when the ligand is added (Figure 3A).
For ON switches, the MS2 hairpin should form only when the
FMN is present and otherwise be disrupted (Figure 3B). By
applying secondary structure constraints to the MS2 hairpin
region in both the absence and presence of the ligand, we set
up a two-state design problem. We were able to obtain a set of
structurally diverse designs (Figures 3 and 4A), and we

experimentally characterized thousands of these molecules
with the RNA-MaP method.
We found that RiboLogic designs achieved activation ratios

significantly better than unrelated designs made for other
ligands, which were used as baseline comparisons (Figure 4B).
For example, theophylline and tryptophan designs, which are
expected not to respond to FMN-binding, were used as
baseline measurements for comparison to FMN designs. For
example, the median activation ratio for RiboLogic designs of
FMN-responsive ON switches was 1.5 (Figure 4B, Table 1,

Table S1). As the baseline comparison, the median activation
ratios with respect to FMN for designs meant to be responsive
to theophylline or tryptophan was 1.2. For each of the six
switch design challenges (three ligands, ON vs OFF) the
difference was significant (p < 10−10; Figure 4B, Table S2). In
addition, RiboLogic designs also perform significantly better
than no switching (activation ratio 1) in almost all design
problems. We also provide a success rate by counting the
number of designs that perform better than the median or 95th
percentile of baseline designs (Table S3). Since other existing
automated methods are not compatible with our design
problem, we also compare our performance to previous
rational design efforts of similar systems. Previous character-
ization of reversible riboswitches yielded a median activation
ratio of 1.2.6,9,29

Figure 4. Design of ligand-responsive riboswitches. (A) Clustering of FMN switches based on the sum of base pair distances of predicted secondary
structures reveals that RiboLogic designs with diverse structures achieve high activation ratios. (B) Distributions of experimentally measured
activation ratios are shown for various types of designs, with medians shown as vertical lines. RiboLogic generally achieves significantly better
activation ratios than baseline, as determined by a Wilcoxon rank-sum test (***p < 0.001). Baseline is the measured activation ratio for sequences
made for other design problems. (C) In practice, several of the most promising designs would be experimentally screened to evaluate switch
efficiency. To mimic this, we bootstrapped sets of ten designs and chose the design with the best activation ratio. The distributions of activation
ratios for these best-of-ten designs were compared between RiboLogic and baseline. A best-of-ten strategy yields designs with significantly higher
activation ratios than baseline.

Table 1. Activation Ratios for RiboLogic Designs

design
maximum

AR
median
AR

best-of-ten median
AR count

FMN OFF 9.74 0.987 2.57 1357
FMN ON 14.4 1.46 3.89 853
theophylline
OFF

9.92 1.73 4.86 97

theophylline ON 15.4 0.991 3.44 99
tryptophan OFF 4.29 1.17 2.28 89
tryptophan ON 4.55 1.08 2.09 94
miRNA OFF 21.8 0.825 1.66 188
miRNA ON 20.0 1.17 2.84 98
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For each of these six small-molecule-triggered challenges, the
best activation ratio was over 4-fold, and extended up to 15-
fold for the theophylline ON switch tests (Figure 4B). In
addition, previous design efforts generally involve experimen-
tally testing several designs and choosing the best one.3,6,9,30

Thus, we conducted a best-of-ten analysis, in which we
randomly drew subsets of 10 designs and scored the best
activation ratios. These best-of-ten trials showed clear
separation of the activation ratios from baselines, and in the
majority of cases gave activation ratios of 2.0 or greater (Figure
4C, Table S4). In addition, most designs exhibited Kd’s close to
the affinity of the MS2 coat protein under the conditions in
which they were supposed to be active (with ligand for ON
switches; without ligand for OFF switches) (Figure S3). This
bias likely reflects our design constraint that the stand-alone
riboswitches should quantitatively convert to MS2-binding
structures when activated rather than requiring subsequent
molecular machinery to amplify their output. The stand-alone
switch with the highest activation ratio of 15.4 achieved a Kd of
10 nM in the activated state, within experimental error of the
intrinsic dissociation constant of the MS2 coat protein-RNA
hairpin interaction (6 nM, measured in the same experiment).
However, the activation ratios fell short of the thermodynamic
optimum described by Wayment-Steele et al.10 (Figure S4 and
S5).
We further tested if RiboLogic could design stand-alone

riboswitches that are responsive to RNA inputs instead of small
molecule ligands. Specifically, we applied the algorithm to
design 286 switches that modulate MS2 binding based on the
presence of miR-208a, a 22-nt miRNA implicated in cardiac
hypertrophy.31 This type of RNA-based system could be used
in diagnostic devices or linked to downstream therapeutic

events. Using RiboLogic, we were able to design both ON and
OFF switches triggered by the miRNA strand (Figure 5A,B).
We found that these designs generally took more iterations of
optimization to satisfy the constraints as compared to the
ligand-responsive switches (Figure S6), but diverse mecha-
nisms were achieved (Figure 5C). Disappointingly, exper-
imental evaluation did not show a significant difference
between RiboLogic and baseline designs in terms of activation
ratio. Nevertheless, the best-of-ten comparison showed
significant differences and maximum activation ratios of 20
exceeded those of small molecule activated switches (Figure
5D,E, Table 1). These computational and experimental
observations suggest that design for RNA-responsive switches
may be intrinsically more difficult, despite the larger binding
energy of the RNA compared to the small molecule ligands,
perhaps due to a large number of competing binding modes
where the input RNAs hybridize to alternative locations in the
riboswitch design. At the same time, this automated procedure
can still lead to excellent microRNA sensors, at the expense of
characterizing more designs.
Across these design challenges, we found that stand-alone

riboswitches with high activation ratios could take a variety of
forms. Some high performing designs had the MS2 sequence
nested between the two sides of the aptamer, while others had
the MS2 outside, with only a short hairpin between the two
halves of the ligand-binding internal loop (Figure 3; compare
designs 2297 and 2343 to 512 and 2534). Some designs
formed relatively simple secondary structures with long stems,
while others formed more complex folds with three-way
junctions (Figure 3; compare designs 512 and 2357 to 1555
and 2534). Several structures contain large single-stranded
regions, while some have regions designed to bind the

Figure 5. Design of miRNA-responsive riboswitches. (A) This OFF switch is predicted to form the MS2 hairpin (red) only in the absence of the
miRNA (blue). (B) This ON switch is predicted to form the MS2 hairpin (red) only in the presence of the miRNA (blue). (C) Clustering of
miRNA switches based on the base pair distance between predicted secondary structures in the absence of the miRNA reveals that RiboLogic
designs with diverse structures achieve high activation ratios. (D) The distribution of experimentally measured activation ratios are shown as scatter
and violin plots, with medians shown as horizontal lines. Across all design problems, there is no significant difference between RiboLogic and
baseline designs, as determined by a Wilcoxon rank-sum test. (E) We conducted a best-of-ten analysis by bootstrapping sets of ten designs and
choosing the design with the best activation ratio. The distributions of activation ratios for these best-of-ten designs were compared between
RiboLogic and baseline. This analysis results in designs with significantly higher activation ratios, but the distributions remain similar, with the
exception of a few high performaning designs.
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functional elements when they are inactive (Figure 3; compare
design 2534 to 512). The size of our dataset enabled statistical
analyses of these secondary structure features, highlighting
several that were correlated with activation ratios (Figure S7).
For example, the data showed that having more base pairs
shared between states correlated with higher resulting
activation ratios. Still, the correlations of any single feature
with activation ratio, while statistically significant, were weak
(r2 < 0.01). Machine learning models that take into account
multiple features to predict design success will be interesting to
develop and test prospectively.
A related insight into current design limitations is also

enabled by the diversity and large number of our riboswitches.
We note that the designs produced by RiboLogic have features
that are distinct from designs created by human experts. For
the small molecule sensitive riboswitches (Figure 3), the
RiboLogic designs include numerous stems outside the
aptamer segments that need to be broken or formed. These
designs are not as “concise” as expert-designed riboswitches
seen in the literature,5,19 although it should be noted that some
natural riboswitches do involve ornate conformational
rearrangements.32 For the miRNA-sensitive riboswitches
(Figures 5), the binding of the input miRNA and the
RiboLogic riboswitch is typically not through a completely
contiguous, long RNA−RNA duplex, as is typically the case in,
e.g., toehold riboswitches33,34 or DNA logical devices35,36

designed by human experts. Automated riboswitch design
might improve if these features seen in human designs were
rewarded or seeded into the RiboLogic design algorithm.
We hypothesized that errors in current RNA secondary

structure energetic models might be limiting for RiboLogic
stand-alone riboswitch designs. We carried out comparisons of
Kd’s and activation ratios predicted by the ViennaRNA and
NUPACK packages for small molecule and miRNA
riboswitches, respectively. We saw poor correlations for both
(r2 of 0.06 and 0.01 for small molecule and miRNA
riboswitches, respectively; Figures S8 and 6). Several designs
predicted to have poor activation ratios (near or lower than
1.0) in fact gave activation ratios near 10.0; and other designs
predicted to have outstanding activation ratios (greater than
100.0) gave experimental activation ratios lower than 1.0
(Figure 6B). This experiment−theory correlation was better
for small-molecule riboswitches compared to the miRNA
riboswitches, consistent with the generally better activation
ratios of the former, relative to baseline measurements
(compare Figures 4B and 5D; Table S1). Future design efforts
would benefit from more accurate computational models of
RNA folding energetics. We present all data collected herein as

the ribologic-solves dataset (Supplemental Data) to help guide
and validate such improvements.
Here, we have presented RiboLogic, an automated algorithm

for designing stand-alone riboswitches that transduce input
ligand binding into output effector binding without energy
input or amplification by other molecular machines. We show
that RiboLogic generates designs with diverse structural
mechanisms and achieves activation ratios comparable to
previous efforts in rational design of reversible riboswitches. In
combination with improved thermodynamic models and high-
throughput measurement techniques, we expect that this
method and these data will enable improved automated design
of switchable RNA elements for a wide variety of applications
in biotechnology and medicine.

■ METHODS
Design Algorithm. Overview. Given secondary structure

constraints in multiple states defined by ligands or short RNA
inputs, our method optimizes an RNA sequence using a
simulated annealing algorithm. The starting sequence is
arbitrarily set to all A’s, with the exception of known sequence
constraints and updates to ensure complementarity in the
target secondary structures. The length is specified by the user
and is not changed during sequence optimization. In each step,
a random mutation is made, and the new sequence is evaluated
using a base pair distance and a base pair probability score. The
sequence is updated on the basis of a Metropolis−Hastings
acceptance criterion:

p
G

T
(accept) max exp , 1

design

i

k

jjjjjjj
i

k
jjjjjj

y

{
zzzzzz

y

{

zzzzzzz= − Δ

(1)

where ΔG is the difference in score between the updated and
current sequences and Tdesign is the temperature parameter.
This temperature parameter is decreased over the course of the
optimization and can be tuned by the user. By default, it
decreases linearly from 5 to 1 over the course of design. This
process is repeated until a satisfactory sequence is found or the
maximum number of iterations specified by the user is reached.

Constraints. Sequence constraints can include fixed bases at
specified positions as well as substrings that are disallowed
from the final sequence. Secondary structure constraints can be
given for multiple user-specified states, as defined by varying
concentrations of the input ligands. For small molecule and
protein ligands, the aptamer sequence, secondary structure,
and dissociation constant must be specified. For each state,
secondary structure constraints can be applied to any part of
the input sequence, including any RNA inputs, and bases can

Figure 6. Comparison of predicted and measured activation ratios. (A) For small molecule riboswitches, the predicted activation ratio is somewhat
correlated with measured activation ratio. (B) For miRNA riboswitches, the correlation between prediction and experiment is poor.
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be specified to be unpaired, paired to any other base, or paired
with a specific other base. Secondary structure elements’
positions can be left unspecified, and RiboLogic will optimize
its position as well. To further ensure diversity, for the tests
herein, we enforced two different global arrangements of the
aptamer and MS2 hairpin elementsone with the two parts of
the aptamer loop adjacent to each other and one with the MS2
sequence nested within the aptamer segments.
Sequence Update. Sequences are represented in a depend-

ency graph structure as described by Flamm et al.25 Briefly,
each base is a node and each base pair in the constraints forms
an edge between nodes. The graph is maintained such that
nodes connected by an edge are always complementary. Each
time a base is mutated, its entire connected component is
mutated accordingly to ensure that all nodes connected to the
selected base maintains complementarity. In addition,
sequence constraints are incorporated into this graph,
disallowing mutations that would force a constrained base to
change. In the case of RNA inputs, our method provides the
option to automatically introduce the complement of the input
sequence into the design sequence in order to promote
interactions between strands. This complementary segment
can be altered in length, moved, or mutated as a sequence
update step.
Scoring Functions. Two scoring functions are used: a

primary score based on a single minimum free energy
secondary structure, and a base pair probability-based
secondary score that is used in the primary score’s place
when the it is the same between two sequences. On the basis of
the predicted minimum free energy structures in each state, a
base pair distance to the target secondary structure is
calculated. The base pair distance is the number of base
pairs that must be broken or formed in order to get from one
secondary structure to the other.37 If only a substructure is
specified, this can include the breaking of base pairs formed
with nucleotides outside of the subsequence specified. In
addition, for small molecule riboswitches, if the energy of the
ligand-bound conformation, with energetic bonus, is not lower
than the ligand-free conformation, a penalty equal to the ΔG
between the two states is applied to the base pair distance.

G G RT

L
K

primary score bp edit distance

max 0,

ln
d
L

aptamer aptamer

i

k
jjjjj
y

{
zzzzz

=

+ Δ − Δ −

[ ]

− +

(2)

where ΔG−aptamer is the free energy of the RNA alone in kcal/
mol, [L] is the concentration of the input ligand, Kd

L is the
affinity of the input ligand, ΔG+aptamer is the free energy of the
RNA constrained to form the aptamer, R is the gas constant, T
is the experimental temperature (37 °C = 310.15 K). We
consider only structures that form the desired aptamer, as
opposed to doing a minimum free energy calculation with an
energetic bonus. This allows the algorithm to guide the
sequence toward those that have a more favorable aptamer-
forming conformation, even if it is not the minimum free
energy structure. We used a value of L

Kd
L

[ ] of 133 for FMN and

150 for theophylline and tryptophan, based on initial Kd
estimates for those input ligands (Figure S4) and experimental

[L] = 200 μM, 2 mM, and 2.4 mM (FMN, theophylline, and
tryptophan, respectively).
However, since the score in eq 2 is not highly sensitive to

single mutations, a secondary base pair probability score is
used when the base pair distance is unchanged between
sequence updates. This measure of secondary structure
formation over the full ensemble is defined by

X psecondary score
i j

sij sij
states bases bases

∑ ∑ ∑=
(3)

where s is the index of the folding state, i and j are indices of
the base position in the sequence, Xsij is an indicator variable
representing whether base i and j should be paired in state s,
and psij is the probability of base i and j forming in state s
according to the partition function calculation. The value of
the indicator variable is 1 if the base pair should be formed, −1
if it should not be formed, and 0 if it is unconstrained.
Folding of each sequence can be modeled using either

ViennaRNA38 or NUPACK.39 NUPACK 3.0.5.39 was used for
design involving more than one RNA, in order to properly
model multistrand RNA folding, while ViennaRNA 2.1.938 was
used for designs involving small molecule aptamers.
The score used for the Metropolis−Hastings criterion in eq

1 was:

G
primary score if primary score 0

secondary score if primary score 0

l
moo
n
ooΔ =

Δ Δ ≠

Δ Δ =

By default, the sequence search terminates once the base pair
distance reaches 0 or the number of steps reaches 10 000 steps.
The software also provides the option to continue optimizing
the sequence after the base pair distance reaches 0. Sequences
were not filtered in any way before proceeding to experimental
characterization.

Computation and Code Availability. All computation
was performed on Intel Xeon Processors E5−2650. The code
is available at https://github.com/wuami/RiboLogic.
Average computation time for the design of a ligand-induced

riboswitch varied widely, both across runs and depending on
the design problem (Figure S6). Every 1000 iterations took
about 2 min on one core.

High-Throughput Array Experiments. The experimen-
tal methods have been described in detail previously.20,22

Briefly, DNA templates for designs were synthesized (Custom-
Array, Bothell, WA) and sequenced on Illumina MiSeq
instruments, and RNA was transcribed directly on the
sequencing chip in a repurposed Illumina Genome Analyzer
II instrument. Fluorescently labeled MS2 protein was
introduced at concentrations from 1.5 nM to 3 μM at room
temperature. Incubation times varied from 0.8 to 1.5 h at the
lowest concentrations to 10−20 min at the highest
concentrations. Fluorescence images were collected and
quantified to generate binding curves in buffer of 100 mM
Tris-HCl pH 7.5, 80 mM KCl, 4 mM MgCl2, 0.1 mg/mL BSA,
1 mM DTT, 10 μg/mL yeast tRNA, 0.012% Tween20. These
curves were measured in the absence and presence of the
ligand of interest, with concentrations of 200 μM FMN, 2 mM
theophylline, 4 mM tryptophan, and 100 nM miR-208a. These
conditions were selected based on the Kd of each ligand. Each
design was measured over an average of about 100 individual
clusters on the flow cell. Median fit Kd values over all clusters
for each design were used to compute the activation ratio.
Designs were prepared and analyzed as part of the Eterna
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massive open laboratory experiments (rounds R95, R101, and
R107).40

Designs for which Kd measurements were made over fewer
than 10 clusters were excluded from our analysis to avoid poor
quality measurements. For diversity analysis, Levenshtein
distance was computed between each pair of sequences to
obtain a distance matrix. Complete-linkage hierarchical
clustering was performed to obtain a dendrogram with each
design as a leaf (hclust in R). For statistical analysis, two-sided
Wilcoxon rank sum test was used to determine if activation
ratios between design types were significantly different.
Predicted Kd’s were computed as described by Wayment-
Steele et al.10 Calculations were performed in R,41 with
example scripts available at https://github.com/wuami/
RiboLogic. The full dataset is available as Supplementary Data.
Chemical Mapping Experiments. One-dimensional

chemical mapping measurements were performed as described
previously.42 1M7 was used for FMN and tryptophan
aptamers, while DMS was used for the theophylline aptamer.
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Figure S1
Predicted activation ratios for Kellenberger et al riboswitches. Using our thermodynamic 
framework, we predicted activation ratios for the cyclic di-AMP biosensors described by 
Kellenberger et al.



Figure S2
Reproducibility of experimental measurements.  (A) and activation ratio (B) values measured 𝐾𝑑
over two replicates correlate with an  (in log space) of 0.94 and 0.84, respectively. The color 𝑟2

represents the minimum number of clusters across the two replicates. The dotted lines denote the 
boundary for error within a factor of 2 between the two measurements.
 



Figure S3
On and off state 's for RiboLogic small molecule riboswitches.  vs.  plots show 𝑲𝒅 𝐾𝑂𝑁

𝑑 𝐾𝑂𝐹𝐹
𝑑

that most designs achieve  within a factor of 10 of the intrinsic  of the MS2 protein under 𝐾𝑂𝑁
𝑑 𝐾𝑑

conditions where they should be activated (dotted lines).



Figure S4
Intrinsic  values for aptamers. Chemical mapping was used to determine intrinsic  for the 𝑲𝒅 𝐾𝑑
FMN, theophylline, and tryptophan aptamers used in the riboswitch designs.



Figure S5
Activation ratios relative to thermodynamic maximum. Using the intrinsic 's for the FMN, 𝐾𝑑

theophylline, and tryptophan aptamers, we computed the optimal activation ratio as . The 
[𝐿]

𝐾𝐿
𝑑

+1
activation ratios achieved by RiboLogic are plotted relative to these maxima (solid black line).



Figure S6
Number of iterations to convergence. The number of iterations of Monte Carlo to reach 
constraint satisfaction varied across different ligands. On average, every 1,000 iterations took 
about 2 minutes on one core.

 



Figure S7
Secondary structure features and activation ratio. The data show that some secondary 
structure features correlate significantly (Fisher z-transform) with activation ratio. These include 
the number of bulges and number of hairpin/internal/multi loops in the absence of ligand as well 
as the number of internal loops in the presence of ligand. Further, more shared base pairs 
between states was correlated with higher activation ratios.



Figure S8
Comparison of predicted and measured  values. For both small molecule (A) and miRNA (B) 𝑲𝒅
riboswitches, there is a significant correlation between predicted and measured  values, but the 𝐾𝑑
degree of correlation is poor.



Table S1
Summary statistics for activation ratios for RiboLogic and baseline. 

RiboLogic baseline
Design max median standard 

deviation
count max median standard 

deviation
count

FMN OFF 9.74 0.987 0.878 1357 1.15 0.869 0.144 524
FMN ON 14.4 1.46 1.33 849 2.90 1.15 0.308 524
theophylline OFF 9.92 1.73 1.60 97 4.62 1.22 0.369 366
theophylline ON 15.4 0.991 1.65 99 1.33 0.820 0.155 366
tryptophan OFF 4.29 1.17 0.632 89 2.47 1.01 0.206 392
tryptophan ON 4.55 1.08 0.576 94 1.97 0.988 0.181 392
miRNA OFF 21.8 0.825 1.68 188 4.95 0.819 0.483 188
miRNA ON 20.0 1.17 2.20 98 4.26 1.23 0.584 98



Table S2
Summary of statistical tests comparing RiboLogic activation ratios. All comparisons used a 
two-sided Wilcoxon rank sum test.

design RiboLogic vs 
baseline

RiboLogic vs non-switching 
(activation ratio 1)

FMN OFF 8.0 x 10-41 1.1 x 10-6

FMN ON 8.5 x 10-58 2.8 x 10-130

Theophylline OFF 3.5 x 10-13 3.0 x 10-16

Theophylline ON 2.0 x 10-10 0.071
Tryptophan OFF 3.4 x 10-13 1.8 x 10-10

Tryptophan ON 6.0 x 10-14 1.5 x 10-3

miRNA OFF 0.98 7.4 x 10-7

miRNA ON 0.15 1.7 x 10-4

 



Table S3
Comparisons to baseline distribution. 

design total number 
of designs

total number 
above 
baseline 
median

percentage 
above 
baseline 
median

total number 
above 
baseline 95th 
percentile

percentage 
above 
baseline 95th 
percentile

FMN OFF 1357 944 70% 627 46%
FMN ON 849 703 83% 252 30%
Theophylline OFF 97 72 74% 46 47%
Theophylline ON 99 74 75% 42 42%
Tryptophan OFF 89 72 81% 36 40%
Tryptophan ON 94 58 62% 27 29%
miRNA OFF 188 93 49% 13 7%
miRNA ON 98 45 46% 10 10%



Table S4
Summary of best-of-ten analysis. All values are based on 1,000 bootstrap samples of 10 designs 
each. Comparisons were made using a two-sided Wilcoxon rank sum test.

design RiboLogic 
median

Baseline 
median

p-value

FMN OFF 2.57 1.01 < 2 x 10-308

FMN ON 3.89 1.69 1.8 x 10-252

Theophylline OFF 4.86 1.72 3.3 x 10-281

Theophylline ON 3.44 1.04 < 2 x 10-308

Tryptophan OFF 2.28 1.24 2.4 x 10-264

Tryptophan ON 2.08 1.23 3.7 x 10-237

miRNA OFF 1.66 1.52 8.5 x 10-6

miRNA ON 2.84 2.10 7.2 x 10-26



Supplemental Data
RiboLogic-solves_190327.txt (tab-delimitted text file) contains all sequences used in this study, 
along with predicted secondary structures and predicted and observed dissociation constants for 
the output MCP protein.


