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Learning cis-regulatory principles of ADAR-based
RNA editing from CRISPR-mediated mutagenesis
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Adenosine-to-inosine (A-to-I) RNA editing catalyzed by ADAR enzymes occurs in double-

stranded RNAs. Despite a compelling need towards predictive understanding of natural and

engineered editing events, how the RNA sequence and structure determine the editing

efficiency and specificity (i.e., cis-regulation) is poorly understood. We apply a CRISPR/Cas9-

mediated saturation mutagenesis approach to generate libraries of mutations near three

natural editing substrates at their endogenous genomic loci. We use machine learning to

integrate diverse RNA sequence and structure features to model editing levels measured by

deep sequencing. We confirm known features and identify new features important for RNA

editing. Training and testing XGBoost algorithm within the same substrate yield models that

explain 68 to 86 percent of substrate-specific variation in editing levels. However, the models

do not generalize across substrates, suggesting complex and context-dependent regulation

patterns. Our integrative approach can be applied to larger scale experiments towards

deciphering the RNA editing code.
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RNA editing greatly diversifies the transcriptome and pro-
teome in higher eukaryotes1,2. In animals, the predominant
type of RNA editing is the hydrolytic deamination of

adenosine (A) to form inosine (I), catalyzed by adenosine dea-
minase acting on RNA (ADAR)3,4. Abnormal A-to-I RNA editing
is strongly linked to autoimmune diseases, neurological disorders
and cancers5,6. Humans have two catalytically active ADAR
proteins, ADAR1 and ADAR2, responsible for the editing of
millions of RNA editing sites7,8. Adenosines in perfect or nearly
perfect dsRNA duplexes, formed mainly by inverted repeats, are
promiscuously edited9; in contrast, adenosines in imperfect
dsRNA structures, can be edited by ADARs with high specificity
and efficiency10. How RNA editing is regulated to determine its
efficiency and specificity is poorly understood. Both the primary
sequence and secondary structure (i.e., cis-acting regulatory ele-
ments) have been proposed to regulate ADAR editing4,11–16. A
preferred sequence motif has been defined, including the 5′ and 3′
nearest-neighboring positions (−1 and +1 nt) to the editing
site11–13. Editing can be enhanced or suppressed by deviations
from perfect base-pairing (i.e., mismatches, bulges, and loops),
suggesting complex structural contributions to editing
specificity11–13,17. The quantitative trait loci (QTL) mapping
approach has been used to identify genetic variants associated
with variability in RNA editing in Drosophila and humans, sug-
gesting that many editing QTLs act through changes in the local
and distal secondary structure for edited dsRNAs, consistent with
the importance of RNA structure18,19. However, previous studies
have generally been limited to small numbers of natural or
engineered variants. We lack the systematic sequence and struc-
ture variations required for the development of predictive models
of editing, therefore a high-throughput, systematic mutagenesis
approach is needed.

Here, we combine CRISPR/Cas9 genome engineering, next-
generation sequencing, and machine learning to decipher cis-reg-
ulatory RNA sequence and structural elements that affect ADAR-
mediated RNA editing. As proof-of-concept, we choose three
representative RNA editing substrates and introduce hundreds of
mutations at the endogenous loci in human cells, using the
CRISPR-mediated approach. We use supervised machine learning
to build predictive models of substrate-specific RNA editing levels
based on a variety of cis-sequence and structural features. We
identify highly edited structures different from wild-type (WT)
structure (referred to as alternative structures), and general, as well
as idiosyncratic features that determine editing efficiency of indi-
vidual substrates, highlighting the complexity of the cis-regulatory
editing code. Our integrative approach, named predicting RNA
editing using sequence and structure (PREUSS), lays the foundation
for developing predictive models of RNA editing.

Results
CRISPR/Cas9-mediated mutagenesis to interrogate endogen-
ous RNA editing. To interrogate the effects of cis-regulatory
elements of RNA editing, we applied the CRISPR/Cas9 technol-
ogy (Fig. 1a) to introduce mutations at the endogenous loci of
three natural ADAR1 substrates (NEIL1, TTYH2, and AJUBA;
Fig. 1b, see “Methods”). The mutations were introduced both in
the strand containing the editing site (“editing strand”) and in the
complementary sequence involved in forming the secondary
structure, which we refer to as editing complementary sequence
(ECS). Briefly, we designed CRISPR guide RNAs (gRNAs) tar-
geting the regions of interest, as well as oligonucleotide donors
carrying mutations to direct knock-in (KI) mutations through the
CRISPR/Cas9-mediated homology-directed repair (HDR)
pathway20. To measure the RNA editing levels of the resulting
variants, we performed targeted amplicon deep sequencing.

Because the variant and the associated editing site are in the same
transcript, there is no need to perform laborious clonal selection
for homozygotes of the variants. Because each designed variant
has a unique sequence, we successfully performed large-scale
multiplex mutagenesis and measured the editing levels without
the aid of barcodes (see “Methods” for details).

In a pilot experiment to introduce one or more mutations near
the editing site, we used a single degenerate donor oligonucleotide
with mutations at each position to randomize the region from −3
to +3 positions of the editing strand for NEIL1 (Fig. 1c) and a 10
nt region on the ECS of TTYH2 (Supplementary Fig. 1a). These
random mutations provide a rapid means to evaluate the
CRISPR/Cas9 KI efficiency and the effects of mutations. We
observed that three or more mutations almost always lead to an
abolishment of editing events (Fig. 1d, e and Supplementary
Fig. 1b). Therefore, to generate variants that lead to a wide range
of editing levels, we next performed targeted mutagenesis using a
pool of 200–300 donor oligonucleotides with designed mutations,
focusing on single and double mutations with larger mutagenesis
regions around the editing site in the editing strand and the ECS
(Figs. 1b and 2a, and Supplementary Fig. 3a–c). For NEIL1 and
TTYH2, we designed all possible single mutations both in the
editing strand and the ECS (with the exception of –1 and +1
positions for NEIL1 where A-to-G mutations, would be
indistinguishable from A-to-I editing). For AJUBA, we only
designed mutations in the editing strand due to its long-range
ECS. We selectively designed a subset of double-transversion
mutations (11% all possible double mutations) that theoretically
disrupt the original base-pairing at the mutation position. For
NEIL1, we also introduced compensatory mutation variants that
theoretically maintain base-pairing. In addition, we designed
indel variants to study the effects of selected secondary structure
features of NEIL1, such as bulges, internal loops, and stem length
(RNA sequences and editing levels see Supplementary Data 7).

Overall, we achieved high KI efficiency as 10–20% of the
sequenced RNAs at the target locus carried mutations, similar to
previous reports for a similar approach20. We were able to
reliably detect >90% of our designed variants after using stringent
quality control filters. The KI results and editing measurements
were highly reproducible (Fig. 1f and Supplementary Fig. 1c–f).
Interestingly, we discovered that similar KI efficiency and editing
results were achieved when using ssDNA oligonucleotides or
dsDNA (e.g., PCR product) as the donor for CRISPR-mediated
HDR (Supplementary Fig. 1g–j). Using dsDNA PCR products
greatly simplified the procedures and reduced the cost of the
experiments. The coverage of RT-PCR product for each variant
was generally well correlated with the corresponding coverage of
the product amplified from gDNA (R2= 0.87 for NEIL1 and
R2= 0.25 for TTYH2; Supplementary Fig. 2a, d), suggesting that
the RNA abundance is generally not affected by the introduced
variants. There is no correlation between the RNA or gDNA
coverage with the editing level for all three substrates, which is
consistent with previous reports21,22 that argues against potential
influence of the substrate expression level on the editing level
(Supplementary Fig. 2b, c, e–g).

Intertwined effects of primary sequence and secondary struc-
ture on editing levels. We compared the effects of single and
double mutations in terms of the type (transition or transversion)
and location of the mutation across all three RNA substrates
(Fig. 2a and Supplementary Fig. 3a–c). We used the computa-
tionally predicted minimum free energy (MFE) secondary
structure of each RNA variant to dissect the associations between
mutations and structure. The mutational effects are summarized
for each RNA substrate below.
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Fig. 1 CRISPR/Cas9-mediated mutagenesis in endogenous RNA to dissect RNA editing by ADAR1 in cells. a Overview of the experimental methods and
computational pipeline. CRISPR/Cas9-mediated homology-directed repair is applied to mutagenesis of endogenous RNA in HEK293T cells. A supervised
machine learning method (a gradient boosted tree, XGBoost) was applied to develop quantitative models that predict how cis-elements, such as RNA
sequence and secondary structure determine RNA editing level. b Sequence and secondary structure of the three RNAs, NEIL1, TTYH2, and AJUBA, for
targeted mutagenesis. The residues subjected to mutations are highlighted in red and the specific editing site is in blue. For AJUBA, partial sequences from
the genomic sequences are taken to focus on the region of interest. Therefore, the G59 and U60 shown in b is 524 nt apart in the genomic region.
c Degenerate donor oligos are designed for the −3 to +3 nt region around the specific editing site in the NEIL1 substrate. The mutagenized region is
highlighted in red and the editing site in blue. The value of editing level is shown in blue. d The distribution of editing level by the number of mutations from
the results of the degenerate NEIL1 library from c. e Examples of how the number of mutations affect the RNA secondary structure of NEIL1. The
mutagenized nucleotied is highlighted in red and the editing site in blue. The value of editing level is shown in blue. f Reproducible editing measurement of
the two replicates of the targeted mutagenesis library of NEIL1 shown by pairwise comparison with Spearman R2 labeled.
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NEIL1. For NEIL1, most single mutations led to minor decreases
in editing (−1 < Z-score < 0), with the largest effects observed at
positions +1 and +2 relative to the editing site (Figs. 2c and 3b).
Exceptions from this pattern were the large effects (Z-score <−1)
of G mutations downstream from the editing site in the ECS
strand. An example of how a G mutant changes secondary
structure is shown in Supplementary Fig. 4d. Some RNA variants
have the same predicted RNA structure but different editing level,
most simply suggesting a primary sequence effect (Supplementary
Fig. 4e). To decouple sequence and structural effects at each
position, we considered six categories of single mutations. The
simple “transition” (i.e., purine to purine, pyrimidine to

pyrimidine) and “transversion” (pyrimidine to purine and vice
versa) categories indicate that the RNA structure was unchanged
compared to the WT. “Transition+ break” and “transversion+
break” categories indicate that the mutation disrupted the base-
pair at the mutation site, and the “transition+ shift” and
“transversion+ shift” categories include all other scenarios, such
as the formation of a new base pair or disruption of more than
one base pair (Fig. 3a). We observed moderate effects (Z-score <
−1) for the transversion mutations that also disrupted base-
pairing (transversion+ break) or caused other structural changes
(transversion+ shift) at positions in close vicinity to the editing
site (−5, −1, +1 to +3, +9), and at the 3′ side of the editing site

Fig. 2 RNA editing results from the targeted mutagenesis experiments. a Number of the types of mutations made in each targeted mutagenesis library,
including single mutations (blue), double mutations (yellow), and other mutants such as indels (gray). b Distributions of editing levels for each targeted
mutagenesis library, colored by editing level quantile in each RNA library. Pink, 25% quantile; green, 25–50% quantile; blue, 50–75% quantile; purple,
75–100% quantile. c, d Heatmap of editing levels from c single and d double mutations in the editing strand of NEIL1. e Heatmap of editing levels from
single mutation in the editing complementary sequence (ECS) of NEIL1. Editing level of WT NEIL1 is 0.66 ± 0.06. The Z-score is calculated as described in
“Methods” and the WT editing level Z-score is 0. c–e shares the same heatmap color scale shown in e, reflecting average editing level from six biological
replicates. In c and e, the mutagenized region is highlighted in red and the editing site in blue in the partial illustration of the secondary structure of
NEIL1 RNA.
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(*+1 to *+8). Double-transversion mutations in the editing
strand of NEIL1 had overall pronounced effects on editing
(Fig. 2d), and the strongest effects (Z-score <−2) were observed
when at least one of the mutations was in close proximity to the
editing site (positions –6 and +2). The effect was generally

smaller (Z-score >−2) if one of the mutations was in a non-base-
paired region (+4, +5, +11; Fig. 2d).

TTYH2. In contrast to NEIL1, where the vast majority of muta-
tions decreased editing, a large proportion of TTYH2 single

Fig. 3 Effects of NEIL1 single mutations on RNA structure. a Editing site is indicated by blue circle and the mutation site is marked by red circle. The
editing level shown is the average value from six biological replicates. The single mutations were grouped into six types: sequence change (transition or
transversion) without change in the structure, the sequence change (transition or transversion) resulted in breaking of the base pair at the mutation site
(break), or resulted in breaking more than one base pair or forming of new base pair(s) (shift). E editing site, M mutation site. b Position-specific effects of
NEIL1 single mutations, categorized by six types: transition mutation that does not affect RNA secondary structure (transition, blue square), transition
mutation that disrupt the base pair at the mutation site (transition+ break, blue triangle), transition mutation that leads to disruption of more than one
base pair and/or formation of new base pair (transition+ shift, blue cross), transversion mutation that does not affect RNA secondary structure
(transversion, red square), transversion mutation that disrupt the base pair at the mutation site (transversion+ break, red triangle), transversion mutation
that leads to disruption of more than one base pair and/or formation of new base pair (transversion+ shift, red cross). The Z-score is calculated for the
NEIL1 RNA library as described in “Methods” and the WT editing level Z-score is 0.
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mutations increased the editing efficiency (Z-score > 0; Supple-
mentary Figs. 3a, b and 4a). This difference may be explained by
the lower WT editing level for TTYH2 (0.31) than for NEIL1
(0.66). Similar to NEIL1, single mutations closer to the editing site
(−2 to +1, *−3 to *+4) tended to have larger negative effects on
editing levels (Z-score <−1; Supplementary Fig. 4a). Interest-
ingly, several single mutations located both upstream (–6 to −3)
and downstream (+6 to +8, *+6) of the editing site increased
editing levels (Z-score > 0). For TTYH2 double mutations, the
effects were most negative when at least one mutation was located
around the editing site (–2 to +6 in the editing strand and *−3 to
*+5 in the ECS; Supplementary Fig. 3a, b).

AJUBA. We only examined the mutations on the editing strand of
AJUBA. In contrast to NEIL1 and TTYH2, many single muta-
tions of AJUBA were sufficient to disrupt editing. Also, all double
mutations abolished editing regardless of positions (Supplemen-
tary Fig. 3c). Most of the “transition+ break”, “transition+
shift”, and the “transversion+ shift” single mutations had large
effects (Z-score <−2; Supplementary Fig. 3b). Many AJUBA
single mutations have much larger effects (Z-score <−3) than
single mutations in NEIL1 and TTYH2. This difference may be
explained by the long distance (524 nt) between AJUBA editing
strand and ECS, such that mutations may lower the probability of
forming this long-range structure relative to alternative proximal
structures; alternatively, primary sequence might have a larger
influence on editing of the AJUBA RNA.

Taken together, these results are consistent with previous
observations of intertwined sequence and structure effects on
editing. These effects also vary among the three different RNA
substrates, suggesting substrate-specific cis-regulation rules.

RNA structural features affect editing levels. Next, we system-
atically explored the effects of changes to the RNA secondary
structure on editing levels. We found that compensatory double
mutations in NEIL1 that did not affect secondary structure
resulted in only minor reduction of editing levels (Fig. 4a–c). To
investigate how a specific structural change affects editing effi-
ciency, we designed several indels that change the predicted
secondary structure of NEIL1 (Fig. 4d). Shortening the 5′ stem or
breaking base-pairs within this stem abolished editing, suggesting
the importance of this region for editing; increasing the stem
length by 2-bp did not increase editing efficiency (Fig. 4d and
Supplementary Fig. 4f). The 3′ base-pairing is also critical because
breaking it led to nearly complete disruption of editing (Sup-
plementary Fig. 4f). When we replaced the downstream 3′
internal loop with either a canonical base-pair or wobble base-
pair, the editing efficiency decreased by 50% (Z-score=−1),
suggesting the importance of this structural feature (Fig. 4d and
Supplementary Fig. 4f). Enlarging the loop with additional
nucleotides resulted in mild (−1 < Z-score < 0) reductions in
editing levels (Fig. 4d). As expected, editing site structures con-
taining an A:C mismatch (1:1 internal loop) exhibited higher
editing levels on average than when the editing site resided in a
larger loop (P < 0.0001 by Wilcoxon test, Supplementary Fig. 4g).
However, several editing site structures harboring non-A:C mis-
matches also showed strong editing levels for NEIL1 and TTYH2
(Supplementary Fig. 3d, e), indicating that additional factors
affect editing efficiency.

We reasoned that structural and thermodynamic features
affecting RNA stability could also affect editing efficiency15. We
observed significantly greater predicted structural stability in
highly (highest 25 percentile of editing level in each RNA library)
compared to lowly (lowest 25 percentile) edited NEIL1 (P <
0.0001) and AJUBA (P < 0.001) variants, based on both the MFE

structure (Fig. 5a) and the predicted structural ensemble (Fig. 5b).
We also observed significantly higher MFE frequency for NEIL1
(P < 0.01) and TTYH2 (P < 0.0001; Fig. 5c) and lower ensemble
diversity for NEIL1 (P < 0.0001; Fig. 5d) in highest edited
quantile. The same observation held when stability was
approximated by the number of base-pairs formed (Fig. 5e).

We hypothesized that RNA variants that are structurally more
similar to the WT would result in editing levels similar to WT.
We quantified structural similarity using two measures: the
probability of active conformation, which indicates the prob-
ability of forming WT-like secondary structure in the predicted
structural ensemble for each RNA variant (Fig. 5f) and a
similarity score that indicates the degree to which the MFE
structure of a variant is similar to the MFE structure of WT (scale
is 0–1, from least similar to identical structure, Fig. 5g). A higher
probability of active conformation was observed in the highly
edited variants compared to lowly edited variants for all three
substrates (P < 0.0001, Fig. 5f). We found significant differences
(P < 0.0001) of similarity score between highly and lowly editing
variants for NEIL1 and AJUBA (Fig. 5g).

However, when we considered all variants across the entire
editing spectrum, instead of highly versus lowly edited variants,
no significant correlations were observed between individual
features and RNA editing levels (Supplementary Figs. 5 and 6).
These results show that individual sequence, structure, and
stability features of variants can explain the differences between
highest and lowest edited substrates, but only have limited
predictive association with quantitative editing levels. Therefore,
we decided to carry out integrative analyses of RNA sequence and
structure features to model quantitative editing levels.

RNA clustering reveals alternative structures that support
efficient editing. Given that no single property of the RNA sub-
strates correlated strongly and consistently with editing efficiency
(Supplementary Figs. 5 and 6), we used machine learning to dissect
the collective effects of different features on editing. First, we per-
formed a hierarchical clustering analysis based on variant sequence
and structure. We clustered the NEIL1 and TTYH2 libraries
because the editing levels are widely distributed compared to the
AJBUA results. We used the locARNA pipeline23,24 that takes into
account both the sequence and the MFE structure (Fig. 6a). Because
the sequence variation is relatively small, the similarity and differ-
ence among the MFE structures was weighted highly for the
resulting hierarchical clustering. The resulting clusters of RNA
variants generally share a similar core structure and show similar
editing levels (Fig. 6b and Supplementary Figs. 7–9). Interestingly,
we found clusters of RNA with predicted structures distinct from
WT (alternative structures) that are edited with near-WT effi-
ciencies, both for NEIL1 (e.g., clusters 2, 4, and 8 in Fig. 6), and for
TTYH2 (e.g., clusters 3, 2, 7, and 8 in Supplementary Figs. 8 and 9).
As an example, positioning of the NEIL1 editing site in an asym-
metric 2:3 internal loop (cluster 8 in Fig. 6b) instead of the 1:1 A:C
loop seen in WT (cluster 1 in Fig. 6b) appears to maintain, and even
enhance, the editing efficiency. In contrast, a 1:2 internal loop in
cluster 7 (Fig. 6b) with similar downstream structures as cluster 8 is
mostly poorly edited. Cross-cluster comparisons further illuminate
the contributions of certain structural features to editing. For
example, comparing NEIL1 cluster 5 with cluster 1 (Fig. 6) suggests
a negative effect of a bulge in the 5′ stem. While NEIL1 prefers a
good 5′ stem structure, the TTYH2 can tolerate symmetric internal
loops in the 5′ stem (Supplementary Figs. 8 and 9).

Machine learning models accurately predict substrate-specific
RNA editing levels from sequence and structure features. To
quantitatively capture the complex relationship between editing
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Fig. 4 Examples of RNA secondary structure changes of NEIL1 variants. a Compensatory mutation generally maintains a high editing level. Editing site is
highlighted in blue. The dashed circle marks the location of compensatory double mutation. The b editing level and c similarity score (normalized score
calculating the similarity of the MFE structure of each variant to the WT) vary by different mutation types. Single mutation (blue dot); double-transversion
mutation (yellow dot); compensatory mutation (gray dot). The data points shown are the average editing level from six biological replicates. Boxplot:
center line, median; box limits, upper and lower quantiles; whiskers, ±1.5× interquartile range (IQR). The P values from two-sided Wilcoxon rank-sum test
are shown on each test set. d Alterations in the 5′ stem and 3′ non-stem structure elements affect editing level. Editing site is highlighted in blue and
mutation region shown as dashed circle (deletion of stem from the 5′ stem), orange highlight (insertion of stem), or red highlight (mutation, deletion, or
insertion of nucleotides of the 3′ internal loop).
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levels and multidimensional RNA sequence and structure fea-
tures, we turned to machine learning models. A set of 125 features
were derived to annotate the RNA variants (see “Methods” and
Supplementary Datas 1–4 for feature annotations for all variants
of NEIL1, TTYH2, and AJUBA, respectively). The sequence
features summarize various properties of the primary RNA
sequence of each variant at and around the vicinity of the editing
site where the mutations were made. We used the bpRNA25 tool
to assign all residues in each variant to diverse structural ele-
ments, such as hairpin loops, bulges, internal loops, stems, multi-
loops and closing pairs (Fig. 7a). We chose to featurize the
bpRNA structural annotations at the editing site and adjacent
regions (up to 3 bpRNA structural elements upstream and
downstream from the editing site structure element, detailed in
Supplementary Data 1; Fig. 7b), as these regions within the RNA
substrate fully encompass the interaction site with the ADAR
deaminase domain (Fig. 7c)26,27. The 125 features were further
grouped into nine major categories for purposes of feature
interpretation (Supplementary Data 1). Gradient boosted trees
(GBTs) were trained via the XGBoost algorithm28. We trained
and tuned GBTs on distinct subsets of RNA variants to map their
feature annotations to corresponding real-valued editing levels or

binarized labels obtained by thresholding editing levels into two
classes (edited versus not edited).

First, we evaluated the prediction performance of our model
for each substrate. We trained and tuned models on a subset of
variants and then tested model performance on a held-out test
set of variants of the same substrate. For NEIL1, the models
accounted for 85.6% of the variance (R2) in ADAR editing levels
for variants in the held-out test set, with a Spearman correlation
(Rs) of 0.92 between observed and predicted editing levels.
Binary editing status was also predicted accurately (area under
precision-recall curve, auPR= 0.97). Similarly, high test
set predictive performance was obtained for TTYH2 variants
(R2= 0.68, Rs= 0.91, auPR= 0.81) and AJUBA variants (R2=
0.79, Rs= 0.90, auPR= 0.93). Augmenting the training set for
each substrate with variants from the other substrates did not
result in any significant improvements in model performance
(Supplementary Data 5 and Supplementary Fig. 10). These
results indicate that it is possible to predict RNA editing levels
of new mutations in a substrate with high accuracy from
sequence and structure features, using integrative machine
learning models trained on a subset of mutations from the same
substrate (Fig. 7d).

Fig. 5 Cis-regulatory features explain differences of editing levels among RNA variants. a–g Comparing the difference of the highly edited (75–100
percentile in editing level in the library, yellow box) with the lowly edited (0–25 percentile, red box) variants in each RNA library in terms of thermodynamic
and structural features. Two-sided Wilcoxon rank-sum test: ns nonsignificant; **P < 0.01; ***P < 0.001; ****P < 0.0001, and the exact P values for
each feature are: a minimum free energy (MFE), P values: NEIL1= 4.3e−12, TTYH2= 0.44, AJUBA= 9.3e−07; b ensemble free energy, P values: NEIL1=
2.2e−12, TTYH2= 0.67, AJUBA= 7.2e−07; c MFE frequency, P values: NEIL1= 0.0013, TTYH2= 6.8e−05, AJUBA= 0.8751; c MFE frequency, P values:
NEIL1 =, TTYH2 =, AJUBA =; d ensemble diversity, P values: NEIL1= 9.3e−05, TTYH2= 0.72, AJUBA= 0.19; e all stem length, P values: NEIL1=
4.6e−09, TTYH2= 0.81011, AJUBA= 0.00024; f probability of active conformation, P values: NEIL1= < 2e−16, TTYH2= 1.3e−08, AJUBA= 3.8e−11;
g similarity score, P values: NEIL1= 1.3e−09, TTYH2= 0.87, AJUBA= 2.5e−06. Boxplot: center line, median; box limits, upper and lower quantiles;
whiskers, ±1.5× IQR. The editing level are the average editing level from six biological replicates.
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Fig. 6 NEIL1 RNA clustering reveals efficiently edited alternative structures. a NEIL1 variants are clustered by RNAclust from the multiple
sequence–structure alignment generated by mlocarna. The editing level of each variant are shown according to the heatmap scale. The sequence and
structure corresponding to each RNA ID are listed in Supplementary Data 2. b Consensus secondary structure of selected clusters from a and grouped by
editing levels. The gray box (“not base-paired”) indicates that there is at least one variant within the cluster that has a different MFE structure at this
position (see examples in Supplementary Fig. 7).
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Next, we tested whether models trained on variants of one or
more substrates could predict editing effects of mutations in a
different substrate. We observed a significant drop in model
performance for cross-substrate prediction of RNA editing
(Supplementary Fig. 11,). For example, a model trained on
NEIL1 variants yielded lower performance on AJUBA variants
(R2 < 0.05, Rs= 0.68, auPR= 0.69) and TTYH2 variants (R2 <
0.05, Rs= 0.46, auPR= 0.59), as compared to a model trained
and tested on NEIL1 variants (R2= 0.88, Rs= 0.93, auPR= 0.97).

Similarly, a model trained on all NEIL1 and TTYH2 variants also
yielded lower predictive performance when tested on AJUBA
variants (R2 < 0.05, Rs= 0.66, auPR= 0.29), albeit higher than the
model trained on either substrate independently. The same held
true for all models trained on two of the substrates and evaluated
on the third—lower performance compared to within-substrate
training and evaluation.

The inability of our current models to accurately generalize
predictions to new substrates is not entirely surprising

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22489-2

10 NATURE COMMUNICATIONS |         (2021) 12:2165 | https://doi.org/10.1038/s41467-021-22489-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


considering the diversity of the substrates and the small number
(three) of distinct substrates available for model training. It is
likely that the challenge of cross-substrate training may be solved
by training on a larger number of variants from diverse
substrates, and future efforts will focus on this task. However,
given the success of our substrate-specific models in predicting
editing effects for unseen mutations within each substrate, we
decided to interpret these models to investigate the features that
may be predictive of RNA editing levels.

Model interpretation provides insights into common and
substrate-specific features associated with RNA editing effi-
ciency. For each of the three substrate-specific models, we used
the TreeExplainer SHAP (SHapley Additive exPlanations) algo-
rithm to quantify the contributions (or importance) of all features
to the RNA editing predictions of each variant in the test sets29.
The SHAP importance score of a feature with a specific value for
a variant of a substrate estimates how much the feature con-
tributes to pushing the model’s output from a baseline editing
level to the predicted RNA editing level for the variant. The
baseline editing level is defined as the average editing level across
all variants in the test set. Examples of how SHAP scores illu-
minate feature importance are illustrated in Fig. 7e, f. Figure 7e
illustrates the SHAP scores for the five most important features
for the NEIL1 test variant (NEIL1 RNA ID 092, U31G) with a
high observed editing level (0.78) agrees with model prediction
(0.78). For the NEIL1 test set, the baseline (mean) predicted
editing value is 0.25. We display the contribution of all feature
values for this variant in pushing the prediction from the baseline
of 0.25 to the predicted output value of 0.78. The feature
“sim_nor_score (same as in Fig. 5g, normalized similarity score
comparing MFE structure of variant to WT)= 0.99”, is estimated
to have the highest importance and increases the prediction of
editing level by 0.09 (SHAP value) from the baseline. The con-
tribution of the editing site with an A:C mismatch has a SHAP
value of 0.05, and so on. Although a larger number of mutations
generally decreases editing level (Fig. 7g), the “num_mutations=
3” has a positive SHAP value (red) for this variant, highlighting
the ability of the model to pick up different feature combinations.
Conversely, Fig. 7f illustrates how feature values unfavorable
to ADAR editing result in a predicted editing level of 0 for
another variant (NEIL1 RNA ID 142, G41C/C45G) of the
NEIL1 substrate relative to the baseline. This variant has two
mutations in the substrate (num_mutations= 2). This feature has
a SHAP score of −0.05 (blue), indicating that a higher number of

mutations in this RNA is unfavorable to editing. There is no A:C
mismatch at the editing site, and this feature value has a SHAP
score of −0.06. These and other highlighted feature values serve
to drive the prediction down from the baseline of 0.25–0 (Fig. 7f).

To illustrate the directionality of predictive association of the
features with RNA editing levels, we plotted the SHAP scores of
the top 20 features for all test set variants of the three substrates
(Fig. 7g). We also summarized the relative importance of features
for each of the three substrates by computing the percent
contribution from each feature to the mean of absolute
SHAP values across all examples in the test sets of each substrate,
and highlighted the six new features unique to this study in
red (“probability_active_conf”, “sim_nor_score”, “ensemble
diversity”, “mfe_frequency”, “site_5prm_cp_internal:C:G”, and
“d2_5prm_cp_internal:G:C”, Fig. 8a). The closing pairs for loops
and bulges are previously unexplored, but highly ranked features
for NEIL1 and TTYH2 (Fig. 7g). Closing pair can be a readout for
alternative active structure, such as in some highly edited NEIL1
variants the d2 internal loop’s 5′ closing pair is a G:C sequence
(“d2_5prm_cp_internal:G:C”; Supplementary Fig. 7) compared to
the U:A pair in WT (Fig. 7b). These results also corroborate with
trends observed in the abovementioned clustering analysis (Fig. 6,
and Supplementary Figs. 7–9).

Eight features were illuminated as most important for driving
model predictions across substrates. Number of mutations
(“num_mutations”) was the strongest contributor for AJUBA
(47.69%) and NEIL1 (19.18%), and in the top six most important
features for TTYH2 (4.51%; Fig. 8a). Increasing number of
mutations had a negative influence on editing levels (Fig. 7g).
This effect supports the proposal that RNA structure plays a big
role in editing activity because in our library design the more
mutations (single versus double-transversion) the larger changes
occur in the structure (Fig. 4c). An A:C mismatch at the editing
site (“site_1_1:A:C”) had a high relative contribution for NEIL1
(18.03%) and TTYH2 (15.95%), but contributed less to AJUBA
editing levels (0.31%), consistent with previous proposals that A:
C mismatch facilitates the flip-out of the adenosine for ADAR
editing26,27 (Fig. 7g and Supplementary Fig. 4g). The probability
of the active conformation (“probability_active_conf”) accounted
for a mean of 8.8% relative contribution across substrates. The
structure-similarity score of variants compared to WT feature
(“sim_nor_score”) was positively correlated with editing levels.
The lower MFE is positively associated with editing for NEIL1
and TTYH2, but not for AJUBA. The higher ensemble diversity is
positively associated with editing levels for TTYH2 and AJBUA

Fig. 7 Quantitative model predicts editing level by combining complex RNA sequence and structure features. a Structure features annotated by bpRNA
and included in featurization of RNA variants. b High-level feature groups for input to XGBoost analysis. u1= structural element immediately upstream (5′)
of editing site; u2= structural element upstream of u1; site= structural element within which the editing site is found; d1= structural element downstream
(3′) of editing site; d2= structural element downstream of d1; d3= structural element downstream of d2. Definition of each feature is listed in
Supplementary Data 1. c Illustration of a putative model for binding of the NEIL1 RNA to the ADAR1. The ADAR1 deaminase domain (silver) are modeled
from ADAR2 by Phyre2. The dsRNA-binding domains (pink) are modeled in one possible conformation as described in the “Methods”. The editing site
mismatch (also considered a 1:1 internal loop) on NEIL1 is shown in red and the editing A shown as space filled. The upstream (purple and light purple) and
downstream (yellow, orange, and light orange) immediately adjacent to the editing site are colored according to shown in b. d XGBoost editing level
predictions for variants of NEIL1 (orange), TTYH2 (purple), and AJUBA (green) within the test split (15% random split of positions). R2 is a measure of the
% variance explained. Spearman R indicates correlation between observed and predicted editing values. Error bands (in gray) the 95 pointwise confidence
bound for the mean predicted value, using linear smoothing. e SHAP annotation of feature contributions for the NEIL1 test split variant with the highest
observed editing level. Features with positive SHAP scores (drive the prediction over the dataset base value) are indicated in pink; features with negative
SHAP values (drive the prediction below the dataset base value) are indicated in blue. Base value refers to the mean predicted editing level across the test
split. Output value refers to the XGBoost prediction on this example. The four features with the highest absolute value SHAP scores are shown. f SHAP
annotation of feature contributions for the NEIL1 test split variant with the lowest observed editing level. g SHAP values for the 20 most important features
driving XGoost editing level predictions on the test split for NEIL1, TTYH2, and AJUBA. Each dot indicates a variant in the test split and the dot color shows
the SHAP value from high (red) to low (blue). Features (y-axis) are ranked from top (most significant) to bottom (least significant) by predictive
importance.
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but bidirectional for NEIL1. Higher MFE frequency is positively
associated with editing levels for NEIL1 and TTYH2, but not for
AJUBA (Fig. 7g). These features corroborate with previous results
that the overall structural stability of RNA substrate is positively
correlated with the editing activity15 and reveal that RNA
conformational diversity plays important and specific roles in
different substrates. The seventh ranking feature was the position
of the mutation along the RNA molecule (“mut_pos”). “Mut_-
pos” values are numbered beginning at the 5′ end of the RNA
molecule, so higher values indicate positions further from 5′ and
closer to 3′. This result indicates that the nucleotides adjacent to
the editing site in the structure is the hot spot dictating activity.
Though the “mut_pos” feature had a strong impact on editing
level, the directionality varied across substrates, reflecting the
interplay of the mutation position with other structural features.

In addition to top individual features, a sparse set of features
collectively contribute to the accurate predictions made by the
models. For the NEIL1 substrate, 90% of the explained variance
could be attributed to the 26 top features, compared with the 32

top features for TTYH2 and 23 top features for AJUBA
(Supplementary Data 8). To illustrate the contributions of
different types of features and to draw biological insights, we
looked at feature groups and subgroups. We categorized the
group of all structure and sequence features excluding mutation-
related features to four subgroups (Fig. 6b, full list of feature
groups and subgroups in Supplementary Data 1). Overall, the
thermodynamics and the editing site structure have the largest
contributions, consistent with prior proposals that the overall
thermodynamics (RNA stability and conformational diversity),
and the structure of the editing site dictate the editing
efficiency11,15. Notably, upstream and downstream structure
features are also important, such as the downstream features in
TTYH2. The −1 and +1 nt sequence motif (the 5′ and 3′ nearest
neighbor, termed “site_prev_nt” and “site_next_nt” in Fig. 7f and
Supplementary Data 1) also contributes to the prediction albeit to
a lesser extent.

This systematic interpretation of our models reveals not only
several biologically relevant features that are globally predictive

Fig. 8 Cis-regulatory features synergistically contribute to model prediction. a Percent contribution of individual feature to model prediction ranked by
averaging normalized SHAP values. Error bars indicate the variability in feature contribution across the three substrates NEIL1 (orange dot), TTYH2 (purple
dot), and AJUBA (green dot). The new features unique to this work is highlighted in red. Higher ranking with smaller standard errors indicates that these
features are commonly among the highest contributors to model prediction in all three RNAs. b Contributions of different feature groups to the prediction
of editing levels for each RNA library. NEIL1 (orange), TTYH2 (purple), and AJUBA (green). Black dots indicate the scale. The subgroups of individual
features included in each feature group are listed in Supplementary Data 1.
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across the three substrates, but also some that are highly
predictive for specific substrates. These results showcase the
promise of predictive cis-regulatory models of RNA editing, but
also highlight the need for much larger datasets spanning diverse
substrates to learn more generalizable models of RNA editing.

Discussion
The ultimate goal in understanding the cis-regulation of RNA
editing is to develop a model that accurately predicts the ADAR
editing efficiency in vivo, namely an “editing code”. Unlike
protein–DNA or protein–ssRNA interactions, where the primary
cis-sequence largely dictates the interaction, ADAR substrates are
required to bear double-stranded secondary structure. The diffi-
culty of associating RNA sequence and secondary structure fea-
tures to editing activity is a major challenge in studying the cis-
regulation of RNA editing. To tackle this challenge, we integrated
high-throughput measurements of ADAR editing with compu-
tational analysis of >100 RNA sequence and structure features
simultaneously. The CRISPR/Cas9 engineering allowed us to
study the cis-regulation of RNA editing by introducing desired
mutations at the endogenous locus with the minimal perturbation
of the RNA editing process. Our key results can be summarized in
four main points. First, we found alternative structures that can
be equally or better edited than the WT structure (Fig. 6, and
Supplementary Figs. 7–9). Second, our models confirmed all
known features identified by previous biochemical and tran-
scriptomic studies (A:C mismatch at the editing site, the 5′ and 3′
nearest neighbors, the length and stability of the substrate
including 5′ stem length and 3′ loop structure)11–14,17 and
revealed previously unexplored features, including ensemble
diversity and closing pairs (Figs. 7 and 8, and Supplementary
Data 8). Third, our substrate-specific machine learning models
integrated diverse sequence and structural features to quantita-
tively predict editing levels of new variants for a given target
(Fig. 7d). Fourth, both general and substrate-specific features
synergistically contribute to editing levels, and the degree of
contribution of each feature varies across different RNAs, sug-
gesting complex and context-dependent cis-regulation of the
RNA editing landscape (Fig. 7e–g). A lot of progress has been
made in recent years in deciphering the RNA splicing code30–32.
However, we just began to uncover the ADAR-mediated RNA
editing code which harbors complex regulation via RNA sec-
ondary structure.

Our approach opens several new lines of inquiry for further
improvement. Measuring the structure of RNA variants in
cells33–35 at native endogenous loci (versus relying on predicted
structure) would greatly enhance the RNA structure analysis. In
addition, advanced experimental methods such as irCLASH36

may be applied together with gene-specific amplification to
validate the ECS sequence. Further, while we focused on cis-ele-
ments adjacent to the editing site, long-range interactions, such as
the editing inducer elements37 important for editing can be
investigated using our approach. Although our data focused on
the editing level, which is largely determined by the deaminase
domain14,38, the dsRBD (illustrated in Fig. 5c) also contributes to
substrate recognition39,40. In the future, high-throughput in vitro
RNA-binding experiments can be performed to combine with
existing SELEX data for dsRBDs41 to identify features specific to
dsRBDs of human ADARs using our pipeline. To tease apart
trans-regulation effects by RNA-binding proteins (RBP)42,
in vitro competitive binding experiments and the editing
measurements in cells can be conducted in the knockout or
overexpression background for the RBP of interest. Because
we observed no correlation of RNA abundance on editing
level (Supplementary Fig. 2) and our experiment measures

pre-mRNAs, our editing analysis is likely not affected by potential
effects of sequence variation on RNA processing. Nevertheless,
understanding the interplay between RNA editing and various
RNA biology, such as RNA processing pathways and RBP pre-
sents an important question for future investigations.

Several systems were recently developed to recruit ADAR
enzymes to specific sites for site-directed RNA editing43–49,
providing novel tools to study biological function, and a safer and
reversible alternative to gene therapy43,50–52. Currently, these
RNA engineering methods mainly use antisense gRNAs that form
perfect duplex with the target region except for an A:C mismatch
at the editing site. Our results strongly support additional
imperfectly base-paired designs to mimic the highly selective and
efficient editing observed in the natural ADAR substrates with
complex structure features. Such features include relatively short
5′ (upstream) stem required for ADAR1 (ref. 14) compared to
ADAR2 and specific non-stem 3′ (downstream) structure, where
the internal loops at the 3′ likely contribute to the ADAR
selectivity17. Notably, each of the three RNA substrates we tested
has substrate-specific features that dictate the editing efficiency
(Fig. 7g). This showcases that a screen of possible designs of
gRNA would be a valuable and cost-effective strategy to learn the
best features that lead to the most specific and efficient editing for
each different target site in transcriptome engineering. In this
regard, our experimental methods and computational pipeline are
readily applicable.

There are several limitations to the modeling approaches uti-
lized in this study. While our current results give rise to models
with substantial predictive power for individual substrates, their
generalizability remains low (Supplementary Fig. 11). This ten-
dency to overfit will be mitigated by expanding the training set to
include more RNA substrates, allowing the model to learn the
shared properties of RNA substrates. Furthermore, the SHAP
interpretation of feature importance in the XGBoost model
highlighted the significance of features related to mutation
number, structure, sequence, and position. This result suggests
that an effective featurization of the data relies upon knowledge of
a WT substrate structure and sequence, which may not be
available for all substrates. Nonetheless, any variant in a library
can be arbitrarily assigned as the WT for featurization purpose.

Building on our work using the PREUSS pipeline, ADAR
editing can be further investigated in larger scale and in different
cell types, tissues and disease states to explore the full spectrum of
cis-regulation. Ultimately, establishing the “RNA editing code”
will help us better understand the underlying rules of RNA
editing, and facilitate efficient and precise transcriptome engi-
neering for studying RNA biology and treating human disease.

Methods
Cell culture and transfection. HEK293T cells (ATCC) were cultured in Dulbec-
co’s modified Eagle medium (Life Technologies) supplemented with 10% FBS
(Gibco, Thermo Fisher) and penicillin streptomycin (Life Technologies). Cells were
maintained at 70–90% confluency. One day before transfection, ~700,000 cells were
split to 6-well plates. The next day, 500 ng of Cas9–sgRNA construct in the px330
backbone (https://www.addgene.org/42230/) was co-transfected with 500 ng of the
DNA donor using lipofectamine 2000 (Invitrogen). Cells were maintained at
50–90% confluency for 5 days.

Design of the CRISPR/KI donor oligos. We selected three natural
ADAR1 substrates (NEIL1, TTYH2, and AJUBA; Fig. 1b and Supplementary
Data 7) for the mutagenesis studies based on the observations from available RNA-
seq data that (1) the editing sites for all three substrates are highly edited (30–60%)
in HEK293T cells, in which ADAR1 is expressed but ADAR2 is lowly expressed;
(2) the editing sites are not edited when ADAR1 activity is abolished; and (3) they
represent three different types of dsRNA substrates. The NEIL1 editing site is in the
coding region. The editing event leads to an amino acid change from lysine (K) to
arginine (R), which has been shown to increase the enzymatic activity of the NEIL1
glycosylase53. The TTYH2 editing site is intronic and the AJUBA editing site is
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located in its 3′ UTR. The functional impact of these two editing sites is currently
unknown.

Two types of CRISPR KI donors were designed in this study: the degenerate
donor and the fixed donor. For the degenerate donor oligos, a single-stranded
DNA oligo was synthesized in which degenerate sequences were introduced at the
interrogated regions. In the NEIL1 donor (Fig. 1c), −3 to −1 and +1 to +3 were
interrogated and equal molar of four nucleotides were introduced at these positions
during DNA synthesis. To avoid cutting by the Cas9, a point mutation was also
introduced at the PAM sequence. In the TTYH2 donor (Supplementary Fig. 1a), a
10 nt region in the ECS was studied, and equal molar of C or T was introduced.
The PAM sequence was also mutated along with a compensatory mutation to
maintain the secondary structure.

For donors used for targeted mutagenesis, individual DNA sequences were
designed to carry desired mutation(s). Briefly, a 15–20 nt region around the target
editing site and the corresponding region on the opposite strand were subject to
mutagenesis. All possible nucleotide at any single position was tested, with
exceptions where A-to-G mutation was avoided in the +1 and −1 nt of NEIL1
because it potentially becomes indistinguishable with A-to-I editing in RNA-seq
results. Combination mutations at two positions were also designed, in which each
of the positions is mutated to the nucleotide in the opposite strand to disrupt the
original structure. In addition, individual donors with altered length for
interrogation of specific features of the RNA substrate were included. For NEIL1,
we were able to use donor oligos to introduce compensatory mutation variants
because the ECS and editing site are close in sequence space. All oligo sequences
used in this study are listed in Supplementary Data 6.

Generation of the CRISPR/KI donor pool. For NEIL1 donors, 80mer oligos were
purchased from IDT and pooled at equal molar ratio. Oligo pairs NEIL1_leftarm/
NEIL1_rightarm, or asymmetrical labeled primer pairs NEIL1_leftarm_biotin/
NEIL1_rightarm and NEIL1_leftarm/NEIL1_rightarm_biotin (Supplementary
Data 6) were used separately to add additional sequences to obtain 200mers in PCR
reactions using Phusion polymerase. Around 400 µl PCR products were purified
using MinElute PCR purification kit (Qiagen) to obtain the dsDNA donor pool,
which was verified by agarose gel electrophoresis. For single-stranded donors, 100
µl MyOne Streptavidin Dynabeads (Thermo Fisher) were added to the purified
products that were amplified with asymmetrical biotin label, and then the mixtures
were denatured at 95 °C for 10 min and chilled on ice immediately. The unbound
single-stranded oligos were collected from the supernatant and then purified with
column MinElute PCR Purification Kit (Qiagen) to obtain the ssDNA donors. For
TTYH2 and AJUBA donors, 100–120mer pooled oligos were purchased from
Agilent and amplified using individual primers (Supplementary Data 6). Primers
donor_F and donor_R of each target gene were used to specifically amplify the
oligo library from the oligo chip. A second PCR using Donor_F_70 and
Donor_R_70 was performed to elongate the homologous arms of each donor. The
PCR products were purified using MinElute PCR purification kit (Qiagen) and
used as dsDNA donors later. NEIL1_degenerate_donor and TTYH2_degenerate
donors were synthesized as Ultramer by IDT and used directly in the transfection.

Guide RNA design and cloning. gRNA was predicted by the web-based software
CRISPR.mit.edu. The higher ranked gRNA with a PAM sequence close to the
interrogation region was selected. For the TTYH2 and AJUBA loci, different sets of
gRNAs were designed for the KI regions in two opposite strands. To construct
gRNA plasmids, two reverse complementary single-stranded oligos with overhangs
were synthesized by IDT and annealed on a thermocycler (Bio-Rad) before ligation
to BbsI-linearized PX330 backbone. The ligation mix was transformed into Stbl3
chemical competent cells (Invitrogen) and single clones were sequence verified by
Sanger sequencing.

CRISPR mutagenesis and library construction. We used 600 ng single-stranded
oligo donor library or 1200 ng double-stranded oligo donor library along with 500
ng gRNA construct to co-transfect into 1 million HEK293T cells using lipofecta-
mine 2000 (Invitrogen). For degenerate donor mediated KI, 1 µl of 10 µM
degenerate donor was used. A total of 1 µM L755507 (Sigma Aldrich) was added to
the media 1 day after transfection to enhance the HDR efficiency54. Two biological
replicates were included for each assay. The transfected cells were grown for 5 days
before they were seeded onto 10 cm dishes for an additional two days. A total of
10% of the cells were harvested for genomic DNA using Quick-DNA kits (Zymo
Research). The remaining cells were used for nuclear extraction using the Nuclear/
Cytosolic Fractionation Kit (Cell Biolabs) following the manual. Nuclear RNA was
purified from the nuclear extract using the Trizol method. Genomic DNA was
removed from the RNA samples using the TURBO DNase (Thermo Fisher Sci-
entific). The primers were designed to make sure pre-mRNA species were amplified
for RNA editing analysis. RT was performed using SuperScript III kit (Thermo
Fisher Scientific) and the gene-specific primers. All RT products were used in total
of 300 µl (50 µl × 6) PCR reaction with Phusion polymerase (Thermo Fisher Sci-
entific), and gene-specific primers with Fluidigm mmPCR adaptor sequences55.
Genomic DNA library was amplified using a similar approach, except for the
different primer set. All first round PCR products were size-selected on 1.5%
agarose gel and purified using Gel purification Kit (Qiagen). Diluted PCR product

(1:50) was used in the second round of PCR to add the Illumina sequencing
adapter and individual barcode sequences, using Fludigm_universal_F/flu-
digm_barcode_R (ref. 55). The library was size selected and purified as in the
previous step.

Next-generation sequencing and data analysis. All libraries were sequenced on
a NextSeq550 using Basespace (Illumina) for data collection. NEIL1 libraries were
sequenced for 75 cycles paired-end and TTYH2 and AJUBA libraries 150 cycles
paired end. Quality of reads were evaluated, and reads were filtered by FastQC
default settings. To map the variants of the target gene, a reference genome was
first built using the GMAP package, where designed mutations were included as
SNPs. Briefly, GSNAP was used to detect variants with mismatches inside the
interrogated region but not indels. The mapped reads were separated into indivi-
dual variants based on the unique mutations carried in the region except for the
editing site, and RNA editing was called and measured for each variant, as
described previously56. The indel variants were mapped individually. The editing
level Z-score of each variant is calculated for each RNA library by Eq. (1) as:

Zi ¼
ELi � ELWT

S
ð1Þ

where S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i¼1 xi�xð Þ2

N

q

; EL= editing level; xi ¼ ELi � ELWT; �x ¼mean editing
level for a given library.

Chemical mapping of RNA structure in vitro. We were able to construct RNA
libraries by in vitro transcription by T7 polymerase (Megascript kit, Thermo
Fisher) for the NEIL1 and a portion of TTYH2 (TTYH2-ECS library) variants to
probe th e RNA structures in vitro to compare with computationally predicted
structures (below). The NEIL1 library (DNA oligo manufactured by IDT) was
constructed with 3′ common primer binding sequence (PBS) and 3′ hairpin bar-
codes similar to previous report57 (see Supplementary Data 6). For the TTYH2-
ECS library (oligo manufactured by Agilent), we designed new 5′ PBS and 3′
barcodes as listed in Supplementary Data 6. The DMS and ethanol-control
experiments were performed according to reported protocols57 except for the
reverse transcription step was carried out using the TGIRT-III enzyme (Ingex),
which improved efficiency of the reverse transcription reaction (50 mM Tris-HCl
pH8, 75 mM KCl, 3 mM MgCl2, 5 mM DTT, 1 mM dNTPs, 100 U TGIRT-III
enzyme, and 10 U SuperaseIN)35. The reverse transcription reaction mix (12 µl)
were incubated at room temperature for 5 min prior to incubation at 57 °C for 3 h
followed by quenching of reaction by adding 5 µl of 0.4 M NaOH at 90 °C for 3 min
and then cooled on ice for 3 min by adding 5 µl acid quench mixture (1.43 M NaCl,
0.57 M HCl, and 1.29M sodium acetate pH 5.2). The first strand cDNA was then
purified by RNAclean XP beads and amplified by one round of PCR to construct
the library to add index and barcodes (Supplementary Data 6). The resulting
library was sequenced with pools of diverse sequences to increase read quality by
NextSeq550. NEIL1 library was sequenced by paired-end on 2 × 76 cycles and
TTYH2 on 2 × 150 cycles. Sequencing data were collected by Basespace (Illumina).
Reads were first filtered by AfterQC58 (“-q 30 -f0 -t0”, quality threshold, “30”, no
trim on both ends) then mapped and demultiplexed by cutadapt 1.17 to read and
trim the barcodes in three steps59 (first remove common sequence, −e 0.07,
resulting error rate, −7%; second detect the barcodes, −e 0.15, error rate, 15%;
third by detecting “common sequence+ barcode” in wildcard mode in the rest of
unrecognized reads, −O 36, minimum overlap, −36). The resulting reads were
processed by ShapeMapper 2 (ref. 60; default configuration except for read depth
threshold was set to 2000) to detect DMS reactivity followed by structure inferring
by Biers in MATLAB61 (default settings except for max_bootstrap= 100). For
NEIL1, two replicates are performed by conducting the chemical treatment on
separate tubes, while the replicates of TTYH2-ECS are from two different barcodes
of the same RNA in one experiment. DMS reactivity data and experimentally
inferred MFE structure were deposited in the RMDB database62.

Computational RNA secondary structure prediction. The sequence used for WT
NEIL1, TTYH2, and AJUBA are shown in Supplementary Data 7 and Fig. 1b. We
chose the ECS sequence according to the reported method18 by examining the
100–1000 bp sequence flanking the editing site and choosing the most sData RNA
duplex. For AJUBA, the ECS sequence we predicted also matches the predicted
duplex using the RNAhybrid method63. We chose the region flanking the editing
site of AJUBA to fold a “minimum” hairpin structure as the AJUBA RNA substrate
(Fig. 1b) by omitting 524 nt sequences in lieu of the full length (>800 bp). This is
because this minimum AJUBA RNA structure preserved both the base-pairing and
a natural loop structure (shown as the hairpin loop in Fig. 1b) based on the
resulting duplex structure, using the ECS prediction results mention above. The
secondary structures with the MFE of the RNA variants (Supplementary Data 7)
for all three RNAs are calculated from the Vienna RNAfold64 2.4.14, using default
parameters except for allowing lone pairs (parameter: -p -d2).

To evaluate if the computationally predicted MFE structure is similar to the
RNA structure probed experimentally in vitro, we used the SimTree65 method
version 1.2.3 to compare the MFE structure between computationally predicted to
the experimentally inferred structures (described above) for all NEIL1 variants and
a portion of the TTYH2 variants that we were able to experimentally measure. The
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MFE structures are largely similar between experimental and computational results
shown by the high average value of the pairwise normalized similarity score
calculated using SimTree65 (NEIL1= 0.96 ± 0.08, TTYH2-ECS library= 0.97 ±
0.04, where 1 means identical structures, Supplementary Fig. 4c). We reasoned that
the results from this comparison justify the suitability of using the computationally
predicted structure in our analysis. Therefore, for all of the structural feature
analysis, we used the computationally predicted RNA structures to be consistent
for all three RNA libraries.

Clustering analysis of RNA sequence and structure. We performed clustering
analysis for each RNA library using the LocARNA pipeline (version 2.0.0RC8)23,24

and associated tools. First, we used both the RNA sequence and the MFE structure
(Supplementary Data 7) as the input to the mlocarna module23 to generate a
multiple alignment. The resulting multiple alignment was then input into
RNAclust66 (RNAclust.pl, version 1.3, modified to suit current computing envir-
onment) to generate a hierarchical cluster tree file (Fig. 6a and Supplementary
Fig. 8) and the consensus RNA structure for each cluster (Fig. 6b, and Supple-
mentary Figs. 7b and 9). These hierarchical clustering and the consensus RNA
structure for each cluster can also be viewed in the SoupViewer66. The hierarchical
clustering was illustrated (Fig. 6 and Supplementary Fig. 8) using dendrogram
generated by the iTOL web server67.

Calculating the probability of forming wild-type secondary structure. The
probability of forming WT-like RNA secondary structure was calculated with
Vienna RNAfold64 version 2.1.9. The probability of forming the WT-like secondary
structures was calculated by Eq. (2) as:

Probability ¼ e
�E wt
kTð Þ
Z

ð2Þ

where kT= 0.6 kcal at temperature T= 37 °C. Z is the unconstrained partition
function (calculated with RNAfold -p). E_wt is the energy of the state with the WT-
like secondary structure, calculated using both the constraints and reference
information (listed below) in RNAfold. The details of the usage and the selection
criteria for these constrains and reference information are also explained below.

The structure constraints are:
NEIL1:
…………………………………..>>>….>…>>…>…>…
TTYH2:
…………………………………………………….>>>>>>>>>>>.>.>.>>>>>>>>>>….
AJUBA:
…………………………………………………..>>.>>>>.>.>>>.>>>>.>>>>>>>.
where “>” indicates that the given base must be paired with a residue that comes

before it (5′) in the sequence and “.” indicates no constraint for the given base.
The reference information is:
NEIL1
………………..(((((.(((.(((((……))))).)))..)))))…………………

TTYH2:
…………………((((((.((.((((((((((((……………………….)))))))))))).)).))))))………………….
AJUBA:
(((((((((((((((.((((((((.((((((.((.(((((((((.((((……….)))).))))))))).)).)))))).)))))))).))))))))))))))).

The constraints are used to specifically calculate the free energy when fold the
RNA sequence according to the constraints. The reference information was used to
calculate a penalty by further comparing the base-pairing between the folded
structure and the structure indicated by the reference information. We
incrementally tested different versions of both the constraints and the reference
information, starting from the exact secondary structure of WT to gradually relax
the base-pairing starting from the first base-pair below the hairpin loop. This way
the constrains and reference information together would preserve majority of the
base-pairing information in WT structure near the core region of the RNA (regions
that flanking the editing site). The reference information is used so that an
additional penalty was added if base pairs could not be formed in the core region of
the RNA. Note that penalties are not applied for any additional base pairs that form
in the unpaired regions of the reference information. The probability was divided
by the number of noncanonical base pairs that would be formed in the core of the
WT secondary structure (defined by the reference information) to roughly account
for the additional energetic penalty that these base pairs should incur. These
constraints and reference information also ensure that the “active conformation”
we calculated includes a wide group of core conformations that closely resembles
the MFE structure of the WT, but are not limited to the single WT MFE structure.
Additionally, the final versions we choose (listed above) are the ones that can
compute conformations existed in the majority of RNA variants (88% for NEIL1,
96% for TTYH2 and AJUBA). The script in is available on GitHub (URL: https://
github.com/kundajelab/PREUSS.)

Modeling the 3D structure of ADAR1 bound to NEIL1. A 3D model of ADAR1
bound to NEIL1 was built through homology modeling and the Rosetta RNP-
denovo method68. First, a homology model of human ADAR1 deaminase was built
using Phyre2 (ref. 69). The conformation of the core RNA residues (nucleotides

corresponding to NEIL1 residues 30–39 and 44–53) was taken from the previously
solved structure of human ADAR2 bound to double-stranded RNA (PDB ID:
5HP3). The RNA was positioned relative to the protein by aligning the previously
solved ADAR2 structure (in complex with dsRNA) to the homology model of
ADAR1, then copying the RNA coordinates from the ADAR2-dsRNA structure.
Protein residues in the ADAR1 homology model that clashed with the RNA were
removed (the final residues included in the model were: 823–973, 996–1003, and
1010–1223). This model was used as input to RNP-denovo with the -s option.
Helical regions of the NEIL1 RNA were modeled as ideal A-form helices, also
included with the -s option. Conformations of protein residues were not optimized
(-minimize_protein_sc false and -rnp_high_res_cycles 0). Default settings were
used for all other options. The complete RNP-denovo command line used is
provided below:

rna_denovo -fasta fasta.txt -secstruct_file secstruct.txt -s
ADAR1_homology_model_and_core_RNA_from_5hp3.pdb RNA_helix_1.pdb
RNA_helix_2.pdb RNA_helix_3.pdb RNA_helix_4.pdb RNA_helix_5.pdb
-new_fold_tree_initializer true -minimize_rna true -minimize_protein_sc false
-out:file:silent build_full_wt_neil1.out -rna_protein_docking true -rnp_min_first
false -rnp_pack_first false -cycles 10000 -rnp_high_res_cycles 0 -minimize_rounds
2 -nstruct 2000 -ignore_zero_occupancy false -convert_protein_CEN false
-FA_low_res_rnp_scoring true -ramp_rnp_vdw true
-dock_each_chunk_per_chain false -use_legacy_job_distributor true -no_filters

where RNA_helix_1.pdb, RNA_helix_2.pdb, etc. are ideal A-form helices for
base-paired regions of Neil1. Possible placements of the double-stranded RNA-
binding domains were visualized by aligning the previously solved structure of the
ADAR2-dsRNA-binding motif bound to dsRNA (PDB ID: 2L2K) to our model of
NEIL1 bound to ADAR1.

Machine learning models of RNA editing levels. All feature extraction and
model training code are available to access on github: https://github.com/
kundajelab/PREUSS

Feature extraction. RNA structures for NEIL1, AJUBA, and TTYH2 were anno-
tated with the bpRNA algorithm9. The bpRNA annotations were in turn utilized to
extract structural and positional features for each variant. A feature matrix with
structure-specific features from the bpRNA (annotations, sequence-specific fea-
tures, features that take into account the mutation type and position, and
thermodynamic-specific features was engineered (how the featured were derived
are described in Supplementary Data 1)) for each substrate and included a total of
122 features (Supplementary Datas 2–4).

Model training. The XGBoost28 Python library (v. 0.81) was used to train gradient
boosted regression trees to predict Adar editing levels from feature matrices
described above. Training was performed both within-substrate and across sub-
strates. Several training and test combinations of datasets were utilized and sum-
marized in Supplementary Data 5.

The dataset was randomly separated into three splits: training on 70% of
variants, model validation on 15%, and testing on the remaining 15%. To avoid
train/test contamination, base-pair positions along the RNA molecules were
assigned to one of the three splits (training, tuning, or test). All features associated
with a given base pair position were assigned to the corresponding split. Any feature
that was null or non-varying across all variants in a given training split was removed
from analysis. A number of variants were characterized by two or more mutations
relative to the WT. For these, features were defined for each mutated base pair
separately. To avoid train/test contamination, any base pairs that were both mutated
in a given variant were included in the same split. The rationale for defining features
relative to bases rather than variants is that different combinations of mutations
may lead to variations in editing level, and a number of features were derived in
reference to mutation type and position (Supplementary Data 1).

XGBoost was trained for a maximum of 1000 iterations, with early stopping
after ten subsequent rounds with no reduction in root mean square error (RMSE)
on the validation split. Default parameters were used.

The R2 value was calculated on the test set to determine the percent of total
variance explained by the feature matrix. Other metrics to measure model
performance included:

● Spearman correlation from the scipy.stats Python library.
● Pearson correlation the scipy.stats Python library.
● Mean absolute error (MAE) from sklearn.metrics Python library.
● Mean absolute percent error (MAPE).
● Root mean square error (RMSE) from sklearn.metrics Python library.
● Area under the precision-recall curve (auPRC) from sklearn.metrics Python

library.
● Area under the receiver operating characteristic (auROC) from sklearn.metrics

Python library.

Feature importance analysis. Feature importance analysis was performed to identify
the subset of features most informative in predicting Adar editing levels. The
XGBoost “plot_importance” function was used to calculate the F score for each
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feature. The TreeSHAP algorithm29 was applied to interpret feature importance
from the XGBoost model. SHAP summary values were computed for each feature
as a measure of feature importance using the “shap_values” function within the
“TreeExplainer” class. Pairwise interaction values from TreeShap were also cal-
culated to identify highly correlated feature values.

SHAP values were applied to calculate the combined relative importance of
feature subsets. Feature subsets (Supplementary Data 1) were defined as follows;
some features were parts of multiple subsets:

● Structure features: stem length, free energy, probability of active conformation.
● Number of mutations in the variant.
● Mutation-specific sequence features: mutation position, mutation site

reference allele, mutation site alternate allele, distance of mutation site from
edited base.

● Mutation-specific structure features: bpRNA structure designation for the
mutation site, bpRNA structure designation for the adjacent upstream site,
bpRNA structure designation for the adjacent downstream site, boolean
indication of whether or not the mutation is part of the same structure as the
editing site.

● “Other” mutation-specific features: type of mutation (indel, SNP), presence/
absence of mutation (WT/mutated) in the variant.

● Editing site sequence features.
● Editing site structure features.
● Characterization of the 3 bpRNA structural features upstream of the

editing site.
● Characterization of the 3 bpRNA structural features downstream of the

editing site.

For each feature subset, the mean absolute SHAP values across variants were
calculated. These were in turn summed across all features in the subset and
compared to the total sum of mean absolute SHAP values across all features.

Overall feature rankings were computed by calculating the mean absolute value
of SHAP values for each feature across the test set samples. These mean(|SHAP|)
values were summed across all features, and the percent contribution to the total
was obtained for each feature. These percent contributions for each feature were
averaged across substrates to determine features that were ranked as high
importance consistently across all substrates.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the corresponding
authors upon reasonable request. Data related to all figures are provided in the
Supplementary Data files 1–8. The accession number of the RNA-seq data for measuring
RNA editing is GSE138860. For the DMS chemical probing of in vitro RNA structure,
raw data and ShapeMapper 2 processed data are available at GEO database with
accession number GSE168234, and the DMS reactivity data and inferred RNA secondary
structure are available in the RNA Mapping Database (RMDB), the RMDB IDs are:
NEIL1_DMS_0001, NEIL1_DMS_0002, NEIL1_DMS_0003, NEIL1_DMS_0004,
NEIL1_DMS_0004, NEIL1_DMS_0006, NEIL1_DMS_0007, NEIL1_DMS_0008,
NEIL1_DMS_0009, NEIL1_DMS_0010, NEIL1_DMS_0011, NEIL1_DMS_0012,
NEIL1_DMS_0013, NEIL1_DMS_0014, NEIL1_DMS_0015, NEIL1_DMS_0016,
NEIL1_DMS_0017, NEIL1_DMS_0018, NEIL1_DMS_0019, NEIL1_DMS_0020,
NEIL1_DMS_0021, and TTYH2_DMS_0001.

Code availability
Bioinformatics codes for RNA editing call are available upon request. Codes for the
PREUSS computational pipeline is available on GitHub URL: https://github.com/
kundajelab/PREUSS (https://doi.org/10.5281/zenodo.4563064)70.
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