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Cryo-EM structures of full-length 
Tetrahymena ribozyme at 3.1 Å resolution

Zhaoming Su1,2,7 ✉, Kaiming Zhang2,3,7, Kalli Kappel4,7, Shanshan Li2,3, Michael Z. Palo4, 
Grigore D. Pintilie2, Ramya Rangan4, Bingnan Luo1, Yuquan Wei1, Rhiju Das4,5 ✉ & Wah Chiu2,6 ✉

Single-particle cryogenic electron microscopy (cryo-EM) has become a standard 
technique for determining protein structures at atomic resolution1–3. However, 
cryo-EM studies of protein-free RNA are in their early days. The Tetrahymena 
thermophila group I self-splicing intron was the first ribozyme to be discovered and 
has been a prominent model system for the study of RNA catalysis and structure–
function relationships4, but its full structure remains unknown. Here we report 
cryo-EM structures of the full-length Tetrahymena ribozyme in substrate-free and 
bound states at a resolution of 3.1 Å. Newly resolved peripheral regions form two 
coaxially stacked helices; these are interconnected by two kissing loop pseudoknots 
that wrap around the catalytic core and include two previously unforeseen (to our 
knowledge) tertiary interactions. The global architecture is nearly identical in both 
states; only the internal guide sequence and guanosine binding site undergo a large 
conformational change and a localized shift, respectively, upon binding of RNA 
substrates. These results provide a long-sought structural view of a paradigmatic RNA 
enzyme and signal a new era for the cryo-EM-based study of structure–function 
relationships in ribozymes.

RNAs can fold into complex tertiary structures and participate in 
important biological processes, such as catalysis and transcriptional 
and translational regulation, in the absence of proteins5,6. However, 
our understanding of RNA structure–function relationships remains 
limited owing to a lack of RNA structural information. This paucity 
arises from the challenges posed by the intrinsic heterogeneity of 
RNAs to conventional X-ray crystallography and nuclear magnetic 
resonance7,8. Single-particle cryo-EM is an alternative method for deter-
mining structures, but its application to RNA has been limited, like 
that of previous methods. At present, fewer than ten protein-free RNA 
cryo-EM maps at resolutions better than 5 Å exist, with the best resolved 
at 3.7 Å resolution9. Recently, we developed an accelerated pipeline—
Ribosolve—to determine 11 protein-free RNA structures through 
sub-nanometre-resolution cryo-EM maps, secondary structure map-
ping using M2-seq (mutate-and-map read out through next-generation 
sequencing), and Rosetta computational modelling10. A full-length 
structure of the wild-type Tetrahymena ribozyme at 6.8 Å resolution 
was a highlight of this approach.

In 1982, the Tetrahymena group I self-splicing intron was discov-
ered as the first example of a protein-free RNA catalyst, and the term 
‘ribozyme’ was coined4. This ribozyme catalyses two successive trans-
esterification reactions to cleave the 5′ splice site and then ligate the 
5′ and 3′ exons. Extensive studies indicated that the highly conserved 
core forms a compact structure11–15 (and references therein). Metal ions, 
especially Mg2+, are essential for the stabilization of RNA structures 

and for their catalytic reactions12–14,16–22. The ribozyme’s peripheral 
regions have been predicted to form long-range interactions to stabi-
lize the core23–27. Deletions and mutations of these regions affect the 
ribozyme’s folding pathways and stability and allosterically regulate 
catalysis23,24,26,28.

Despite extensive efforts, including ground-breaking crystal 
structures of subdomains12–15,29–31, the complete structure of the 
ribozyme remains unavailable. Here we determine structures of the 
full-length Tetrahymena ribozyme at 3.1 Å resolution in both apo and 
holo states, the latter bound to two RNA substrates to mimic the second 
step of splicing. Our structures reveal tertiary interactions that have 
not previously been described, to our knowledge, and conformational 
changes in the internal guide sequence (IGS) and catalytic site upon 
substrate binding, providing structural and mechanistic insights into 
this classic RNA enzyme.

Apo L-21 ScaI ribozyme overall structure
We obtained a 3.1 Å cryo-EM structure of the apo L-21 ScaI ribozyme, a 
linear form of the self-splicing intron without its first 21 nucleotides (nts 
22–409), with transcription termination at a ScaI restriction endonucle-
ase site in the DNA template (Fig. 1a, Extended Data Fig. 1, Extended Data 
Table 1). The catalytic core P3–P7 (in which P denotes a ‘paired’ double 
helix region) is resolved to 3.0 Å, whereas flexible regions such as P9.2 
and P13 are resolved to 4.6 Å. Further 3D classifications reveal modest 
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conformational heterogeneity (Extended Data Fig. 2). The resolvability 
of the cryo-EM density allowed us to refine the initial Ribosolve model10 
(Fig. 1b, c) to a structure that is well validated by Q-score analysis32 
(which measures the resolvability of individual atoms or clusters of 
atoms in cryo-EM maps) (Extended Data Fig. 3).

The apo L-21 ScaI ribozyme consists of the P3–P9 domain and newly 
resolved peripheral regions (Fig. 1c). The ribozyme strand starts from 
the 5′ IGS that binds the oligonucleotide substrate, followed by the 
11-base-pair (bp) P2, in which the loop (L2) forms a 3-bp pseudoknot 
(PK) with L5c called P14. After P2, the 11-bp P2.1 presents L2.1, which 
forms a 7-bp PK P13 with L9.1, and connects to P2.1 via a 4-nt bulge. After 
P2.1, the ribozyme continues to residues 96–331, which includes the 
intricately pseudoknotted P3–P9 section that forms substrate bind-
ing sites. The strand continues to P9.1, which exhibits a novel tertiary 
interaction with the P7 catalytic site. P9.2 is a long stem adjacent to 
P9.1 that points away from the rest of the ribozyme. It is followed by 
the 2-bp P9a, which returns the ribozyme’s 3′ end close to the catalytic 
site (Supplementary Video 1).

The cryo-EM structure of the catalytic core is largely consistent 
with the crystal structures of other group I ribozymes (Extended Data 
Figs. 4–6, Supplementary Table 1). The inclusion of the peripheral 
domains provides structural and functional insights, as described below.

Unpredicted noncanonical interactions
The functional relevance of the peripheral regions has been explored 
in previous investigations of the allosteric regulation of the catalytic 
process in the Tetrahymena ribozyme24,33. Our structure explains previ-
ous structural modelling and biochemical findings (Fig. 2). At a domain 
level, previous work predicted that the peripheral regions would stack 
coaxially and wrap around the catalytic core27, which generally agrees 
with our structure, although there is an almost 90° bend involving 
L2.1 between two long domains (P5c–P14–P2–P2.1 and P13–P9.1–P9.2) 
(Fig. 2, centre).

At a nucleotide level, we resolve numerous noncanonical interac-
tions that are likely to influence function, and we highlight here two 
base triples as examples. First, previous crystal structures of the P4–P6 
domain revealed a noncanonical ‘A-platform’ motif in A171–A172 of L5c, 
which was predicted to potentially interact with peripheral regions12,29. 
Our structure shows that the A171–A172 platform is indeed involved in 
a U43–A171–A172 base triple that connects P5c and the peripheral helix 
P2 via P14 (Fig. 2a–c, Extended Data Fig. 6e). Second, we identified a 
base triple A31–U56–A95 that is stacked on both sides and positioned 
at the P2–P2.1 junction (Fig. 2d, e), which is the ‘anchor point’ for the 
ribozyme’s IGS without substrates. Disruption of this junction would 
result in incorrect splice sites through changes in tertiary structure 
(Supplementary Video 1), consistent with mutational analysis34.

New interactions with allosteric effects
The cryo-EM structure illuminates two tertiary contacts that have 
not been previously seen, to our knowledge, and both of which have 
potential importance for how peripheral domains affect catalysis. One 
contact, termed here ‘P2–P4–P14 bridge’, involves A210 flipping out of 
P4 and forming a hydrogen bond with A46 in P2 and a base stack with 
G169 in P14 (Fig. 2b, c). This provides an explanation for the existence 
of the bulged A210, which was found to be destabilizing in the context 
of an isolated P4–P6 domain but important for folding and function of 
the full-length Tetrahymena ribozyme15. Disruption of P14 formation 
led to a decrease in oligonucleotide substrate docking via an allosteric 
effect of P2 and the P2–P2.1 junction24,33, which is now explained directly 
by the P2–P4–P14 bridge.

The second contact is termed here the ‘P7–purine-rich interaction’. 
Previous observations suggested that P9.1–P9.2 affected the folding 
process and stability of the catalytic site P3–P735. Our structure reveals 
that a purine-rich internal loop in P9.1 (nts 339–342 and 357–360) forms 
a noncanonical G341–G357 pair that resembles an internal loop E struc-
ture36 (Extended Data Fig. 6f), while G358, A359 and G360 form nonca-
nonical base pairs with the minor groove of P7 (Fig. 2f–i). P7 contains 
the guanosine binding site and forms base triples A265–U310–A261 and 
C266–G309–A306 at the catalytic site14 (Fig. 2f, h, i). The P7–purine-rich 
interaction represents a tertiary contact that is closer (17 Å) to the cata-
lytic core than the previously proposed five tertiary contacts (23–48 Å), 
which might explain why mutations of P9.1–P9.2 lead to the largest 
effect on the stability of catalytic core folding24,33,35.

Rearrangement of extended IGS
A classic crosslinking study indicated that the IGS of the ribozyme 
moves by 37 Å upon substrate binding, providing the earliest evidence 
that RNA can undergo large-scale conformational changes and leading 
to the important hypothesis that such RNA flexibility is conserved in 
ancient machines such as the ribosome and spliceosome37.
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To understand this substantial conformational change of the 
ribozyme, we obtained a 3.1 Å cryo-EM map of the L-16 ScaI ribozyme 
(nts 17–409) bound to two RNA substrates. Substrate S1 contains the 
terminal G414 (ωG) of the intron and the 3′ splice site, whereas sub-
strate S2 comprises the cleaved 5′ exon. We introduced a phospho-
rothioate substitution at the scissile phosphate in S2 to isolate the 
docked complex, thereby mimicking the start of the second step of 
splicing38–40 (Fig. 3a–c). The holo ribozyme adopts an identical overall 
architecture with similar flexible regions compared to the apo ribozyme 
(Fig. 3d, Extended Data Fig. 7), except that the extended IGS (nts 17–27) 
undergoes a substantial conformational change to form a 4-bp P10 and 
a 6-bp P1 with substrates S1 (8 nt) and S2 (6 nt, defined as P in previous 
studies40,41) (Fig. 3c, e–g, Supplementary Video 2). The 5′ end of S1 (nts 
412–414) mimics the Tetrahymena intron’s 3′ terminus, forming a 2-bp 
P7 extension to place ωG in the guanosine binding site (Fig. 3e)—the 
same site that binds an exogenous guanosine that is the nucleophile 
for the first step of splicing13,14,17,18,20. The 3′ end of S1 mimics the 3′ exon 
(Fig. 3a, b) and forms P10 with the 5-nt IGS extension (nts 17–21) (Fig. 3e). 
S2 mimics the 5′ exon of the Tetrahymena RNA (Fig. 3a, b) and forms P1 
with the 6-nt IGS (nts 22–27) (Fig. 3f). Comparison between the apo and 
holo structures shows an approximately 60° conformational change of 
the IGS, moving its 5′ end from A87, A88 and A89—previously observed 
sites of crosslinking—into the catalytic core (Fig. 3g, Supplementary 
Video 2).

Local shifts in guanosine binding site
Previous studies based on pre-steady-state enzymology39,41 have shown 
that the binding of guanosine substrate is slow and may require confor-
mational changes of the guanosine binding site. Comparison of the apo 
structure with the holo structure and other group I introns shows that 
the guanosine binding site is largely preformed (Fig. 4a, b, Extended Data 
Fig. 8). However, the apo structure shows weak density for the C262 base 
(Fig. 4a), in contrast to a well-resolved C262 in the holo structure (Fig. 4b). 
In addition, a peripheral metal ion (named M2 below) coordinates to the 
C262 phosphate in both structures. M2 and C262 shift between the apo 

and holo structures, providing a structural picture of proposed con-
formational changes upon guanosine binding (Extended Data Fig. 8d).

Metal ions in the Tetrahymena ribozyme
The Tetrahymena ribozyme is a metalloenzyme: metal ions are essential 
for structure stabilization and catalytic reactions13–23. A total of 31 metal 
ions (M1 to M31) are identified in the holo structure (Methods), four of 
which are absent in the apo structure (M27, M29–M31; Supplementary 
Table 2). Most metal ions are in close proximity to oxygen atoms with 
Q-scores mostly greater than 0.8 (Extended Data Fig. 9a–c), and more 
than half are consistent with previous crystal structures (Extended 
Data Fig. 9d–g).

Some metal ions appear to be relevant for catalysis. Metal ion rescue 
experiments and ribozyme structures have identified five metal ions 
(MA–ME, in which MA, MC and ME correspond to M26, M27 and M28 in the 
cryo-EM structures16,22) as important for the enzymatic reactions of the 
ribozyme16,19,22,42–47. In the holo structure, we found that M2, MA and MC 
coordinate with multiple non-bridging phosphate oxygens of C208, 
C262, A304 and A306 (Fig. 4a, b). Most importantly, MA coordinates 
with the nucleophilic 3′-OH oxygen of the attacking uracil (convention-
ally termed u(−1)), whereas MC coordinates with the 2′-OH oxygen of 
ωG to establish linear nucleophilic attack (Fig. 4c). ME coordinates with 
U307 and A308. MA and ME overlap with those identified in the Azoarcus 
ribozyme (0.74 and 1.06 Å deviations)17,20, whereas MC is shifted by 2.67 Å 
(Extended Data Fig. 8e). This may be due to differences in sequence or 
chemical modifications between ribozyme studies. Analogues of MB 
and MD are not observed in any structures17,18,20.

Discussion
The Tetrahymena ribozyme is a very well-characterized catalytic 
RNA, but its complete structure remains unresolved. Here, we have 
determined 3.1 Å structures of full-length apo L-21 and holo L-16 ScaI 
ribozymes, with most nucleotides and metal ions unambiguously 
resolved. Novel tertiary interactions suggest explanations for allosteric 
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effects connecting the catalytic core and peripheral regions that were 
noted in previous studies (Fig. 2).

The apo structure shows an overall largely preorganized structure. 
A holo structure reveals docked P1 and P10, and four metal ions, M2, 
MA, MC and ME near the catalytic site. Conformational changes of IGS, 
C262, and M2 occur upon substrate binding (Figs. 3g, 4a, b). These 
results provide possible explanations of changes in cross-linking pat-
terns during oligonucleotide substrate binding and slow guanosine 
binding that were found to be important for function and specificity 
during Tetrahymena intron self-splicing37,39,41.

Our results demonstrate the capability and potential of cryo-EM for 
expanding our knowledge of RNA structure–function relationships.  

It now appears feasible to study this ribozyme with experimental struc-
tures that illuminate all of its aspects—substrate binding, metal ions 
and folding pathways—and thereby to complete a foundational RNA 
enzymology research program that began 40 years ago.
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Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
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Methods

RNA preparation
L-21 ScaI ribozyme was prepared as previously described10. In brief, the 
DNA template was amplified from the pT7L-21 plasmid48, then RNA was 
prepared through in vitro transcription in a reaction containing 0.2 μM 
DNA template, 40 mM Tris·HCl, pH 8.1, 25 mM MgCl2, 3.5 mM spermidine, 
0.01% TritonX-100, 40 mM DTT, 4% PEG 8000, 3 mM NTPs, and 7.5 U/μl T7 
RNA polymerase (New England Biolabs). The transcription reaction was 
incubated at 37 °C for 1 h. The RNA was then isolated by ethanol precipita-
tion, then purified on an 8% 29:1 acrylamide:bis, 7 M urea polyacrylamide 
gel. The gel was allowed to set overnight, then the precipitated RNA was 
mixed with loading buffer containing 95% formamide, 10 mM EDTA, 0.1% 
xylene cyanol, and 0.1% bromophenol blue, and loaded on the gel. The 
gel was run at 25 W for 2 h, then visualized briefly with a 254-nm UV lamp, 
held far from the gel to minimize RNA damage49. RNA was eluted from 
the gel overnight in RNase-free water at 4 °C, then purified with Zymo 
RNA Clean and Concentrator columns (Zymo Research).

The DNA template of L-16 ScaI ribozyme was amplified from the 
pT7L-21 plasmid using forward primer 5′-TTCTAATACGACTCACTATA 
GGTTTGGAGGGAAAAGTTATCAGGCATGCACCTGGTAGC-3′ and reverse 
primer 5′- ACTCCAAAACTAATCAATATACTTTCGCATACAAATTAGTT 
CCCAGCGGCTCC-3′. RNA was prepared using the TranscriptAid T7 High 
Yield Transcription Kit (Thermo Scientific) according to the manufac-
turer’s protocol, then purified with RNA Clean and Concentrator-25 
columns (Zymo Research) and PAGE purified as described above for L-21 
ScaI ribozyme. RNA was eluted from the gel using the ZR small-RNA PAGE 
Recovery Kit (Zymo Research) and then ethanol precipitated. The RNA 
oligonucleotide substrates S1 (5′-UCG*UAACC) and S2 (5′-CCCUCU), in 
which * indicates a phosphorothioate bond, were acquired from Inte-
grated DNA Technologies. A phosphorothioate-substituted substrate 
was selected to capture the complex mimicking the second step of 
splicing, based on previous work showing that a similar ligation reac-
tion catalysed by Tetrahymena ribozyme was significantly inhibited by 
substitution of phosphorothioate in the Rp isomeric form at the scissile 
phosphate (less than 5% product after 3 h at 10 μM ribozyme concen-
tration)50. Similarly, phosphorothioate substitution in the equivalent 
substrate for catalysis of the second step of splicing by the Azoarcus 
ribozyme reduced the reaction rate by a factor of >105 and ~14 for the 
Rp and Sp isomeric forms, respectively38.

Cryo-EM sample preparation
To prepare L-21 and L-16 ScaI ribozyme samples for cryo-EM analysis, 
RNAs (20 μM or 15 μM final concentration, respectively) were dena-
tured at 90 °C for 3 min in 50 mM Na-HEPES, pH 8 and cooled to room 
temperature for 10 min. MgCl2 was added to a final concentration of 
10 mM and the samples were incubated at 50 °C for 30 min. Ribozyme 
samples were again cooled to room temperature for 10 min. At this 
point, the L-21 ScaI ribozyme was kept on ice, while substrates S1 and 
S2 (75 μM final concentration each) were added to L-16 ScaI ribozyme 
and the sample was incubated at room temperature for 20 min to form 
the holoenzyme complex before being placed on ice. A total of 3 μl of 
the Tetrahymena ribozyme sample was applied onto glow-discharged 
(30 s) 200-mesh R2/1 Quantifoil Cu grids. The grids were blotted for 3 s 
in 100% humidity with no blotting offset and rapidly frozen in liquid 
ethane using a Vitrobot Mark IV (Thermo Fisher).

Cryo-EM single-particle data acquisition and data processing
The frozen grids of apo L-21 ScaI ribozyme were loaded into a Titan 
Krios (Thermo Fisher) operated at 300 kV, condenser lens aperture 
50 μm, spot size 7, parallel beam with illuminated area of 0.85 μm in 
diameter. Microscope magnification was at 215,000× (corresponding 
to a calibrated sampling of 0.65 Å per physical pixel). Movie stacks were 
collected automatically using EPU software on a K2 direct electron 
camera equipped with a Bioquantum energy filter with an energy slit of 

20 eV (Gatan), operating in counting mode at a recording rate of 5 raw 
frames per second and a total exposure time of 5 s, yielding 25 frames 
per stack, and a total dose of 75 e−/Å2. A total of 7,577 movie stacks were 
collected with defocus values ranging between −0.3 and −1.5 μm. These 
movie stacks were motion-corrected using Motioncor251. After CTF cor-
rection by CTFFIND452, 7,469 micrographs were subjected to EMAN2.2 
for neural network particle picking53. A total of 1,658,961 particles were 
extracted in Relion354 with a box size of 320 pixels. After two rounds of 2D 
classifications, the best classes by visual examination were subjected to 
EMAN2.2 to build the initial model, and a total of 1,559,933 particles were 
subjected to 3D classification in Relion3. The major class showing RNA 
features, including 415,918 particles, was subjected to autorefinement. 
The initial autorefinement result was subjected to Bayesian polishing 
followed by another round of autorefinement55. A sharpening B factor 
of −14 Å2 was applied to the resulting cryo-EM map to yield the final 
sharpened map at 3.1 Å global resolution estimated by the 0.143 criterion 
of the Fourier shell correlation (FSC) curve.

Frozen grids of the holo L-16 ScaI ribozyme were loaded into a Titan 
Krios (Thermo Fisher) operated at 300 kV, condenser lens aperture 
70 μm, spot size 5, parallel beam with illuminated area of 1.1 μm in diam-
eter. Microscope magnification was at 105,000× (corresponding to a 
calibrated sampling of 0.86 Å per physical pixel). Movie stacks were 
collected automatically using EPU software on a K3 direct electron 
camera equipped with a Bioquantum energy filter with an energy slit of 
15 eV (Gatan), operating in counting mode and a total exposure time of 
2.5 s, yielding 30 frames per stack with a total dose of 50 e−/Å2. A total of 
5,559 movie stacks were collected with defocus values ranging between 
−0.8 and −2.0 μm. The data were processed as described above, and a 
total of 230,386 particles were subjected to autorefinement, Bayesian 
polishing and postprocessing with a sharpening B factor of −30 Å2 to 
yield the final sharpened map at 3.1 Å global resolution estimated by 
the 0.143 criterion of the FSC curve.

Both local resolution maps were determined in Relion3 and the final 
map was lowpass filtered accordingly and displayed in UCSF Chimera56.

Cryo-EM model building and refinement
The initial Tetrahymena ribozyme models of both apo and holo cryo-EM 
structures were built with DRRAFTER57, then manually adjusted and 
rebuilt with Coot as needed58. The models were refined with Phenix.
real_space_refine59, yielding an averaged model–map correlation coef-
ficient (CCmask) of 0.79 and 0.82, respectively. The final model was 
validated by MolProbity60 and the map and model correlation was 
confirmed by Q-score analysis32. Secondary structure diagrams were 
prepared with RiboDraw aided by manual adjustment (https://github.
com/ribokit/RiboDraw).

Metal ion identification and validation in cryo-EM models
Additional densities in our cryo-EM maps after fitting the RNA models 
were modelled as metal ions. These densities were also observed in both 
half maps of the reconstruction, which is another means of validating 
these metal ions. Several metal ions in the cryo-EM structures validate 
previous biochemical results: M4 and M5 have been previously identified 
to adopt inner-sphere coordination by metal-ion rescue experiments61; 
residues that make inner-sphere contacts with M2, M15, M16, M18 and 
M19 have been suggested as metal binding sites in a phosphorothioate 
interference assay62,63.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The cryo-EM maps and associated atomic coordinate models of the apo 
L-21 and holo L-16 ScaI ribozymes have been deposited in the wwPDB 
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Extended Data Fig. 1 | Cryo-EM single-particle reconstruction of the apo 
L-21 ScaI ribozyme. Related to Fig. 1. a, Single-particle pipeline yields the final 
cryo-EM reconstruction with the corresponding angular distribution and local 
resolution map. The local resolution map shows more flexibility and lower 
resolution in the 4-nt bulge that connects stem P2.1 and P13, and towards the 

end of stem P6 and P9.2. b, FSC curve shows 3.1 Å resolution according to the 
0.143 cutoff. c, Cryo-EM B factor64, which relates the number of particles to the 
map resolution attributed to cumulative experimental and computational 
factors that affect the final reconstruction.



Extended Data Fig. 2 | Focused 3D classification of apo L-21 ScaI ribozyme 
reveals local conformational dynamics. The regions of low local resolution, 
P9.2 (blue), P9.2–P9.1–P13 (orange) and P13 (green), were extracted.  

Focused 3D classification was performed and different classes were 
superimposed to show rotational and translational motions on P9.2 (left), 
P9.2–P9.1–P13 (middle) and P13 (right).
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Extended Data Fig. 3 | Q-score analyses of cryo-EM maps and models of both 
the apo L-21 and holo L-16 ScaI ribozymes. Related to Fig. 1. a, Q-score 
analyses per residue of the apo L-21 (grey) and holo L-16 (blue) ScaI ribozyme 
cryo-EM models and maps. Black dashed line indicates average Q-score from 

nucleic acid cryo-EM models and maps at 3.1 Å resolution in the PDB.  
b, Cryo-EM model of apo L-21 ScaI ribozyme coloured according to Q-score per 
residue. Dashed boxes (black, blue and green) correspond to regions in the 
cryo-EM model with low Q-scores in a.



Extended Data Fig. 4 | Detailed tertiary interactions in the core region of 
the apo L-21 ScaI ribozyme. a–f, The P5–J5/5a–L9 region has a highly 
structured J5–5a junction in previous structures12,15. The cryo-EM structure 
shows tertiary interactions of C197 (a), C124 and A125 (b), G126, A324 and A325 
(d, e) and G327 (f) in the minor groove of P5. g–k, Previous studies have shown 
that A183 and A184 in the A-rich bulge of the metal core, U259 and C260 from 
J6/J7 and U305 from J8/J7 are conserved and essential for catalytic site 
formation and splicing reactions65–71. The cryo-EM structure shows that U259 
(h), C260 (i) and U305 ( j, k) stack continuously and interact with P4 base 
triples. k, U168 from P5c stacks on the A-rich bulge and interacts with P4 in the 
minor groove, while pairing with G188 in P5a. l, The Hoogsteen base triple 
U277–A97–U300 is essential for substrate helix recognition72. m–q, In the  
P3–J3/4–P6–J7/3 region, the A-rich J3/4 and J7/3 were previously found to 

interact with P6 in the Azoarcus ribozyme17,73. Base triples formed by J3/4 were 
critical for catalysis65,70,71,74, and alterations in these regions result in RNA 
misfolding28,75. In the cryo-EM structure, A104 and A105 form A-minor 
interactions with P6, whereas A103 and A104 join A269 and A270 from J7/3 to 
form an adenosine cluster (m, n). The proposed A103–U271 reverse-Hoogsteen 
pair is not found; instead we observed a noncanonical A103–A270 pair74.  
p, q, The previously observed A-platform of A218–A219 is disrupted in the 
cryo-EM structure with P3 present12,29. A218 forms two A-minor interactions 
with C102–G272 and U273–U101 from P3, which also supports the conservation 
of this C–G pair in group Ib introns74. Black dashed lines indicate hydrogen 
bonds. The cryo-EM maps of all subpanels are visualized at 1σ threshold except 
for c, g, o (1.5σ).
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Extended Data Fig. 5 | Comparison between the previous 3.8 Å crystal 
structure of the mutated Tetrahymena ribozyme catalytic core (green) and 
the cryo-EM structure of the wild-type apo L-21 ScaI ribozyme construct 
(grey) shows minor differences. Related to Extended Data Fig. 4. The overall 
r.m.s.d. for the catalytic core region (stem P3–P9) is 6.6 Å. a, The same view of 
the P5–J5/5a–P9 region as in Extended Data Fig. 4c. The nucleotide 
conformations generally agree well between two models; three mutations 
(U322C, U323G and U326A) are not involved in tertiary interactions. The 
r.m.s.d. for this region is 4.9 Å. b, The same view of the P4–P5a–J6/7–J8/7 region 
as in Extended Data Fig. 4g. In the crystal structure, U259A is slightly moved 
away from the G108–C213 base pair and disrupts this base triple interaction. 
A210G is moved far away from the wild-type position of A210, because there is 

no A46 in stem P2 to interact with in the crystal structure. The very top base 
quartet is much more compact in the cryo-EM structure compared to the 
crystal structure, probably owing to the presence of the peripheral domain 
that wraps around the catalytic core to make it more compact. The r.m.s.d. for 
this region is 5.7 Å. c, The same view of the P3–J3/4–P6–J7/3 region as in 
Extended Data Fig. 4o. The overall nucleotide conformations agree very well 
between the two models, except that A269G and A270 in the crystal structure 
are completely moved away and disrupt their interactions with A103, which is 
observed in the cryo-EM structure. The r.m.s.d. for this region is 1.7 Å. d, The 
same view as in Extended Data Fig. 4l. U277C disrupts the U277–A97–U300 base 
triple. The r.m.s.d. for this base triple is 2.7 Å. See also Supplementary Table 1.



Extended Data Fig. 6 | Superposition of the apo L-21 ScaI ribozyme cryo-EM 
structure (grey) with previous crystal structures of the truncated and/or 
mutated Tetrahymena ribozyme, other group I introns and 5S rRNA loop E 
show global and local structural similarities. a–d, Overlays of the cryo-EM 
structure (grey) with the Tetrahymena ribozyme P4–P6 Delta C209 (a; blue, 

PDB 1HR2); the mutated Tetrahymena ribozyme P3–P9 (b; green, PDB 1X8W); 
the Azoarcus ribozyme (c; violet, PDB 1U6B) and the phage Twort ribozyme  
(d; yellow, PDB 1Y0Q). e, P5c region of the wild type P4–P6 crystal structure 
(blue, PDB 1GID). f, 5S rRNA loop E crystal structure (red, PDB 354D).
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Extended Data Fig. 7 | Cryo-EM single-particle reconstruction of the holo 
L-16 ScaI ribozyme. Related to Fig. 3. a, Single-particle pipeline yields the final 
cryo-EM reconstruction with the corresponding angular distribution and local 
resolution map. The local resolution map shows more flexibility and lower 

resolution in the 4-nt bulge that connects stem P2.1 and P13, and towards the 
end of stem P6 and P9.2. b, FSC curve shows 3.1 Å resolution according to the 
0.143 cutoff. c, Cryo-EM B factor.



Extended Data Fig. 8 | Comparisons of apo L-21 and holo L-16 ScaI ribozyme 
cryo-EM models with previous crystal structures show structural 
conservation and metal ion shifts in the guanosine binding site among 
group I introns. Related to Fig. 4. a–c, The apo L-21 ScaI ribozyme adopts a 
preorganized guanosine binding site (grey) that superimposes with previous 
crystal structures of mutated P3–P9 of the Tetrahymena ribozyme (a; green, 
PDB 1X8W), the Azoarcus ribozyme (b; violet, PDB 1U6B), and the phage Twort 

ribozyme (c; yellow, PDB 1y0q). d–g, The holo L-16 ScaI ribozyme (sky blue) 
superimposes with apo L-21 ScaI ribozyme (d; grey), the Azoarcus ribozyme  
(e; violet), the phage Twort ribozyme (f; yellow), and mutated P3–P9 of the 
Tetrahymena ribozyme (g; green). MC is absent in the apo L-21 ScaI ribozyme, 
whereas MC in the Azoarcus ribozyme is shifted compared to the holo L-16 ScaI 
ribozyme. Dash line indicates metal ion coordination with surrounding atoms.
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Extended Data Fig. 9 | Metal ion validations by distance and Q-score 
analysis, and illustrations of the apo L-21 and holo L-16 ScaI ribozyme 
cryo-EM structures compared with previous crystal structures.  
a, Distances between metal ions and other atoms in the apo L-21 ScaI ribozyme 
model. b, Distances between metal ions and other atoms in the holo L-16 ScaI 
ribozyme model. c, Q-score analysis per metal ion of the apo L-21 and holo L-16 
ScaI ribozyme cryo-EM models and maps. d, Metal core region of the holo L-16 
ScaI ribozyme, visualized at 1.1σ threshold. e, Comparisons of the apo L-21 

(grey) and holo L-16 (sky blue) ScaI ribozyme cryo-EM models with P4–P6 Delta 
C209 (blue, PDB 1HR2) and mutated P3–P9 of the Tetrahymena ribozyme 
(green, PDB 1X8W) in the same view as d. f, Catalytic site of the holo L-16 ScaI 
ribozyme, visualized at 1.4σ threshold. g, Comparisons of the apo L-21 (grey) 
and holo L-16 (sky blue) ScaI ribozyme cryo-EM models with the Azoarcus 
ribozyme (violet, PDB 1U6B), mutated P3–P9 of the Tetrahymena ribozyme 
(green, PDB 1X8W), and the phage Twort ribozyme (yellow, PDB 1Y0Q) in the 
same view as f. See also Supplementary Table 2.



Extended Data Table 1 | Cryo-EM data collection, processing, and model refinement statistics of the apo L-21 and holo L-16 
ScaI ribozymes
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